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Abstract 24 

Predictive coding theories argue that recent experience establishes expectations in 25 

the brain that generate prediction errors when violated. Prediction errors provide a 26 

possible explanation for repetition suppression, where evoked neural activity is 27 

attenuated across repeated presentations of the same stimulus. The predictive 28 

coding account argues repetition suppression arises because repeated stimuli are 29 

expected, whereas non-repeated stimuli are unexpected and thus elicit larger neural 30 

responses. Here we employed electroencephalography in humans to test the 31 

predictive coding account of repetition suppression by presenting sequences of 32 

visual gratings with orientations that were expected either to repeat or change in 33 

separate blocks of trials. We applied multivariate forward modelling to determine 34 

how orientation selectivity was affected by repetition and prediction. Unexpected 35 

stimuli were associated with significantly enhanced orientation selectivity, whereas 36 

selectivity was unaffected for repeated stimuli. Our results suggest that repetition 37 

suppression and expectation have separable effects on neural representations of 38 

visual feature information.  39 

   40 
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Introduction 41 

At any moment in time, the brain receives more sensory information than can 42 

be responded to, creating the need for selection and efficient processing of 43 

incoming signals. One mechanism by which the brain might reduce its information 44 

processing load is to encode successive presentations of the same stimulus in a 45 

more efficient form, a process known as neural adaptation (Fairhall, Lewen, Bialek, 46 

& de Ruyter van Steveninck, 2001; Kvale & Schreiner, 2004; Smirnakis, Berry, 47 

Warland, Bialek, & Meister, 1997). Such adaptation has been observed across 48 

different sensory modalities and species, and has been suggested as a potential 49 

mechanism for enhancing the coding efficiency of individual neurons and neuronal 50 

populations (Adibi, McDonald, Clifford, & Arabzadeh, 2013; Benucci, Saleem, & 51 

Carandini, 2013; Maravall, Petersen, Fairhall, Arabzadeh, & Diamond, 2007). A 52 

particular form of neuronal adaptation, known as repetition suppression, is 53 

characterised by attenuated neural responses to repeated presentations of the 54 

same stimulus (Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016; Gross, 55 

Schiller, Wells, & Gerstein, 1967; Keller et al., 2017; Movshon & Lennie, 1979; 56 

Rasmussen, Schwartz, & Chase, 2017). Here we asked whether predictive coding 57 

theory, which assumes that sensory processing is influenced by prior exposure, can 58 

account for changes in neural representations observed with repetition suppression.  59 

The phenomenon of repetition suppression has been widely exploited to 60 

investigate neural representations of sensory information. Repeated exposures allow 61 

for more efficient representation of subsequent stimuli, as manifested in improved 62 

behavioural performance despite a significant reduction in neural activity (Henson & 63 
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Rugg, 2003; Schacter & Buckner, 1998). Repetition suppression paradigms have 64 

been used extensively in human neuroimaging because they are commonly 65 

considered to be analogous to the single-cell adaptation effects observed in animal 66 

models (see Barron, Garvert, & Behrens, 2016 for review). The exact relationship 67 

between the effects seen in human neuroimaging studies and animal 68 

neurophysiology has, however, yet to be fully established.  69 

The view that repetition suppression observed in human neuroimaging 70 

studies reflects neuronal adaptation has recently been challenged by hierarchical 71 

predictive coding theories (Auksztulewicz & Friston, 2016; Summerfield, Trittschuh, 72 

Monti, Mesulam, & Egner, 2008). These theories argue that the brain interprets 73 

incoming sensory events based on what would be expected from the recent history 74 

of exposure to such stimuli (Friston, 2005; Rao & Ballard, 1999). According to these 75 

theories, predictions are generated within each cortical area, and are bi-directionally 76 

propagated from higher to lower areas, including to primary sensory regions, 77 

allowing for more efficient representation of expected stimuli. When there is a 78 

precise expectation, incoming information can be efficiently represented by 79 

recruiting a small pool of relevant neurons (Friston, 2005). When there is a mismatch 80 

between an expectation and the stimulus presented, i.e., when there is a prediction 81 

error, the stimulus is less efficiently represented and thus elicits a larger neural 82 

response. 83 

The majority of evidence for predictive coding comes from human 84 

neuroimaging experiments in which the presentation of an unexpected stimulus 85 

generates a larger response than the presentation of an expected stimulus. In 86 
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studies employing electroencephalography (EEG) and magnetoencephalography 87 

(MEG), this effect is known as the mismatch negativity (Garrido, Kilner, Stephan, & 88 

Friston, 2009; Näätänen, Paavilainen, Rinne, & Alho, 2007; Wacongne et al., 2011), 89 

where an unexpected stimulus evokes significantly greater negativity than an 90 

expected stimulus. To date, however, no study has tested a key premise of 91 

predictive coding, namely, that expected stimuli are more efficiently encoded in the 92 

brain relative to unexpected stimuli, in terms of their elementary feature 93 

representations. Nor has any previous investigation examined whether the 94 

mismatch negativity response is associated with a change in neural tuning to 95 

stimulus features such as orientation.  96 

To test the hypothesis that prediction error can account for repetition 97 

suppression effects, Summerfield and colleagues (2008) introduced an experimental 98 

paradigm in which the identity of a face stimulus was either repeated in 80% of 99 

trials (making the repetition expected) or was changed in 80% of trials (making the 100 

repetition unexpected). There was greater attenuation of the BOLD response in the 101 

fusiform face area when a face repetition was expected, relative to when it was 102 

unexpected, suggesting that repetition suppression is reduced by unexpected 103 

stimuli. This attenuation of repetition suppression by failures of expectation has also 104 

been replicated using fMRI (Larsson & Smith, 2012) and M/EEG, using high-level 105 

stimuli such as faces (Summerfield, Wyart, Mareike Johnen, & de Gardelle, 2011), 106 

and simple stimuli such as tones (Todorovic & de Lange, 2012; Todorovic, van Ede, 107 

Maris, & de Lange, 2011). 108 
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A potential reconciliation of the relationship between expectation and 109 

repetition suppression comes from work showing that while expectations decrease 110 

the overall amount of neural activity, they can also yield sharper representations of 111 

sensory stimuli (Kok, Jehee, & de Lange, 2012). This work goes beyond 112 

conventional neuroimaging approaches, which typically only measure overall levels 113 

of neural activity (Buckner et al., 1998; Kourtzi & Kanwisher, 2001; Tootell, Reppas, 114 

Dale, & Look, 1995). Such amplitude changes could in principle be produced by one 115 

or more different types of change in the underlying neural representations. For 116 

instance, both sharpening, where the response to only unpredicted features is 117 

suppressed, and gain reduction, where a multiplicative suppression occurs for all 118 

features, could be associated with decreased population activity, even though the 119 

amount of information carried by the representations will be markedly different. 120 

Recently introduced multivariate pattern analytic approaches to human neuroimaging 121 

– specifically forward encoding modelling – allow for the quantification of stimulus-122 

selective information contained within patterns of neural activity in human observers 123 

(Brouwer & Heeger, 2009; Garcia, Srinivasan, & Serences, 2013; King, Pescetelli, & 124 

Dehaene, 2016; Kok, Mostert, & de Lange, 2017; Myers et al., 2015; Salti et al., 125 

2015; Wolff, Jochim, Akyürek, & Stokes, 2017a). This approach goes beyond typical 126 

multivariate pattern analyses (which normally produce only accuracy scores) by 127 

quantifying neural representations evoked by sensory stimuli to reveal both the 128 

accuracy and the tuning fidelity for the specific feature-dimension of interest.  129 

 Here we used multivariate forward encoding methods to test whether 130 

repetition suppression and expectation have different effects on the way the brain 131 
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represents visual information, in this case the orientation of grating stimuli. To 132 

anticipate the results, we found that soon after stimulus onset, repetition 133 

suppression had no effect on visual orientation selectivity, but violated expectations 134 

were associated with a significantly increased orientation-selective response 135 

through gain modulation, with no corresponding change in response fidelity. This 136 

representation was transiently re-activated at around 200 ms post-stimulus onset, 137 

suggesting that feedback influences initial sensory encoding of an unexpected 138 

stimulus, which in turn allows for updating of the sensory prior.   139 

Results 140 

 We used a modified version of the paradigm introduced by Summerfield and 141 

colleagues (2008), replacing the face stimuli used in that study with oriented 142 

Gabors. These low-level stimuli allowed us to quantify the degree of orientation 143 

selectivity in EEG activity to determine how the representation of orientation is 144 

affected by prediction error and repetition suppression. Each of fifteen observers 145 

participated in two EEG sessions. On each trial, two Gabors were presented 146 

sequentially (100 ms presentation, 600 ms stimulus onset asynchrony), and these 147 

stimulus pairs either repeated or alternated in their orientation (Figure 1A, Movie 1). 148 

The predictability of the repeated and alternating pairs was varied in a block-wise 149 

manner to manipulate expectation. In a repeating block, the orientations of the two 150 

Gabors in a pair repeated in 80% of trials, and alternated in the remaining 20%. 151 

These contingencies were reversed in the alternating block (Figure 1B). The 152 

orientations of successive stimuli across a block were randomized to limit any 153 

accumulated effects of adaptation and prediction. As repetition suppression and 154 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2018. ; https://doi.org/10.1101/213710doi: bioRxiv preprint 

https://doi.org/10.1101/213710
http://creativecommons.org/licenses/by/4.0/


Repetition suppression and prediction error  

8 
 

expectation form orthogonal dimensions of the task, the design allowed us to 155 

isolate their respective contributions to neural responses. Participants completed an 156 

unrelated task of discriminating (red vs blue) rare coloured Gabors (which occurred 157 

on 10% of trials).  158 

 159 

Figure 1. Example stimulus displays and task design. (A) Schematic of the stimuli 160 
and timing used in the experiment. Participants viewed a rapid stream of pairs of 161 
Gabors and monitored for an infrequent coloured target (10% of trials). The stimulus 162 
orientations varied pseudorandomly across trials between 0° and 160° (in 20° 163 
steps), allowing estimation of orientation-selective information contained within 164 
patterns of EEG activity. (B) The orientation of the pairs of Gabors could either 165 
repeat or alternate. In one type of block, 80% of trials were orientation repeats and 166 
the remaining 20% alternated (Repeating blocks); in the other type of block these 167 
contingencies were reversed (Alternating blocks). 168 
 169 
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 170 

Movie 1. Example of a stimulus sequence of Gabors in a typical repetition block. 171 

 172 

Repetition suppression and prediction error affect the overall level of neural 173 

activity 174 

 The Gabors elicited a large response over occipital-parietal areas (Figure 2A). 175 

Consistent with previous work (Cui, Wang, Park, Demb, & Butts, 2016; Keller et al., 176 

2017; Rentzeperis, Nikolaev, Kiper, & Van Leeuwen, 2012; Summerfield et al., 2011; 177 

Todorovic et al., 2011; Todorovic & de Lange, 2012; Tootell et al., 1998), there was 178 

a significant repetition suppression effect (Repeat < Alternating), such that the 179 

response to repeated stimuli was significantly reduced compared with the response 180 

to alternating stimuli (Figure 2A). The repetition suppression effect was evident over 181 

a large cluster of occipital-parietal electrodes at two time intervals: an early effect 182 

from 79 to 230 ms, and a later effect at 250 to 540 ms after the onset of the second 183 

stimulus (cluster p < .025; Figure 2B and caption). A large cluster of frontal 184 

electrodes mirrored the repetition suppression effect with a similar time course: the 185 

ERP over these frontal sites had the same pattern, but was reversed in sign, 186 
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suggesting it originated from the same dipole as the occipital response. 187 

188 
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 189 

Figure 2. Univariate EEG results for the effect of repetition suppression and 190 
expectation on the second stimulus in a pair. Panels A and B show the main effects 191 
of repetition suppression and expectation, respectively, over three post-stimulus 192 
epochs (100-200ms, 200-300 ms, 300-400 ms) and across all electrodes. The main 193 
effect of repetition suppression is displayed as Repeating minus Alternating trials. 194 
The main effect of expectation is displayed as Expected minus Unexpected trials. 195 
Circles indicate clusters of electrodes with significantly reduced activity, and 196 
crosses indicate clusters of electrodes with significantly increased activity (alpha p 197 
< .05, cluster p < .025, N permutations = 1500). (C) Bandpass filtered (2-40 Hz) 198 
event-related potentials (ERPs) for the two conditions, averaged over occipital-199 
parietal electrodes (O1, O2, Oz, POz, PO7, PO3, PO8, PO4, P3, Pz, P2). A peak 200 
analysis was conducted to aid comparison with previous studies. Orange shading 201 
indicates the P1 component; green shading indicates the N1 component. (D) Peak 202 
analysis results for P1 and N1 components. Note that the plotted values represent 203 
differences between conditions, as indicated, rather than condition-specific evoked 204 
responses. Asterisks indicate p <.05.  Error bars indicate ±1 standard error.  205 
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 Also consistent with previous results (Garrido et al., 2009; Summerfield et al., 206 

2011; Todorovic et al., 2011; Todorovic & de Lange, 2012), there was a significant 207 

expectation effect (Expected < Unexpected). Specifically, there was a significantly 208 

greater negativity for unexpected versus expected stimuli, and this effect was most 209 

prominent over a cluster of occipital-parietal electrodes around 75-150 ms after 210 

stimulus presentation (Figure 2C). As with the repetition suppression result 211 

described above, there was an expectation effect of opposite polarity over 212 

occipital-parietal electrodes. This effect was significant at an early time point post-213 

stimulus (79-130 ms), but not at later time points (320-390 ms; Figure 2D). Finally, 214 

there was no interaction between repetition suppression and expectation (i.e., no 215 

significant positive or negative clusters, all p > .05). Taken together, these results 216 

reveal both repetition suppression and expectation effects in the neural data, which 217 

were indexed separately as shown in Figure 2.  218 

 We conducted a further traditional peak analysis, to aid comparison with 219 

previously published studies on the mismatch negativity (Garrido, Sahani, & Dolan, 220 

2013; Näätänen et al., 2007; Saarinen, Paavilainen, Schöger, Tervaniemi, & 221 

Näätänen, 1992). We bandpass filtered the ERPs (2-40 Hz) to recover the 222 

stereotypic waveform (Figure 2C) and examined two classic early components – the 223 

N1 and P1 – averaged across a broad grouping of occipital-parietal electrodes (O1, 224 

O2, Oz, POz, PO7, PO3, PO8, PO4, P3, Pz, P2). As in previous studies (Caharel, 225 

d’Arripe, Ramon, Jacques, & Rossion, 2009; Dehaene et al., 2001), we defined the 226 

P1 as the largest positivity between 80 and 110 ms after stimulus presentation, and 227 

the N1 as the largest negativity between 90 and 130 ms after stimulus presentation. 228 
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A relatively wide temporal window was used to capture inter-individual response 229 

variation. As expected, for the P1 component the repeated stimulus evoked a 230 

significantly smaller positivity (t(14) = 3.03, p = .009) than the alternating stimulus 231 

(Figure 2D), reflecting a repetition suppression effect. There was no such effect of 232 

expectation on the P1 (t(14) = 0.26, p = .80). By contrast, as predicted from previous 233 

work (Garrido et al., 2013; Näätänen et al., 2007; Saarinen et al., 1992), analysis of 234 

the N1 component showed that the unexpected stimulus evoked a significantly 235 

greater negativity than the expected stimulus, (t(14) = 5.75, p < .0001). The 236 

repetition suppression effect was also present in the N1 (t(14) = 2.39, p = .03), but 237 

critically in the opposite direction as the expectation effect.   238 

Expectations increase orientation-selective information contained within 239 

patterns of EEG activity 240 

We next examined the key question of whether repetition suppression and 241 

expectation differentially affect neural representations of orientation information. To 242 

do this, we used a forward encoding approach to reconstruct orientation-selective 243 

information contained within the multivariate pattern of EEG activity distributed 244 

across the scalp (Figure 3; see Methods for details). Briefly, this technique 245 

transforms sensor-level responses into tuned ‘feature’ channels (Brouwer & Heeger, 246 

2009; Garcia et al., 2013; Kay, Naselaris, Prenger, & Gallant, 2008; Myers et al., 247 

2015), in this case, orientation-selective features. For each trial, the presented 248 

orientation was convolved with a canonical, orientation-selective tuning function 249 

and regressed against the pattern of EEG activity across all sensors at each time 250 

point. This created a spatial filter of the multivariate EEG activity that differentiated 251 
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orientations (Figure 3D). These weights were then inverted to reconstruct the model, 252 

and multiplied against an independent set of test trials to produce responses in the 253 

modelled orientation channels. These sets of responses were then used to evaluate 254 

the degree of orientation selectivity in those trials. The procedure was repeated for 255 

all time points in the trial, and a cross-validated approach was used until all trials 256 

had been used for both training and testing.  257 

As shown in Figure 3, the forward encoding revealed a strong, orientation-258 

selective response derived from the multivariate pattern of EEG activity. This 259 

orientation-tuned response was evident from ~50 to ~470 ms after stimulus onset, 260 

and peaked between ~120-250 ms (Figure 3C). Examination of the regression 261 

weights revealed that this response was largely driven by activity centred over 262 

occipital-parietal areas (Figure 3D).  263 

  264 
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 265 

Figure 3. Results of the forward encoding modelling for orientation-selectivity. (A) 266 
Time-resolved orientation tuning curve across all participants and conditions in 267 
response to the second Gabor in the pair. The forward encoding approach resulted 268 
in a tuning curve for each of the nine presented orientations.  These tuning curves 269 
were then centred at each presented orientation (here labelled as 0°) to combine 270 
across all orientations. The orientation-selective response is contained within the 271 
overall pattern of EEG; activity begins soon after stimulus onset and peaks at 272 
around 250 ms before declining. (B) Population tuning curve of the stimulus 273 
reconstruction across participants, averaged between 50-100 ms and 150-250 ms 274 
after stimulus presentation. Each line is a fitted Gaussian response with a variable 275 
offset used to quantify orientation selectivity. Error bars indicate ±1 standard error 276 
of the mean across participants. (C) Amplitude of the channel response over time, 277 
averaged across all conditions (black line). The thick black line indicates significant 278 
encoding of stimulus orientation based on a cluster-permutation test across 279 
participants (cluster p < .05, N permutations = 20,000). Encoding accuracy was 280 
reliable from 52 to 470 ms post-stimulus onset. The error shading (in grey) indicates 281 
bootstrapped 95% confidence intervals of the mean. (D) Topographic plots of the 282 
weights (averaged across the 9 orientation channels across all participants) derived 283 
from forward encoding at the corresponding time points shown in panel B. (a.u. = 284 
arbitrary units). 285 
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 To examine our central question of whether repetition suppression and 286 

expectation have differential effects on neural representations of orientation, we 287 

split and averaged the results of the forward encoding by trial type, and fitted these 288 

with Gaussians (see Methods) to quantify orientation selectivity (Figure 4). 289 

Repetition suppression did not affect the amount of orientation selectivity contained 290 

within the EEG data, with similar selectivity for repeated and alternating trials. This 291 

was the case even though the repeated trials had a markedly smaller EEG response 292 

over occipital and parietal electrodes (see Figure 2A), where the forward encoding 293 

model was maximally sensitive. This result is consistent with the ‘efficient 294 

representation’ hypothesis of repetition suppression (Gotts, Chow, & Martin, 2012), 295 

which argues that the overall neural response is smaller with repetition suppression 296 

due to more efficient coding of stimulus information.  297 

  298 
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 299 

Figure 4. The effect of repetition suppression and expectation on orientation 300 
selectivity measured using forward encoding modelling. (A) Amount of orientation-301 
selective information (given by the amplitude of the fitted gaussian) from the EEG 302 
signal in response to the second Gabor in a pair, shown separately for repetition 303 
suppression (upper panel) and expectation (lower panel). The thick black line 304 
indicates significant differences between the conditions (two-tailed cluster-305 
permutation, alpha p < .05, cluster alpha p < .05, N permutations = 20,000). (B) 306 
Population tuning curves averaged over the significant time period (79 – 185 ms) 307 
depicted in panel A. The curves, shown as fitted Gaussians, illustrate how overall 308 
stimulus representations are affected by repetition and expectation. While there was 309 
no difference in orientation tuning for repeated versus alternate stimuli (upper 310 
panel), the amplitude of the orientation response increased significantly, and the 311 
baseline decreased, for unexpected relative to expected stimuli. Error bars indicate 312 
±1 standard error.  313 
 314 
 Examining the effect of expectation revealed a markedly different pattern of 315 

results. As shown in Figure 4A, at 79 - 185 ms after the onset of the second 316 

stimulus in the pair, orientation-selectivity increased significantly (p < .0001) when 317 

the stimulus was unexpected relative to when it was expected, and this effect arose 318 

at the earliest stages of the brain’s response to that stimulus. Moreover, the 319 
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expectation signal contained enhanced information about the specific features of 320 

the stimulus that violated the expectation, in this case the orientation of the second 321 

grating. We conducted the same statistical tests on the three other parameters 322 

defining the Gaussian function (namely, the width, centre orientation and baseline) 323 

to determine how repetition suppression and expectation might affect other 324 

properties of the neural representation. There was no reliable influence of repetition 325 

suppression on any of these Gaussian parameters (all p > .32). For expectation, 326 

there was a significant decrease in baseline activity over the same time period as 327 

observed for the increase in amplitude (79-185 ms, p = .001), but there were no 328 

significant effects for the other parameters (all ps > .30). 329 

We followed up this initial analysis to ensure we did not miss any small 330 

effects of repetition suppression or expectation on any aspects of stimulus 331 

representation.  We increased the signal-to-noise by averaging the stimulus 332 

reconstruction over this early time period (79-185 ms after stimulus presentation), 333 

and fitted Gaussians to each participant’s data individually (Figure 4B). This again 334 

showed that the amplitude of the response was significantly (t(14) = 3.34, p = .005) 335 

higher for unexpected (M = 0.67, SE = 0.06) than for expected (M = 0.41, SE = 0.03) 336 

stimuli. By contrast, the width of the representations was similar for unexpected (M 337 

= 29.62º, SE = 4.72º) and expected (M = 26.72º, SE = 2.74º) stimuli, (t(14) = 0.78, 338 

p = .45). There was also a small but non-significant (t(14) = 1.94, p = .06) trend for a 339 

smaller baseline response (i.e., non-orientation tuned activity) in the unexpected  340 

(M = -0.01, SE = 0.07) than in the expected (M = 0.13, SE = 0.02) condition. For 341 

comparison, we also averaged the same time period for the repetition suppression 342 
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conditions, and found similar curves for the repeated and alternating trials (all ps > 343 

.18). This analysis confirms the previous result, which employed more conservative 344 

nonparametric cluster-based testing.  345 

It might be argued that the particular baseline period we chose for the 346 

encoding analyses - namely from -100 to 0 ms before the onset of the second 347 

Gabor in each pair – biased the results by incorporating a purely top-down 348 

expectation template triggered by the orientation of the first Gabor (Kok et al., 349 

2017). To rule out this possibility, we performed a further forward encoding analysis 350 

where we baselined the raw EEG data to the mean activity from -100 to 0 ms before 351 

the first Gabor in each pair. Critically, this control analysis involved a baseline period 352 

over which it was not possible to form a top-down expectation of the orientation of 353 

the second Gabor based on the orientation of the first. This analysis yielded the 354 

same pattern of results as the original analysis (Supplementary Figure 1), such that 355 

the unexpected stimulus evoked significantly greater orientation selectivity than the 356 

expected stimulus (p = .02). Also in line with the original analyses, the width of the 357 

representation was not affected by expectation (p = .44), and there was no effect of 358 

repetition suppression on orientation selectivity (p = .64). We can thus be confident 359 

that the effect of expectation on orientation selectivity that we report here, based on 360 

our forward encoding analyses, is not an artefact of the baselining procedure.  361 

We also used a number of approaches to determine whether repetition 362 

suppression and expectation interacted to affect orientation selectivity. First, we 363 

took the difference scores between the combination of factors (e.g., expected 364 

repetition minus unexpected repetition, and expected alternation minus unexpected 365 
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alternation) and compared these using the same cluster-based permutation testing 366 

outlined above. This analysis revealed no significant interactions between the 367 

factors for any parameter (all ps > .10). Second, we found the largest orientation-368 

selectivity, defined by the amplitude of the fitted Gaussian, across the 600 ms 369 

following stimulus presentation. For each participant, this resulted in a single value 370 

for the four conditions. Each of these values was subjected to a two-way repeated-371 

measures ANOVA, which again revealed no significant interaction between the 372 

factors (all ps > .30)  373 

 To further examine whether orientation-selectivity contained within the overall 374 

pattern of EEG activity differed for unexpected and expected stimuli, we used 375 

multivariate discriminant analysis to determine whether more traditional backward 376 

decoding (Grootswagers, Wardle, & Carlson, 2017; Kamitani & Tong, 2005; King, 377 

Gramfort, Schurger, Naccache, & Dehaene, 2014; Marti, King, & Dehaene, 2015) 378 

produces the same pattern of results as that yielded by the forward encoding 379 

approach described above. The same cross-validation procedure was used as in 380 

the forward encoding analysis, but accuracy was now defined as the proportion of 381 

trials labelled with the correct orientation. To facilitate comparison with the results 382 

of Kok et al., (2013), we took the peak classification accuracy within a 600 ms 383 

window after presentation of the second grating within each pair. This analysis 384 

confirmed the results of the forward encoding: orientations shown in unexpected 385 

trials were classified better than orientations shown in expected trials (F(1,14)  386 

76.42, p <. 00001). Again, there was no effect of repetition on classification 387 

accuracy (F(1,14) = 0.027, p = .87); nor was there a significant interaction (F(1,14) = 388 
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2.52, p = .13). This suggests the finding is not specific to the analysis method but 389 

rather reflects how expectation affects the representation of sensory information in 390 

general. 391 

 392 

Figure 5. Peak (naive Bayes) classification accuracy of the presented grating 393 
orientation for expected and unexpected conditions. The dotted line indicates 394 
chance performance (1/9 orientations).  The error bars indicate ±1 standard error of 395 
the mean.  396 
 397 
Expectation affects the temporal stability of stimulus representations 398 

 Next, we examined whether repetition suppression and expectation affected 399 

dynamic, ongoing stimulus representations by using cross-temporal generalization 400 

(King & Dehaene, 2014; King et al., 2014; Myers et al., 2015; Spaak, Watanabe, 401 

Funahashi, & Stokes, 2017; Stokes et al., 2013). To do this, we used the same 402 

forward encoding approach as in the previous analysis, but now the weights were 403 

derived from one time-point on one set of trials, and then applied at every time point 404 

in the test trials. Again, a cross-validation approach was used, with all trials serving 405 

as both training and test. This analysis examined whether the same spatial pattern 406 

of EEG activity that allows for orientation selectivity generalizes to other time points, 407 

thus revealing whether the pattern of orientation-selective activity is stable or 408 
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changes over time.   409 

As shown in Figure 6, optimal orientation selectivity was on-axis (training 410 

time equals test time) between 100 ms and 300 ms after stimulus presentation, 411 

suggesting that the stimulus representation changed dynamically over time (King & 412 

Dehaene, 2014). There was also significant off-axis orientation-selectivity from 100-413 

500 ms after stimulus presentation, suggesting that some aspects of the neural 414 

representation of orientation were stable over time.  415 

 416 
Figure 6. Cross-temporal generalization of the forward encoding model based on 417 
grating orientations for the main effects of repetition suppression (upper panels) and 418 
expectation (lower panels). The maps have been thresholded (indicated by opacity) 419 
to show clusters (black outlines) of significant orientation selectivity (permutation 420 
testing, cluster threshold p < .05, corrected cluster statistic p < .05, 5,000 421 
permutations). The difference between the conditions is shown in the right-hand 422 
column (permutation testing, cluster threshold p < .05, corrected cluster statistic p < 423 
.05). Opacity and outlines indicate significant differences.  424 
 425 
 426 
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 There was no effect of repetition suppression on temporal generalization of 427 

orientation information (upper panels of Figure 6), suggesting that repetition 428 

suppression did not affect the temporal stability of neural representations of 429 

orientation. Examining the effect of expectation on cross-temporal generalization 430 

confirmed that there was significantly more on-axis orientation selectivity when the 431 

stimulus was unexpected than when it was expected (cluster p = .02). This 432 

increased on-axis orientation selectivity generalized off-axis at around 300-400 ms 433 

after stimulus onset (cluster p = .01), suggesting that the same representation that is 434 

activated to process the expectation is reactivated later as the stimulus continues to 435 

be processed. Such a signal could constitute the prior of the prediction, as this 436 

should be updated on the basis of incoming sensory evidence, which in turn would 437 

likely require reactivation of the unexpected stimulus.    438 

Discussion 439 

 Our findings demonstrate that repetition suppression and expectation have 440 

distinct effects on neural representations of simple visual stimuli. Repetition 441 

suppression had no effect on orientation selectivity, even though the neural 442 

response to repeated stimuli was significantly reduced over occipito-parietal areas. 443 

Unexpected stimuli, on the other hand, showed significantly increased orientation-444 

selectivity relative to expected stimuli. This same early representation of the 445 

unexpected stimulus appeared to be reactivated at 200-300 ms after the initial 446 

neural response, supporting the idea that sensory expectations may be updated 447 

through comparison with incoming sensory evidence. These results suggest that 448 
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repetition suppression and expectation are separable and independent neural 449 

computations.   450 

Our work provides a significant advance in understanding how predictions 451 

allow the brain to process incoming sensory information by comparing what is 452 

expected with what actually occurs. How expectations affect neural responses has 453 

been extensively investigated using mismatch negativity paradigms in which an 454 

unexpected stimulus causes a larger neural response than an expected stimulus 455 

(Bekinschtein et al., 2009; Garrido et al., 2009; Näätänen et al., 2007). Such 456 

mismatch responses to an unexpected stimulus have often been attributed to the 457 

generation of a prediction error that updates expectation based on a conflict 458 

between sensory evidence and the prior (Garrido et al., 2009). To date, however, 459 

most studies have focused exclusively on the overall magnitude of neural responses 460 

to unexpected events, rather than assessing the quality of stimulus-specific 461 

information potentially contained within such responses. As noted above, enhanced 462 

neural activity to unexpected visual events could reflect a differential response to 463 

one of a number of possible stimulus features, or simply an increase in baseline 464 

activity associated with a non-selective response. By examining how expectation 465 

affects the representation of an elementary feature dimension – in this case, 466 

orientation – our results imply the operation of at least two distinct neural processes 467 

at separate times following stimulus onset. Incoming sensory information is first 468 

evaluated against the prior (which occurs early after stimulus presentation). When 469 

an unexpected stimulus is detected and generates a prediction error, the 470 

representation is amplified through gain enhancement. Later, around 300 ms after 471 
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stimulus presentation, this same representation is reactivated to update the 472 

expectation against the initially predicted representation.  473 

According to predictive coding theory, expected stimuli should be more 474 

efficiently represented than unpredicted stimuli largely because the reduced neural 475 

response still encodes stimuli with the same fidelity (Friston, 2005). A more efficient 476 

response could be due to sharpening of neuronal tuning to stimulus features, or to a 477 

reduction in the gain of evoked neural responses. Our results strongly support the 478 

latter interpretation. Specifically, there was no evidence that a fulfilled expectation 479 

leads to a sharper representation of orientation information. Our findings might 480 

imply that the brain needs to have more information about an unexpected stimulus, 481 

so a correct response can be made.  Our findings thus provide a novel insight into 482 

how predictive coding might change neural representations of sensory information.  483 

The lack of evidence for sharpening of neural tuning in the current results is 484 

in contrast to the findings of a previous study (Kok et al., 2012), in which a high-level 485 

prediction error led to ‘sharper’ multivariate decoding for expected versus 486 

unexpected visual stimuli. In their study, Kok et al. (2012) used an auditory tone to 487 

cue the orientation of a subsequent visual stimulus, and found significantly reduced 488 

off-label classification accuracy for predicted than for unpredicted stimuli. They 489 

concluded that predictions cause sharpening of stimulus representations. More 490 

recently, using the same task combined with a forward encoding approach, Kok et 491 

al. (2017) showed that response gain is increased for a predicted stimulus.    492 

It is natural to ask why the results of the current study differ from those of 493 

Kok and colleagues outlined above. One possible explanation lies in the different 494 
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approaches used to generate expectations across the studies. Specifically, whereas 495 

Kok et al. manipulated expectations by pairing an auditory cue with a visual 496 

stimulus, we exploited the properties of the visual stimuli themselves (i.e., their 497 

orientation) to generate expectations within blocks of trials. An intriguing possibility 498 

is that predictions requiring integration of sensory events from two or more 499 

modalities lead to increased gain, whereas predictions made within a single sensory 500 

modality lead to decreased gain. This might in turn relate to the noted differences 501 

between simple ‘local’ and higher-order ‘global’ type predictions (Bekinschtein et 502 

al., 2009; King et al., 2014), which lead to distinct patterns of stimulus-selective 503 

decoding.  A similar discrepancy relating to the effects of attention on sensory 504 

representations has been widely discussed, with some studies finding sharpening of 505 

stimulus representations with attention, and others showing gain enhancement (Liu, 506 

Larsson, & Carrasco, 2007; Maunsell, 2015; Maunsell & Treue, 2006; Treue & 507 

Trujillo, 1999). The differences between these results may potentially have arisen 508 

because the tasks relied upon different types of attention (e.g., spatial versus 509 

feature-based). Future studies could determine whether this same divergence 510 

occurs for prediction effects.  511 

 The current work applied multivariate model-based approaches to EEG data 512 

to determine how prediction and repetition suppression affect neural 513 

representations of perceptual information. We chose to use EEG so we could 514 

recover the temporal dynamics of these effects – something that would not be 515 

possible with the BOLD signal used in fMRI – and because EEG is the most widely-516 

used tool for measuring expectation effects in human participants (see Garrido, et 517 
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al., 2019 and Paavilainen, 2013 for review), thus facilitating comparison of our 518 

findings with those of other studies. We estimated orientation-selectivity using all 519 

EEG electrodes distributed across the scalp for two principal reasons. First, we 520 

wanted to limit experimenter degrees of freedom (Simmons, Nelson, & Simonsohn, 521 

2011) potentially introduced through the post-hoc selection of subsets of 522 

electrodes. Second, given the broad spatial resolution of EEG, we reasoned that 523 

activity recorded from electrodes at any given scalp location could potentially carry 524 

important feature-selective information from a number of neural sources. The results 525 

revealed that orientation-selective information appears largely driven by electrodes 526 

over occipital-parietal regions (Figure 3D), consistent with a number of previous 527 

studies that employed visual decoding of M/EEG data (Cichy, Pantazis, & Oliva, 528 

2014; Cichy, Ramirez, & Pantazis, 2015; Stokes, Wolff, & Spaak, 2015). As noted 529 

above, however, it is entirely possible that the effects we observed here arose from 530 

sources well beyond the occipital and parietal regions, or even potentially outside 531 

the visual cortical hierarchy. Limitations in the temporal and spatial resolution of 532 

current human imaging methods make it impossible to pinpoint the timing and 533 

location of interactions between visual areas that might reflect the cascade of 534 

predictions and prediction errors involved in sensory encoding. By combining the 535 

current paradigm and multivariate modelling with invasive recordings in animal 536 

models – for example using calcium imaging or extracellular electrode recordings – 537 

it should be possible to test some of the key claims of predictive coding theory that 538 

we have examined here, but at the level of individual neurons. 539 

Surprisingly few studies have used invasive recording methods to test how 540 
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predictive coding affects stimulus representations at the neuronal level. One study 541 

in macaques (Kaliukhovich & Vogels, 2010) used a design similar to that of 542 

Summerfield and colleagues, but with high-level objects (fractals and real-world 543 

objects) as stimuli. That study found that expectation did not attenuate repetition 544 

suppression in either spiking activity or local field potentials within the inferior 545 

temporal cortex. A later fMRI study in humans (Kovács, Kaiser, Kaliukhovich, 546 

Vidnyánszky, & Vogels, 2013) used a similar stimulus set, and also found no 547 

attenuation of repetition suppression by expectation in the same cortical region. A 548 

follow-up study provided a potential explanation for these findings by showing that 549 

the attenuation of neural responses associated with repetition suppression are 550 

found with familiar stimuli, but not with unfamiliar stimuli (Grotheer & Kovács, 2014). 551 

Viewed in this light, the stimulus sets used by Kaliukhovich and Vogels (2010) might 552 

not have been sufficiently familiar to yield effects of expectation in their non-human 553 

primate observers.  554 

 Other work has shown that context plays an important role in determining 555 

the magnitude of neuronal responses to sensory events. Thus, for example, 556 

(Ulanovsky, Las, & Nelken, 2003) found that rare auditory stimuli generate 557 

significantly larger responses in primary auditory cortical neurons than more 558 

commonly occurring stimuli. This result has been interpreted as a single-neuron 559 

analogue of the mismatch negativity, but the design used in the study did not 560 

control for adaptation effects, thus making it difficult to draw an unambiguous 561 

comparison with the current work. In the visual domain, oddball stimuli have also 562 

been found to modulate neuronal activity in rats, characterised by an enhancement 563 
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of responses in the higher-order latero-intermediate area (Vinken, Vogels, & Op de 564 

Beeck, 2017). Moreover, Fiser et al. (2016) found that neurons in mouse primary 565 

visual cortex show a greater response when task-irrelevant visual stimuli that had 566 

been presented during training were omitted, suggesting that an established 567 

expectation had been violated. This result is consistent with the literature on the 568 

mismatch negativity, in which the omission of an expected stimulus results in a 569 

large prediction error (Garrido et al., 2009; Wacongne et al., 2011). In non-human 570 

primates, neurons in the inferior temporal cortex show an enhanced response to 571 

unexpected relative to expected stimuli (Kaposvari, Kumar, & Vogels, 2018), and 572 

population decoding accuracy is higher for unexpected compared with expected 573 

stimuli (Kumar, Kaposvari, & Vogels, 2017). Critically, however, no study has 574 

simultaneously recorded neuronal activity in multiple cortical regions to determine 575 

whether predictions generated in one area refine responses in a second area, as 576 

postulated by predictive coding theory (Friston, 2005; Rao & Ballard, 1999). Such a 577 

direct demonstration is necessary to provide a strong test of the central notion that 578 

cortical areas pass signals between themselves in order to generate expectations.   579 

Unlike the effects of expectation, there is a large body of electrophysiological 580 

work showing that sensory adaptation influences neuronal activity (Adibi et al., 581 

2013b; Adibi, Clifford, & Arabzadeh, 2013a; Felsen et al., 2002; Kohn & Movshon, 582 

2004; Patterson, Wissig, & Kohn, 2013). For instance, there is a sharpening of 583 

stimulus selectivity in MT neurons following 40 s of adaptation to a drifting grating 584 

(Kohn & Movshon, 2004). As we have highlighted, however, prolonged adaptation is 585 

likely also associated with a significant predictio8n that the next stimulus will be the 586 
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same as the previous one. Perhaps more relevant to the current results, Patterson 587 

et al. (2013) found that the width of orientation tuning in V1 is only marginally 588 

sharpened following brief (400 ms) periods of adaptation. Again, however, their 589 

study did not control for expectation, so it is impossible to determine the role of 590 

predictive coding in their observations. Our finding that repetition suppression did 591 

not affect the bandwidth of orientation selectivity measured using EEG is also 592 

consistent with models of orientation adaptation based on human psychophysical 593 

data, which suggest that adaptation does not affect the tuning width of the adapted 594 

neural populations (Clifford, 2002; 2014; Dickinson, Almeida, Bell, & Badcock, 2010; 595 

Dickinson, Morgan, Tang, & Badcock, 2017; Tang, Dickinson, Visser, & Badcock, 596 

2015).   597 

  In summary, we have shown that repetition suppression and expectation 598 

differentially affect the neural representation of simple, but fundamental, sensory 599 

features. Our results further highlight how the context in which a stimulus occurs, 600 

not just its features, affect the way it is represented by the brain. Our findings 601 

suggest encoding priority through increased gain might be given to unexpected 602 

events, which in turn could potentially speed behavioural responses. This prioritized 603 

representation is then re-activated at a later time period, supporting the idea that 604 

feedback from higher cortical areas reactivates an initial sensory representation in 605 

early cortical areas.   606 

607 
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Method 608 

Participants  609 

 A group of 15 healthy adult volunteers (9 females, median age = 20.5 yr, 610 

range = 18 to 37 yr) participated in exchange for partial course credit or financial 611 

reimbursement (AUD$20/hr). We based our sample size on work that investigated 612 

the interaction between repetition suppression and prediction error (Summerfield et 613 

al., 2008), and that used forward encoding modelling to investigate orientation 614 

selectivity using MEG with a comparable number of trials as the current study 615 

(Myers et al., 2015). Each person provided written informed consent prior to 616 

participation, and had normal or corrected-to-normal vision. The study was 617 

approved by The University of Queensland Human Research Ethics Committee and 618 

was in accordance with the Declaration of Helsinki. 619 

Experimental setup 620 

 The experiment was conducted inside a dimly illuminated room with the 621 

participants seated in a comfortable chair. The stimuli were displayed on a 22-inch 622 

LED monitor (resolution 1920 x 1080 pixels, refresh rate 120 Hz) using the 623 

PsychToolbox presentation software (Brainard, 1997; Pelli, 1997) for MATLAB 624 

(v7.3). Viewing distance was maintained at 45 cm using a chinrest, meaning the 625 

screen subtended 61.18º x 36.87º (each pixel 2.4’ x 2.4’).  626 

Visual task 627 

 The stimuli were Gabors (diameter: 5º, spatial frequency: 2 c/º, 100% 628 

contrast) presented centrally in pairs for 100 ms, separated by 500 ms (600 ms 629 

stimulus onset asynchrony) with a variable (650 to 750 ms) inter-stimulus interval 630 
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between trials. Across the trials, the orientations of the Gabors were evenly spaced 631 

between 0º and 160º (in 20º steps) so we could reconstruct orientation selectivity 632 

contained within the EEG response using forward encoding modelling. The 633 

relationship of the orientations of the pairs Gabors was also used to construct the 634 

different repetition suppression and prediction conditions. The orientation presented 635 

in the second Gabor in the pair could either repeat or alternate with respect to the 636 

orientation of the first Gabor. In the alternation trials, the orientation of the first 637 

Gabor was drawn randomly, without replacement, from an even distribution of 638 

orientations that was different to the orientation of the second Gabor. To vary the 639 

degree of prediction, in half of the blocks 80% of the trials had repeated 640 

orientations and 20% of the trials had alternating orientations, whereas in the other 641 

half of the blocks these contingencies were reversed. This design allowed us to 642 

separately examine the effects of repetition suppression and prediction because of 643 

the orthogonal nature of the blocked design. The blocks of 135 trials (~3 mins) 644 

switched between the expectation of a repeating or alternating pattern, with the 645 

starting condition counterbalanced across participants.  646 

The participants’ task was to monitor the visual streams for rare, faintly 647 

coloured (red or green) Gabors and to discriminate the colour as quickly and 648 

accurately as possible. Any trial with a coloured target was excluded from analysis. 649 

The orientation match between the pairs was made to be consistent with the 650 

dominant contingency (i.e., repeated or alternating) within that block. Pilot testing 651 

was used prior to the main experiment to set the task at approximately threshold, to 652 

ensure that participants focused exclusively on the colour-discrimination task rather 653 
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than the orientation contingencies associated with prediction and repetition. Only 654 

one participant reported being aware of the changing stimulus contingencies across 655 

the blocks when asked at the end of the experiment, and excluding this 656 

participant’s data had no effect on the key results reported here. Self-paced breaks 657 

were provided between each of the 20 blocks within a session, at which time 658 

feedback was provided on performance in the preceding block. Each participant 659 

completed two sessions of 2700 trials each (5400 trials in total), with each session 660 

lasting around 70 mins of experimental time and 45 mins of EEG setup.    661 

EEG acquisition and pre-processing  662 

Continuous EEG data were recorded using a BioSemi Active Two system 663 

(BioSemi, Amsterdam, Netherlands). The signal was digitised at 1024 Hz sampling 664 

rate with a 24-bit A/D conversion. The 64 active scalp Ag/AgCl electrodes were 665 

arranged according to the international standard 10–20 system for electrode 666 

placement (Oostenveld & Praamstra, 2001) using a nylon head cap. As per BioSemi 667 

system design, the common mode sense and driven right leg electrodes served as 668 

the ground, and all scalp electrodes were referenced to the common mode sense 669 

during recording.  670 

Offline EEG pre-processing was performed using EEGLAB in accordance 671 

with best practice procedures (Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 672 

2015; Keil et al., 2014). The data were initially down-sampled to 256 Hz and 673 

subjected to a 0.5 Hz high-pass filter to remove slow baseline drifts. Electrical line 674 

noise was removed using clean_line.m, and clean_rawdata.m in EEGLAB (Delorme 675 

& Makeig, 2004) was used to remove bad channels (identified using Artifact 676 
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Subspace Reconstruction), which were then interpolated from the neighbouring 677 

electrodes. Data were then re-referenced to the common average before being 678 

epoched into segments around each stimulus pair (-0.5 s to 1.25 s from the first 679 

stimulus in the pair). Systematic artefacts from eye blinks, movements and muscle 680 

activity were identified using semi-automated procedures in the SASICA toolbox 681 

(Chaumon, Bishop, & Busch, 2015) and regressed out of the signal. After this stage, 682 

any trial with a peak voltage exceeding ±100 uV was excluded from the analysis. 683 

The data were then baseline corrected to the mean EEG activity from -100 to 0 ms 684 

before the presentation of the second Gabor in the pair. Critically, the orientations 685 

of the first and second gratings were precisely balanced across the conditions to 686 

avoid any systematic bias in orientation information being carried forward by the 687 

first grating within each pair. Specifically, for every unexpected stimulus presented 688 

in the second grating there was an equal number of every other orientation that was 689 

expected to be presented. As the analysis we employed used a regression-based 690 

approach, any carry over of orientation-selective information from the first to the 691 

second grating therefore could not systematically bias the results.   692 

Experimental Design 693 

 We used a modified version of a factorial design that has previously been 694 

used to separately examine the effects of repetition suppression and prediction 695 

error (Kaliukhovich & Vogels, 2010; Kovács et al., 2013; Summerfield et al., 2008; 696 

2011; Todorovic et al., 2011; Todorovic & de Lange, 2012). By comparing the two 697 

repeat conditions with the two alternating conditions, we could examine repetition 698 

suppression while controlling for different levels of expectation. Conversely, by 699 
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comparing across the expected and unexpected trials, we could examine prediction 700 

error while controlling for repetition suppression. 701 

 The relationship between the pairs of orientations for the different 702 

expectation conditions was based on the original study (Summerfield et al., 2008), 703 

and on other studies (Kaliukhovich & Vogels, 2010; Kovács et al., 2013) that 704 

examined the interaction between repetition suppression and expectation. In the 705 

repeating condition, the orientation of the second Gabor is expected to be the same 706 

as the orientation of the first, whereas in the alternating condition the orientation of 707 

the second Gabor is expected to be different from that of the first. This relationship 708 

between the expected orientations of the stimuli in the alternating condition is 709 

slightly different to another modification of the paradigm which employed a more 710 

limited range of stimuli (Todorovic et al., 2011; Todorovic & de Lange, 2012). 711 

Specifically, the paradigm introduced by Todorovic and colleagues used two or 712 

three auditory tones of different frequencies. In the alternating condition, the 713 

expectation is that one tone will follow another (i.e. 1000 Hz and then 1032 Hz), then 714 

this is violated when a 1000 Hz tone is repeated. In this paradigm, an exact 715 

frequency is expected in the alternating condition, a design feature that differs from 716 

the paradigm used in the current work where there is no specific expectation of the 717 

orientation of the second Gabor based on the orientation of the first in the 718 

alternating condition. Instead the expectation in the alternating condition is that the 719 

orientation will change, and this can be violated by repeating the orientation. In this 720 

sense, there is no specific expectation about the second orientation in the 721 

alternating condition. Instead, the rule is about alternating or repeating the first 722 
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orientation. We did not implement the Todorovic et al. paradigm because the 723 

combinatorial explosion of stimulus conditions needed to measure orientation 724 

selectivity (such that every orientation is predicted by another orientation). Future 725 

work could investigate how this subtle change in paradigm design affects the 726 

encoding of stimulus information.  727 

Forward encoding modelling   728 

 We used a forward encoding approach to estimate the amount of orientation-729 

selective information contained in the EEG data at each time point of the trial. This 730 

approach differs from standard decoding approaches by modelling each presented 731 

orientation as a continuous variable of a set of tuned orientation-selective channels. 732 

The forward-encoding technique has been successfully used to reconstruct colour 733 

(Brouwer & Heeger, 2009), spatial (Sprague & Serences, 2013) and orientation 734 

(Ester, Sutterer, Serences, & Awh, 2016) selectivity in fMRI data. More recently the 735 

same approach has been applied to EEG and MEG data, which have inherently 736 

better temporal resolution than fMRI (Garcia et al., 2013; Kok et al., 2017; Myers et 737 

al., 2015; Wolff, Jochim, Akyürek, & Stokes, 2017b).  738 

We applied forward encoding modelling to determine how repetition 739 

suppression and prediction error affected orientation selectivity. To do this, the 740 

second orientation (Figure 7A) in the Gabor pair in each trial was used to construct a 741 

regression matrix, with separate regressors for the 9 orientations used across the 742 

experiment. This regression matrix was convolved with a set of basis functions (half 743 

cosines raised to the 8th power (Figure 7C), which allowed complete and unbiased 744 

coverage of orientation space) to allow us to pool similar information patterns 745 
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across nearby orientations (Brouwer & Heeger, 2009). We used this tuned 746 

regression matrix to estimate time-resolved orientation selectivity contained within 747 

the EEG activity in a 16 ms sliding window, in 4 ms steps (Figure 8B; Myers et al., 748 

2015). To avoid overfitting, we used a leave-one-out cross-validation procedure 749 

where the regression weights were estimated for a training set and applied to an 750 

independent test set (Figure 8D). All trial types (including target trials) were used in 751 

training and test sets. This was done by solving the linear equation:  752 

    B1= WC1                                                      (1) 753 

Where B1 (64 sensors x N training trials) is the electrode data for the training set, C1 754 

(9 channels x N training trials) is the tuned channel response across the training 755 

trials, and W is the weight matrix for the sensors we want to estimate (64 sensors x 756 

9 channels). W can be estimated using least square regression to solve equation (2): 757 

     W = (C1 C1
T)-1 C1

T B1                                                                         (2) 758 

The channel response in the test set C2 (9 channels x N test trials) was estimated 759 

using the weights in (2) and applied to activity in B2 (64 sensors x N test trials). 760 

C2 = (W WT) WT B2                                                   (3)  761 

We repeated this process by holding one trial out as test, and training on the 762 

remaining trials until all trials had been used in test and training. The procedure was 763 

repeated for each trial within the trial epoch. We then shifted all trials to a common 764 

orientation, meaning that 0º corresponded to the orientation presented on each trial.  765 

The reconstructed channel activations were separated into the four conditions, and 766 

averaged over trials. These responses were then smoothed with a Gaussian kernel 767 
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with a 16 ms window, and fitted with a Gaussian function (4) using non-linear least 768 

square regression to quantify the amount of orientation selective activity.	 769 

𝐺(𝑥) = 	𝐴	𝑒𝑥𝑝(− (+,-).

/0.
) + 𝐶                                           	(4) 770 

Where A is the amplitude representing the amount of orientation selective activity,  771 

is the orientation the function is centred on (in degrees), is the width (degrees) and 772 

C is a constant used to account for non-orientation selective baseline shifts. 773 

 774 

Figure 7. A schematic of the forward-encoding approach applied to EEG activity. 775 
(A) Participants viewed individual gratings at fixation, each with a specific 776 
orientation. (B) Neural activity evoked by each grating was measured over the entire 777 
scalp. (C) Evoked neural responses were convolved with canonical orientation-778 
selective functions (grey lines in C) to determine coefficients for the different 779 
orientations (coloured dots and lines, which match the colours of the outlined 780 
gratings in A). These coefficients were then used to generate a regression matrix. 781 
(D) General linear modelling was used on a subset of training trials to generate 782 
weights for each channel. These weights were inverted and simultaneously applied 783 
to an independent test set of data to recover orientation selectivity in the EEG 784 
activity. As EEG activity has high temporal resolution, we can apply the procedure 785 
to many epochs following stimulus presentation to determine the temporal 786 
dynamics of orientation processing (see Figure 3).  787 
 788 

Multivariate pattern analysis  789 

We conducted a multivariate pattern analysis to build upon the initial forward 790 

encoding results which showed that unexpected stimuli elicit greater orientation 791 

selectivity than expected stimuli. This analysis used the same data as the forward 792 
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encoding analysis. We used the classify function from Matlab 2017a with the 793 

‘diaglinear’ option to implement a Naive Bayes classifier. For each time point, we 794 

used the same cross-validation procedure as the forward encoding modelling with 795 

the same averaging procedure to select train and test sets of data. The classifier 796 

was given the orientations of the training data and predicted the orientation of the 797 

test data. A trial was labelled correct if the presented orientation was produced. To 798 

facilitate comparison of the results with those of (Kok et al., 2012), we found the 799 

peak classification accuracy for each participant in the 600 ms following stimulus 800 

presentation. The same wide time window was used across conditions to 801 

accommodate large inter-individual differences in peak classification without 802 

biasing the results toward one particular condition.  803 

Statistical testing  804 

 A non-parametric sign permutation test was used to determine the null 805 

distribution for testing (Wolff, Jochim, Akyürek, & Stokes, 2017b). This method 806 

makes no assumptions about the underlying shape of the null distribution. This was 807 

done by randomly flipping the sign of the data for the participants with equal 808 

probability. Fifty thousand (50,000) permutations were used for the time-series data, 809 

whereas only 5000 were used for the temporal generalization plots because of the 810 

significantly greater computational demands.  811 

Cluster-based non-parametric correction (50,000 permutations for timeseries 812 

and 5,000 for temporal generalization) was used to account for multiple 813 

comparisons, and determined whether there were statistical differences between 814 

the contrasting conditions. Paired-samples t-tests were used to follow up the 815 
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analysis in Figure 4 within a specified time window, and no correction was applied. 816 

A two-way repeated measures ANOVA (implemented using GraphPad Prism 7.0c, 817 

La Jolla California, USA) was used to analyse the multivariate pattern analysis 818 

results shown in Figure 5.  819 
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Supplementary Information826 

 827 

Supplementary Figure 1.  The effect of a different baseline period (-100 to 0 ms 828 
before onset of the first Gabor) on orientation selectivity for the two main conditions. 829 
Population tuning curves averaged over the significant time period (79 – 150 ms) 830 
shown in Figure 4A. The curves, shown as fitted Gaussians, illustrate how overall 831 
stimulus representations are affected by repetition and expectation. While there was 832 
no difference in orientation tuning for repeated versus alternate stimuli (left panel), 833 
the amplitude of the orientation response increased significantly, and the baseline 834 
decreased, for unexpected relative to expected stimuli (right panel). Error bars 835 
indicate ±1 standard error.  836 
  837 
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