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ABSTRACT 36 

To mitigate the effects of heat and drought stress, a better understanding of the genetic control of 37 

physiological responses to these environmental conditions is needed. To this end, we evaluated 38 

an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-39 

watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed 40 

samples from the population were profiled in addition to those of soil samples taken from 41 

throughout the field site to better model environmental variation. The elements profiled in seeds 42 

exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations 43 

between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci 44 

(QTL) mapping results from a Bayesian classification method identified multiple genomic 45 

regions where QTL for individual elements colocalized, suggesting that genetic control of the 46 

ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL 47 

mapping was implemented among groups of biochemically related elements. This analysis 48 

revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic 49 

variation for elemental accumulation. Machine learning algorithms that utilized only ionomic 50 

data predicted the irrigation regime under which genotypes were evaluated with very high 51 

accuracy. Taken together, these results demonstrate the extent to which the seed ionome is 52 

genetically interrelated and predictive of plant physiological responses to adverse environmental 53 

conditions.  54 
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INTRODUCTION 55 

Plant growth, development, and survival are highly dynamic processes that can be altered by a 56 

myriad of favorable and adverse environmental conditions including abiotic stresses such as 57 

water deficit and high temperature. The physiological responses of plants to changing 58 

environmental conditions are difficult to observe and quantify at the population level, thus 59 

unraveling the genetic mechanisms responsible for the variability of these traits remains a 60 

formidable challenge. This is especially true for understanding plant nutrient and mineral uptake, 61 

which occurs below ground and is obscured by the soil environment. Because of the challenges 62 

associated with phenotyping below-ground traits such as root architecture and resource capture, 63 

there exists a gap in our knowledge about these fundamental biological mechanisms. 64 

Elemental uptake is a critical function driven by physiological and biochemical processes 65 

occurring throughout the life cycle of a plant. Many factors affect elemental accumulation 66 

including availability in the soil environment, bioavailability within the plant, and the ability of 67 

the plant to mobilize and translocate them throughout cells and tissues. Additionally, 68 

physiological parameters such as root depth, permeability of root barriers, and rate of 69 

transpiration all affect the capacity of elements to enter and move throughout the plant. As a 70 

result, the elemental content and composition (the ionome) of plant tissues such as leaf and seed 71 

can be considered a “readout” of the summation of these processes and thus provide insight into 72 

plant stress response (Salt et al., 2008). 73 

Plant ionomic analysis was originally developed in Arabidopsis, where it was used to 74 

identify elemental accumulation mutants and characterize their physiological responses to the 75 

environment (Lahner et al., 2003). This approach, wherein the elemental composition of plant 76 

tissues is described and useful genetic mutants identified, has been extended to a variety of 77 

species including rice (Norton et al., 2010; Zhang et al., 2014; Pinson et al., 2015), maize (Baxter 78 

et al., 2013; Baxter et al., 2014; Mascher et al., 2014; Gu et al., 2015; Asaro et al., 2016), barley 79 

(Wu et al., 2013), soybean (Ziegler et al., 2013; Huber et al., 2016), tomato (Sánchez-Rodríguez 80 

et al., 2010), and other crops (Chen et al., 2009; White et al., 2012; Shakoor et al., 2016). These 81 

studies have shown that elemental traits are heritable and thus amenable to genetic mapping, but 82 

they have also demonstrated that individual elements exhibit phenotypic correlations that could 83 

arise from shared genetic control, overlap in membrane transporters at the cellular level, 84 

common physiochemical properties in the soil and rhizosphere, macroscale environmental 85 
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conditions, or some combination of these factors. One such set of factors that may have an 86 

impact on the ionome are heat and drought stresses, environmental conditions that not only affect 87 

the plant itself through water availability but also through modification of the soil environment 88 

from which nutrients are acquired (Vietz, 1972). 89 

Heat and drought are two of the most common abiotic stresses that occur simultaneously 90 

in agricultural production areas, often with devastating effects on yield and economic returns 91 

(Rizhsky et al., 2002; Fannin, 2012). At the cellular level, these stresses affect photosynthesis 92 

through adverse regulation of stomata and resulting CO2 uptake, thereby decreasing whole plant 93 

health and fitness (Chaves et al., 2003; Taiz and Zeiger, 2006; Prasad et al., 2008). Increased 94 

variability in weather patterns could have a significant impact on crop yields, as well as threaten 95 

the manufacture of critical bio-based commodities in agricultural areas already at risk (Wheeler 96 

and von Braun, 2013; Thornton et al., 2014). Expanding the understanding of how plants respond 97 

to abiotic stress at the physiological level has the potential to help optimize breeding strategies 98 

focused on improving crop stress resilience. Nowhere is this truer than for cotton (Gossypium 99 

spp.), a crop with no naturally occurring substitute that can be produced on the scale demanded 100 

by economic markets. 101 

Cotton is the most widely grown fiber crop in the world, being produced in over 80 102 

countries and responsible for a multi-billion dollar industry. In 2016, 21 million metric tons of 103 

cotton fiber were produced globally (Cotton Inc, 2017). In the US, the largest global exporter of 104 

cotton, the annual value of the crop is over $5 billion, translating into $25 billion generated in 105 

value-added products and services (USDA Economic Research Service, 2015). Currently, 65% 106 

of US cotton acreage is produced under rainfed agricultural systems, with global data reflecting 107 

similar conditions in other countries (National Cotton Council of America, 2015). Because of 108 

this, cotton, like all crops, is threatened by the effects of climate change including decreased 109 

rainfall, increased temperatures, and highly variable weather patterns (Dabbert and Gore, 2014). 110 

To contend with temperature and precipitation changes that are unfavorable to crop growth, new 111 

technologies such as field-based, high-throughput phenotyping have been investigated to support 112 

the more efficient and effective development of stress-resilient cultivars (Thorp et al., 2015; 113 

Pauli et al., 2016a; Pauli et al., 2016b). Ionomic profiling, which can be done on seed, is a 114 

complementary technology that could provide insight into the physiological status of the plant in 115 

relation to its growing environment. 116 
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To make progress towards this goal, we assayed the elemental profiles of seed in an 117 

upland cotton (G. hirsutum L.) recombinant inbred line (RIL) mapping population that was 118 

evaluated under two contrasting irrigation regimes over three years. The 14 elements that were 119 

profiled were arsenic (As), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), potassium (K), 120 

magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), rubidium 121 

(Rb), sulfur (S), and zinc (Zn). Ionomic analyses were also conducted on soil samples collected 122 

from multiple depths throughout the field site where the population was grown in order to 123 

investigate relationships between soil and seed elemental concentrations. Complementary 124 

quantitative trait loci (QTL) mapping methods, consisting of Bayesian classification and 125 

frequentist multivariate approaches, were employed to identify regions of the cotton genome 126 

controlling phenotypic variation for elemental concentrations. To test whether the ionome could 127 

serve as an indicator for environmental growing conditions, various supervised machine learning 128 

methods were implemented to predict the irrigation regime under which RILs were grown using 129 

only the ionomic data. Empirical results of this study demonstrate that the ionome is a dynamic 130 

system that responds in a coordinated manner due to its shared genetic architecture, providing 131 

valuable information on the physiological status of plants. 132 

MATERIALS AND METHODS 133 

Plant Material and Experimental Design 134 

The plant material and experimental design have been extensively described in Pauli et al. 135 

(2016a). Briefly, 95 recombinant inbred lines (RILs) from the TM-1×NM24016 biparental 136 

mapping population (Percy et al., 2006; Gore et al., 2012) and commercial check cultivars were 137 

evaluated at the Maricopa Agricultural Center (MAC) of the University of Arizona located in 138 

Maricopa, AZ, in 2010-12. The 95 RILs, parental lines, and commercial cultivars were grown 139 

under two irrigation regimes, water-limited (WL) and well-watered (WW), at a field site of 140 

predominantly sandy clay loam soil texture. Each year, the trial was arranged in an alpha (0, 1) 141 

lattice design with two replications per irrigation regime. Plots were one-row measuring 8.8 m in 142 

length with 1.02 m inter-row spacing, and thinned to a density of ~4.1 plants m-2. The trial was 143 

managed with conventional cotton cultivation practices. Meteorological data were recorded by 144 

an automated Arizona Meteorological Network (AZMET) weather station 145 

(ag.arizona.edu/azmet/index.html) located 270 m from the field site (Brown, 1989). 146 
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To establish the crop, several furrow irrigations were applied during the first 10-14 days 147 

after planting, then subsurface drip irrigation (SDI) was used for the remainder of the field 148 

season. In late May of each year after plant establishment, neutron moisture probe access tubes 149 

were installed to a depth of 1.6 m at 56 selected locations throughout the field with an equal 150 

number of tubes in the WL and WW treatment plots. Weekly soil water content measurements in 151 

0.2 m increments from a depth of 0.1 to 1.5 m were made for all probe locations from early June 152 

through early October in each year using field-calibrated neutron moisture probes (Model 503, 153 

Campbell Pacific Nuclear, CPN, Martinez, CA). The scheduling of the WW SDI treatment was 154 

performed using a daily soil-water-balance model calculated over the cotton root zone as 155 

previously described in Andrade-Sanchez et al. (2014). Soil-water-balance model inputs included 156 

estimated daily crop evapotranspiration (ETc) as determined from FAO-56 dual crop coefficient 157 

procedures (Allen et al., 1998), metered irrigation depths, and precipitation data from the 158 

AZMET weather station. For ETc, the cotton basal crop coefficient (Kcb) values were 0.15, 1.2, 159 

and 0.52 for the initial, mid-season, and end of season values, respectively. These parameters 160 

were constructed into an FAO-56 Kcb curve using the growth stage lengths developed locally by 161 

Hunsaker et al. (2005) for a typical 155 day cotton season. Additional crop and soil parameters 162 

used in calculating the daily soil water balance were as those presented in Hunsaker et al. (2005; 163 

table 3), with the exception of the fraction of soil wetted by irrigation, which was reduced to 0.2 164 

for the SDI. 165 

Irrigations to the WW plots were applied to refill the root zone water content to field 166 

capacity when approximately 35% of the available soil water had been depleted. Starting mid-167 

July, the WL plots received one half of the irrigation amounts applied to the WW plots. The WL 168 

irrigation regime was imposed when more than 50% of the plots were at first flower to minimize 169 

the interaction of phenology and soil moisture deficit. The weekly soil water content 170 

measurements for the WW treatment were used to monitor the actual soil water depletion and 171 

adjust the modeled soil-water-balance depletion when needed.  172 

Soil and Seed Sampling for Ionomic Profiling 173 

In 2010 and 2012, soil samples were collected from the 56 neutron access tube sites at 174 

five depth intervals: 0 – 30; 30 – 60; 60 – 90; 90 – 120; and 120 – 150 cm. The locations of 175 

neutron tubes for 2011 were the same as for 2010, thus soil sampling was not repeated in 2011. 176 

In 2012, the neutron probes were redistributed in the field and soil samples were taken from the 177 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2018. ; https://doi.org/10.1101/213777doi: bioRxiv preprint 

https://doi.org/10.1101/213777


7 
 

new neutron access tube sites. Soil sampling was performed within each of the five depth 178 

intervals at a probe location (five samples per 56 probe locations). The collected samples were 179 

homogenized and then sent to the Donald Danforth Plant Science Center (DDPSC) where they 180 

were dried and then ground to obtain a soil particle size less than 4 mm. From these prepared soil 181 

samples, two 50 mg subsamples were taken per each depth interval within a probe location and 182 

placed in digestion tubes for ionomic profiling. 183 

Prior to mechanical harvest at the end of the season, 25 bolls were harvested from each 184 

experimental plot and processed using a laboratory 10-saw gin. From the processed boll samples, 185 

six seeds were randomly sampled and sent to DDPSC where they were individually weighed and 186 

placed in digestion tubes for further processing. 187 

Determination of Elemental Composition by ICP-MS 188 

Samples for both soil and unground seed were digested, analyzed by inductively coupled 189 

plasma mass spectrometry (ICP-MS), and data corrected for loss of analyte during sample 190 

preparation and drift as described in Ziegler et al. (2013). Briefly, both soil and unground seed 191 

were separately digested in 2.5 mL nitric acid containing 20 parts per billion (ppb) indium as a 192 

sample preparation internal standard at room temperature overnight, then heated to 100 °C for 3 193 

h and diluted to 10 mL using ultra-pure water (UPW). The nitric acid digestion of soil samples is 194 

a partial digestion procedure. However, nitric acid digestion is sufficient to provide an adequate 195 

sample of elemental content available for biological uptake. Samples were diluted in-line with 5x 196 

volume of UPW containing yttrium as an instrument internal standard using an ESI prepFAST 197 

autodilution system. Elemental concentrations were measured using a Perkin Elmer Elan 6000 198 

DRC-e mass spectrometer for all seed samples and the 2012 soil samples. A Perkin Elmer 199 

NexION 350D with helium mode enabled for improved removal of spectral interferences was 200 

used to measure elemental concentrations of the 2010 soil samples. Instrument reported 201 

concentrations were corrected for the yttrium and indium internal standards and a matrix 202 

matched control (either pooled soil or pooled seed sample). The control was run every 10 203 

samples to correct for element-specific instrument drift. The same control was used in every 204 

ICP-MS run to correct for run-to-run variation. 205 

To correct seed elemental concentrations for weight and run-to-run variation, we 206 

followed the method of Asaro et al. (2016). Briefly, elemental concentration was regressed 207 

against sample weight and ICP-MS run. The residuals from this model reflected the deviance of 208 
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samples from the population mean and were used as the weight-normalized phenotype. Because 209 

a uniform amount of soil was digested for each sample, this normalization technique was not 210 

necessary for the soil samples. Therefore, soil concentrations were simply converted to parts per 211 

million, ppm, (mg analyte/kg sample) by dividing instrument reported concentrations by the 50 212 

mg sample weight. 213 

Analytical outliers for seed samples were removed first using the non-weight-normalized 214 

values and again after normalization. Outliers were identified by analyzing the variance of the 215 

six seed replicate measurements and excluding an elemental measurement from further analysis 216 

if the median absolute deviation (MAD) was greater than 6.2. After outlier removal and weight-217 

normalization, the elemental concentrations were transformed to non-negative by adding a 218 

constant to every sample so that the smallest value for each element quantified had a value 219 

greater than 10. This was done to avoid boundary constraint issues during variance component 220 

estimation. Final concentrations were calculated by taking the mean of the six individual seed 221 

elemental concentrations and reported as parts per billion, ppb. 222 

Soil Ionomic Data Analysis and Spatial Interpolation 223 

To identify and remove significant outliers from the raw soil ionomic data, we fitted a 224 

mixed linear model for each element in ASReml-R version 3.0 (Gilmour et al., 2009). For the 225 

elements calcium (Ca), arsenic (As), and iron (Fe), soil sample data were log transformed to 226 

stabilize variances based on preliminary analyses using mixed linear models. The full model 227 

(Equation 1) fitted to the data was as follows: 228 

Yijkl = µ + yeari + depthj + probe(year)ik  +    (Equation 1) 229 

                       rep(year)il + depth(year×probe)ijk + εijkl 230 

in which Yijkl is an individual soil sample observation; µ is the grand mean; yeari is the effect of 231 

the ith year; depthj is the effect of the jth soil sample depth; probe(year)ik  is the effect of the kth 232 

neutron probe site nested within the ith year; rep(year)il is the effect of the lth technical 233 

replication of the homogenized soil sample taken from a neutron probe site nested within the ith 234 

year; depth(year×probe)ijk is the effect of the jth soil sample depth level nested within the kth 235 

neutron probe site and ith year; and εijkl is the random error term following a normal distribution 236 

with mean zero and variance σ2. The model terms yeari and depthj were fitted as fixed effects 237 

while all others were fitted as random effects. To detect significant outliers, Studentized deleted 238 
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residuals (Neter et al., 1996) were used with degrees of freedom calculated using the Kenward-239 

Rogers approximation (Kenward and Roger, 1997). 240 

Once all outliers were removed for each element, an iterative mixed linear model fitting 241 

procedure of Equation 1 was conducted in ASReml-R version 3.0 (Gilmour et al., 2009). 242 

Likelihood ratio tests were conducted to remove all terms fitted as random effects from the 243 

model that were not significant at α = 0.05 (Littell et al., 2006) to generate a final, best fitted 244 

model for each element. This final model was used to generate best linear unbiased predictors 245 

(BLUPs) for each unique neutron probe location for 2010 and 2012. Sequential tests of fixed 246 

effects were carried out with degrees of freedom calculated using the Kenward-Rogers 247 

approximation. For those elements in which log transformation was required (As, Ca, and Fe), 248 

BLUPs were back transformed prior to further analyses. 249 

The calculated BLUPs for each neutron probe location within the field were then utilized 250 

for spatial interpolation using geostatistical methods. Conventionally in geostatistical analyses, 251 

an estimate of the variogram model is calculated from the observed data points that describe the 252 

spatial variability of the underlying processes in the given physical area of study. The derived 253 

model accounting for the spatial relationship between sampling locations, which describes the 254 

covariance as a function of distance between points (Yates, 1948), is then used to predict the 255 

values at unsampled but known locations – this methodology is known as kriging (Webster and 256 

Oliver, 2007). Due to the subjective nature of deriving empirical variograms, we used an 257 

iterative model fitting procedure to obtain initial model parameters using the automap package 258 

(Hiemstra et al., 2009) in R (R Core Team, 2016). The BLUPs for elements As, Ca, Fe, K, Mg, 259 

and P were log transformed to stabilize variances for model fitting. Through implementation of 260 

the ‘autoKrige’ function in automap, eight spatial relationship models (spherical, exponential, 261 

Gaussian, Matern, Bessel, circular, pentaspherical, and Stein’s parameterization of Matern) were 262 

tested, and for each spatial model used, seven values of the range parameter (the distance at 263 

which spatial dependency is no longer present, values of 10, 15, 20, 25, 30, 35, and 40 m) were 264 

iterated over to find the optimal value. All other parameters (e.g., nugget variance and sill) were 265 

calculated by the software. To assess the model fit for each combination of spatial model and 266 

range distance, the sums of squares error was extracted from the fitted model to determine 267 

reasonable starting values for all model parameters. 268 
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In the next step, the complete set of estimated parameters (range, sill, nugget, bin width, 269 

and spatial model) from the best fitted model were used as starting values to generate an initial 270 

empirical variogram using the function “variogram” in the R package gstat (Pebesma, 2004). 271 

The generated empirical variogram and estimated parameters were then passed to the auto-fitting 272 

function “fit.variogram” for further model optimization and parameter estimation with sample 273 

point weightings determined by Nj/h
2

j, where N is the number of point pairs and h is the distance 274 

between points. The final model for each element was then assessed by visual inspection to 275 

ensure they were adequately capturing the spatial variance structure and that the model fitting 276 

procedure selected optimal parameters. The optimized models for each element were then used 277 

to conduct block kriging whereby element concentrations were predicted at the plot level for 278 

each georeferenced plot across the experimental field site for the three years. 279 

Seed Ionomic Data Analysis 280 

The processing of the seed ionomic data was similar to that of the soil ionomic data. 281 

Initially, we fitted mixed linear model for each element in ASReml-R version 3.0 to identify and 282 

remove significant outliers from the raw data. Unlike the soil ionomic data, no transformation of 283 

elemental concentrations was required due to the weight normalization step described above. The 284 

full model (Equation 2) fitted to the data was as follows: 285 

Yijklmn = µ + covariateijklmn + yeari + irgj + rep(irg × year)ijk  286 

+ column(rep × irg × year)ijkl + block(rep × irg × year)ijkm         (Equation 2) 287 

+ genotypen + (genotype × year)in + (genotype × irg)jn 288 

+ εijklmn , 289 

in which Yijklmn is the elemental concentration observation representing the adjusted model 290 

residual from the weight normalization step; covariateijklmn represents either flowering time (i.e., 291 

date of first flower, Julian calendar) or the interpolated soil element concentration for each 292 

observation; µ is the grand mean; yeari is the effect of the ith year; irgj is the effect of the jth 293 

irrigation regime (WW or WL); rep(irg × year)ijk is the effect of the kth replication within the jth 294 

irrigation regime within the ith year; column(rep × irg × year)ijkl is the effect of the lth plot grid 295 

column within the kth replication within the jth irrigation regime within the ith year; block(rep × 296 

irg × year)ijkm is the effect of the mth incomplete block within the kth replication within the jth 297 

irrigation regime within the ith year; genotypen is the effect of the nth genotype; (genotype × 298 

year)in is the interaction effect between the nth genotype and the ith year; (genotype × irg)jn is the 299 
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interaction effect between the nth genotype and the jth irrigation regime; and εijklmn is the random 300 

error term following a normal distribution with mean zero and variance σ2. The two covariates, 301 

flowering time and soil element concentration, were tested individually for their significance at α 302 

= 0.05, and if found to be nonsignificant, they were removed from the model. The model terms 303 

genotypen, irgj, and (genotype × irg)jn were fitted as fixed effects, while all the other terms were 304 

fitted as random effects. To detect significant outliers, Studentized deleted residuals (Neter et al., 305 

1996) were used with degrees of freedom calculated using the Kenward-Rogers approximation 306 

(Kenward and Roger, 1997). 307 

Once outliers had been removed, iterative model fitting was conducted as described 308 

above with nonsignificant random terms removed from the model at a threshold of α = 0.05. The 309 

best fitted model was then used to generate both an overall (across three years) best linear 310 

unbiased estimator (BLUE) and a within year BLUE for each separate irrigation regime. Tests of 311 

model fixed effects were conducted as described for the soil element analysis. 312 

For each element, broad-sense heritability on an entry-mean basis (Ĥ2) was estimated 313 

within each irrigation regime by reformulating Equation 2 to remove the irrigation regime term. 314 

Next all terms were fitted as random effects in order to estimate their respective variance 315 

components; however, if the covariate was found to be statistically significant it was retained in 316 

the model as a fixed effect. For each element, the variance component estimates from each final 317 

model were used to estimate Ĥ2 (Holland et al., 2003) as follows: 318 

                                                                        𝜎𝑔2̂                            𝜎𝑔2̂ 319 

                      Ĥ2 =                 ,         =                                    (Equation 3) 320 

                          𝜎𝑔2̂
 + 𝜎𝑔𝑦2̂  + 𝜎𝜀2̂

                   𝜎𝑝2̂
     321 

                                 ny       np 322 

where  𝜎𝑔2̂
 is the estimated genetic variance, 𝜎𝑔𝑦2̂  is the estimated variance associated with 323 

genotype-by-year variation, 𝜎𝜀2̂ is the residual error variance, ny is the harmonic mean of the 324 

number of years in which each genotype was observed, and np is the harmonic mean of the 325 

number of plots in which each genotype was observed. The denominator of equation 3 is 326 

equivalent to the phenotypic variance, 𝜎𝑝2̂. Standard errors of the estimated heritabilities were 327 

approximated using the delta method (Lynch and Walsh, 1998; Holland et al., 2003). 328 

For each irrigation regime, genotypic (𝑟̂𝑔𝑖𝑗) and phenotypic (𝑟̂𝑝𝑖𝑗) correlations between 329 

traits and their standard errors were estimated using multivariate REML in PROC MIXED of 330 

SAS version 9.4 (SAS Institute 2013) as previously described (Holland et al., 2001; Holland, 331 
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2006). To eliminate model convergence issues arising from the differences in scale among the 332 

various elements, a data standardization procedure was implemented using PROC STANDARD 333 

in SAS version 9.4. The BLUEs generated from Equation 2 for the two irrigation regimes within 334 

the individual years (e.g. 2010 WL, 2010 WW) were standardized to have a mean of zero and 335 

standard deviation of one prior to model fitting. The model used separately for each irrigation 336 

regime was as follows: 337 

          Yijkl = µ + year(trait)ijk + genotypel + (year×genotype)kl + εijkl            (Equation 4) 338 

where Yijkl are the paired BLUEs for the ith and jth traits; µ is the multivariate grand mean; 339 

year(trait)ijk is the effect of the kth year on the combined ith and jth traits; genotypel is the effect 340 

of the lth genotype; (year×genotype)kl is the effect of the interaction between the kth year and the 341 

lth genotype; and εijkl is the random error term. The terms genotypel and (year×genotype)kl were 342 

fitted as random effects while year(trait)ijk was fitted as a fixed effect. The REPEATED 343 

statement was used to estimate the covariance of the error associated with the ith and jth trait 344 

BLUEs measured for the same genotype. 345 

The formula for estimating genotypic correlations was as follows: 346 

𝑟̂𝑔𝑖𝑗 =
𝜎̂𝐺𝑖𝑗

𝜎̂𝐺𝑖𝜎̂𝐺𝑗
                    (Equation 5) 347 

 348 

where 𝜎̂𝐺𝑖𝑗 is the estimated genotypic covariance between traits i and j, 𝜎̂𝐺𝑖 is the estimated 349 

genotypic standard deviation of trait i and 𝜎̂𝐺𝑗 is the estimated genotypic standard deviation of 350 

trait j. 351 

The formula for estimating phenotypic correlations was as follows: 352 

    𝑟̂𝑝𝑖𝑗 =
𝜎̂𝑃𝑖𝑗

𝜎̂𝑃𝑖𝜎̂𝑃𝑗
       (Equation 6) 353 

where 𝜎̂𝑃𝑖𝑗 is the estimated phenotypic covariance between traits i and j, 𝜎̂𝑃𝑖 is the estimated 354 

phenotypic standard deviation of trait i and 𝜎̂𝑃𝑗 is the estimated phenotypic standard deviation of 355 

trait j. For both genotypic and phenotypic correlations, significance was assessed by computing 356 

the standard errors for the respective correlation values using the delta method based on Taylor 357 

series expansion (Lynch and Walsh, 1998; Holland et al., 2003). A correlation value greater than 358 

±0.12 for either genotypic or phenotypic correlations corresponded to a confidence interval not 359 

including zero, thus designated as a statistically significant correlation (P < 0.05). 360 

QTL Analysis 361 
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The marker genotyping and genetic map construction for the TM-1×NM24016 RIL 362 

mapping population was previously reported in Gore et al. (2014). Briefly, 841 marker loci, 363 

consisting of 429 simple-sequence repeat (SSR) and 412 genotyping-by-sequencing (GBS)-364 

based single nucleotide polymorphism (SNP) loci, were assigned to 117 linkage groups covering 365 

~2,061 cM of the cotton genome. The 841 marker loci were not equally distributed across the 366 

genome. The placement of markers on the allotetraploid cotton (G. hirsutum L. acc. TM-1) draft 367 

genome assembly for marker-chromosome assignment is described in Pauli et al. (2016a). 368 

QTL mapping with Bayesian classification method 369 

We employed a Bayesian classification method to implement a multi-marker mapping 370 

technique as described in Zhang et al. (2005) and Zhang et al. (2008). Briefly, the goal of the 371 

analysis was to identify single markers that explained a significant amount of the variability for 372 

the seed elemental concentrations within each of the individual irrigation regimes. With a total of 373 

n observations (or RILs) and m markers for each observation (or RIL), let i = 1,2,…,n be the 374 

index for each observation (or RIL) and j =1,2,…, m be the index for the markers across all 375 

linkage groups. Then, the phenotypic value for the ith observation (or RIL) within an irrigation 376 

regime, WL or WW, was modeled as follows: 377 

1

m

i j ij i

j

y x  


      
2~ (0, )i N     (Equation 7) 378 

where  is the overall mean, ijx  is the genotypic value of the jth marker of individual i, and i is 379 

the random error term from the environmental factors. In this model, the parameter of interest is380 

, representing the main effect of the jth marker. Note that this model allows simultaneous 381 

identification of main effects using marker information from the entire genome. 382 

Due to the large number of predictor variables in the model (i.e., markers) but relatively 383 

small number of observations available, the inference/estimation was done via a Bayesian 384 

framework using Markov chain Monte Carlo. The inference/estimation was implemented as a 385 

two-step procedure using a Gibbs sampler. A priori information was incorporated into the model 386 

by prior specification for the parameter of interest (spike and slab prior where marker effect is 387 

either positive, negative, or negligible), and estimation was based on the corresponding posterior 388 

distributions. In the first step, all main marker effects were ranked based on their posterior 389 

probabilities of having a non-zero effect on the trait of interest, and in the second step, a subset 390 

of all marker effects were selected. The number of effects selected in the first step depended on 391 

j
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the total number of observations to ensure that efficient parameter estimates were obtained while 392 

keeping a desirable level of statistical power. 393 

The BLUEs for each of the profiled elements were fitted independently within each of the 394 

irrigation regimes using Equation 7. In all analyses, the first 5,000 iterations were discarded as 395 

burn-in period and the following 5,000 iterations were used for inference/estimation. Model 396 

convergence was confirmed by the diagnostic tools presented in Cowles and Carlin (1996). For 397 

each parameter of interest, we estimated its magnitude and direction, as well as the posterior 398 

probabilities of being greater or less than zero. These posterior probabilities were used to 399 

calculate the Bayes factor as defined by Jeffreys (1935 and 1961). As advised by Jeffreys (1961), 400 

a Bayes factor between 10 and 100 provides “strong evidence” and larger than 100 means 401 

“decisive evidence.” Therefore, a QTL was declared significant if it had a Bayes factor ≥100. 402 

Seemingly unrelated regression analysis 403 

We implemented seemingly unrelated regression (SUR), a multi-trait (multivariate) 404 

analysis, to identify QTL controlling phenotypic variation in multiple elemental concentrations. 405 

As a generalization of linear regression models with multiple responses, SUR was first proposed 406 

by Zellner more than half a century ago (Zellner, 1962) and has been successfully applied to 407 

analyzing high-dimensional metabolite data sets (Chen et al., 2015; Chen et al., 2017). The 408 

method of SUR includes a set of multiple regression equations with each equation representing 409 

one of the response variables (i.e., a single elemental trait) of the multivariate response while 410 

assuming that the error terms are correlated between equations. For our analyses, elements were 411 

grouped according to their biological functions as described in Taiz and Zeiger (2006) and 412 

Mengel and Kirkby (2012), which created two groups with more than two elements. The “ionic” 413 

group (Ca, K, Mg, and Mn) included elements that remain in ionic form in plant tissue, and the 414 

“redox” group (Cu, Fe, Mo, Ni, and Zn) that contained elements involved in oxidation/reduction 415 

reactions. For each irrigation regime, WL or WW, the following model was fitted to each of the 416 

three groups of elements: 417 

    Y𝑖𝑗 = 𝛽0𝑗 + 𝛽𝑘𝑗𝑋𝑖𝑘 + 𝑖𝑗    (Equation 8) 418 

where Yij denotes the concentration of each of the individual jth elements within the defined 419 

elemental groupings for the ith RIL, 𝛽0𝑗 represents the regression intercept, 𝛽𝑘𝑗 is the regression 420 

coefficient for the 𝑋𝑖𝑘 predictor that denotes the genotype of the kth marker of the ith RIL, and 𝑖𝑗  421 

is the error term that follows N(0, 𝜎𝑗
2) and cov(εij, εlk). Such potential correlation structure among 422 
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elemental traits allow the SUR model to have higher statistical power than linear regression 423 

models having only a single elemental trait. Note that for different RILs when i ≠ l, the term σjk is 424 

equal to zero. The data for each element were standardized to have mean zero and a standard 425 

deviation of one prior to the analysis, allowing regression coefficient estimates and their 426 

associated 95% confidence intervals for each element within a group to be comparable. 427 

Nomenclature of QTL were defined by combining the elemental name, chromosome 428 

assignment, linkage group, and peak marker position of the identified QTL having names 429 

preceding with “q” to denote QTL. To declare QTL as mapping to the same location, we used a 430 

10 cM window to be consistent with previous studies of this population (Pauli et al., 2016a). 431 

Prediction of Irrigation Regime 432 

We used the elemental concentration BLUEs generated for individual years to predict 433 

whether genotypes were grown under WL or WW conditions in the three years this study was 434 

conducted. First, the BLUEs were standardized within each year to have a mean of zero and a 435 

standard deviation of one to account for the effect of each individual year (non-reproducible 436 

environments). Next, we employed a cross-validation strategy whereby two of the years were 437 

used to predict the remaining year, for example, BLUEs from 2010 and 2011 were used to 438 

predict irrigation regime in 2012. To assess the prediction accuracies, Pearson’s correlation 439 

coefficient was calculated between observed and predicted values. The various models tested in 440 

R (R Core Team, 2016) were as follows: logistic regression; linear discriminate analysis (LDA) 441 

and quadratic discriminate analysis (QDA) implemented in the MASS package (Venables and 442 

Ripley, 2002); k-nearest neighbors (KNN) implemented in the class package (Venables and 443 

Ripley, 2002); and support vector machines (SVM) implemented in the e1071 package (Meyer et 444 

al., 2017). 445 

To visualize and understand the relationship between irrigation regimes and the RILs, the 446 

BLUEs  calculated separately for each year were used together to conduct a principal 447 

components analysis (PCA) using the “prcomp” function in the stats package (R Core Team, 448 

2016). In contrast to the prediction of irrigation regime, the BLUEs were not centered and scaled 449 

prior to the PCA because this analysis was intended to explore the observed relationships among 450 

the yearly fluctuations in elemental concentrations. 451 

Data Availability 452 
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BLUPs calculated from the fitted mixed linear model for soil elemental concentrations 453 

are contained in File S1. BLUEs, both overall and by-year, for seed elemental concentrations are 454 

contained in File S2. Genotypic data for the 95 RILs from the TM-1×NM24016 mapping 455 

population with accompanying linkage map information are contained in File S3. File S4 456 

contains the genetic linkage map information integrated with the published TM-1 draft genome 457 

sequence (Zhang et al. 2015). 458 

RESULTS 459 

Soil elemental variability 460 

The soil samples taken from throughout the experimental field site demonstrated that spatial 461 

variability existed for the concentration of the 14 elements profiled (Supplemental Figure 1). A 462 

year effect of at least moderately high significance was only found for K, Rb, S, and Zn (P < 463 

0.01, Supplemental Table 1), although the effect of depth at which soil samples were taken was 464 

highly significant for essentially all elements profiled. Because the year effect was weakly 465 

significant (P < 0.05) or non-significant (P > 0.05) for 10 of the 14 elements, both years of data 466 

were used in conducting geostatistical analyses to reveal and quantify the spatially structured and 467 

heterogeneous nature of the soil element concentrations across the field site (Figure 1). The fitted 468 

models produced effective ranges of spatial correlation from 12.49 to 66.44 m, with an average 469 

distance of 26.68 m (Supplemental Table 2). As expected, these results confirmed that 470 

concentrations of nearly all soil elements were related in a distance-dependent manner 471 

throughout the field. The only element that did not display any type of detectable spatial 472 

relationship was sulfur, which had an estimated concentration of 1089.90 ppm across the entire 473 

field site (Supplemental Table 3). 474 

The soil conditions were not limiting for plant growth as the concentration of key 475 

nutrients for cotton production in Arizona, which are Fe, K, Mn, P, and Zn all had minimum 476 

values exceeding production recommendations (Supplemental Table 3) (Silvertooth, 2001). 477 

Arsenic, an element that can be toxic for plants, had an observed maximum value of 4.99 ppm, 478 

which was well below the accepted threshold of 40 ppm (Walsh et al., 1977). Given the 479 

empirical evidence provided by the soil element analysis and the precision irrigation 480 

management used in this experiment, we are confident that high temperature and water deficit 481 

were the primary abiotic stresses impacting cotton plants from first flower to harvest. 482 

Seed ionome profiles 483 
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In order to understand how the seed ionome responds to abiotic stress, two irrigation 484 

regimes, consisting of water-limited (WL) and well-watered (WW) conditions, were imposed at 485 

flowering (50% of plots at first flower) and continued throughout the remainder of the season 486 

until harvest. Coinciding with the irrigation regimes, day time temperatures in the desert 487 

Southwest, on average, exceeded 32°C, the threshold above which lint yields are acutely 488 

impacted (Pauli et al., 2016a; Schlenker and Roberts, 2009). To control for the effects of 489 

localized soil environment and phenological development, the interpolated soil elemental 490 

concentrations and flowering time of genotypes were individually tested as covariates in the 491 

mixed linear model (Equation 2) to assess their association with seed element concentrations. 492 

The only elements that exhibited a significant (P < 0.05) linear relationship between seed and 493 

soil levels were Co, Mg, and Rb (Supplemental Table 4). The seed element concentrations that 494 

had an association (P < 0.05) with flowering time were As, Cu, and Ni (Supplemental Table 4). 495 

After accounting for the effects of soil environment and phenology, we observed significant 496 

genotypic differences (P < 0.0001) for all 14 elements; however, only seven of the elements, Ca, 497 

Cu, Fe, Mg, Mo, S, and Zn, displayed differences between the irrigation regimes. Of these seven 498 

elements, only the concentration of Mg decreased under WL conditions, while the concentrations 499 

of the other six elements increased under WL conditions. Genotype-by-irrigation regime 500 

interactions were only significant for Co, Mn, Mo, and S (Figure 2, Supplemental Table 4). 501 

In terms of the relative seed elemental concentration values, which were weight 502 

normalized and rescaled prior to analysis, the RIL population exhibited extensive phenotypic 503 

variation for the 14 elements profiled (Table 1). The macronutrients Ca, K, Mg, P and S all had 504 

average concentrations above 10,000 ppb with K being the element in highest concentration with 505 

values over 46,000 ppb in both irrigation regimes. Arsenic was the element with the lowest 506 

relative average concentration of only 10.58 and 10.53 ppb for WL and WW conditions, 507 

respectively, and Co was the second least abundant element with averages of 12.09 and 12.12 508 

ppb for WL and WW regimes, respectively. Both positive and negative transgressive segregation 509 

were observed for most elements in the RIL population. 510 

We estimated broad-sense heritabilities for the elements to determine the extent to which 511 

phenotypic variation was attributable to genetic variation in the RIL population. Heritability 512 

values were moderate to high, ranging from a minimum of 0.32 (Zn, WW conditions, Figure 2) 513 

to a maximum of 0.92 (Cu, WL conditions). With the exception of the low estimate for Zn under 514 
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WW conditions, heritabilities were all greater than 0.60. With regard to the heritability estimates 515 

between irrigation regimes, there were no significant differences (two-sided t-test, P > 0.05). The 516 

ANOVA also revealed that the variance due to year effects was large for most elements (> 40% 517 

for As, Co, K, Mg, Mn, P, Rb, and S) and that the variances associated with the second- and 518 

third-order interaction terms were small (Figure 2). 519 

To characterize the relationship among the elements and potentially shared regulation of 520 

seed elemental levels, we estimated pairwise phenotypic (𝑟̂𝑝𝑖𝑗) and genotypic (𝑟̂𝑔𝑖𝑗) correlations 521 

among the 14 elements. Element pairs with strong phenotypic correlations under both irrigation 522 

regimes (ranging from 0.51 to 0.77) included Mg/P, Mg/Zn, Mg/Fe, Ca/Mn, Fe/Zn, and Zn/P, 523 

results in agreement with other plant studies (Baxter et al., 2013; Zhang et al., 2014; Shakoor et 524 

al., 2016). Neither major differences in terms of element pairings nor contrasts in correlation 525 

strengths were observed between the two irrigation regimes (Figure 3, Supplemental Table 5). 526 

Phenotypic correlations were, on average, positive with the exception of As, which was 527 

negatively correlated with all other elements (Figure 3). The most highly correlated elements, 528 

Ca, Cu, Fe, Ni, Mg, Mn, P, and Zn, were grouped together at the center of the network, while 529 

micronutrients As, Co, Mo, and Rb were mostly on the perimeter (Figure 3). Interestingly, K was 530 

one of the least correlated elements despite being a macronutrient. It was primarily correlated 531 

with Rb, the only other monovalent cation profiled, suggesting that chemical similarities among 532 

the elements are responsible for their relatedness. The genotypic correlations estimated for the 533 

TM-1×NM24016 RIL population closely followed the pattern observed for the phenotypic 534 

correlations with respect to strength and pairings (Figure 3, Supplemental Table 5 and 6). 535 

QTL mapping 536 

The mapping of QTL utilizing a Bayesian classification method detected a total of 38 537 

QTL that mapped to 15 chromosomes and 21 unique genomic locations (Figure 4, Supplemental 538 

Table 7). Concerning the two irrigation regimes, 16 and 22 QTL were detected under WL and 539 

WW conditions, respectively. Only four QTL, qCu.A07.28.00, qMg.A12.45.21, qNi.D12.116.00, 540 

and qP.A05.74.05, were detected for both irrigation regimes. The number of QTL found per 541 

element varied from one (Mo) to five (Mg and Rb). There were a total of five genomic regions, 542 

located on chromosomes A05, A06, A12, D01, and D12, to which two or more QTL mapped 543 

with all but A12 having ion pairs (Ca/Mg, Fe/Zn, Cu/Ni, and Fe/Ni, respectively) with similar 544 

biochemical properties. Several QTL mapped to chromosome A05, linkage group 74, including 545 
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for Fe, Mg, Ni, P, and Zn, indicating that this genomic region has a significant impact on the 546 

cotton seed ionome. 547 

We also implemented a more statistically powerful multi-trait mapping approach (a 548 

multivariate analysis) to reveal QTL controlling phenotypic variation for elements with similar 549 

properties. Elements were first grouped based on their biochemical function creating two groups 550 

of elements: “ionic” and “redox.” Both of these groups were then analyzed using the method of 551 

seemingly unrelated regression (SUR) to identify QTL impacting multiple elemental 552 

concentrations in cotton seed. This multi-trait analysis identified 45 QTL that mapped to 18 553 

chromosomes and 31 unique genomic locations (Figure 4, Supplemental Table 8). Nearly an 554 

equal number of QTL were detected for each irrigation regime, with 23 and 22 QTL found for 555 

the WL and WW irrigation regimes, respectively. In contrast to the Bayesian mapping approach, 556 

which only detected four QTL for both irrigation regimes, the multi-trait analysis detected 14. 557 

Additionally, the multi-trait analysis also identified 10 QTL that, although detected with the 558 

Bayesian classification approach, were not declared significant because they were below the 559 

Bayes factor threshold of 100 (Supplemental Table 9). 560 

We examined the tetraploid cotton draft genome sequence (G. hirsutum L. acc. TM-1, 561 

which was one of the parents of the RIL population) (Zhang et al., 2015), to determine if there 562 

were plausible candidate genes underlying detected QTL. For QTL that mapped to A06, A07, 563 

and D12, candidate genes found to colocalize included a copper transporter, metal tolerance 564 

protein, and potassium transporter, respectively. For the Zn QTL on A05, which was detected by 565 

both mapping methods as well as for both irrigation regimes, a zinc transporter gene described in 566 

G. hirsutum (UniProt ID K9N1X9) was identified within the 342 kb interval defined by the 567 

flanking markers. The Bayesian classification-detected QTL for potassium on A09, 568 

qK.A09.33.00, defined a 1.9 Mb interval containing a gene involved in metal ion transport 569 

(UniProt ID B9IFR1). 570 

Prediction of irrigation regime 571 

We conducted a principal component analysis (PCA) on best linear unbiased estimators 572 

(BLUEs) for all 14 elements, revealing that the first two PCs accounted for almost half (47.3%) 573 

of the total elemental variance. The PCA revealed a distinct separation between the two 574 

irrigation regimes, with PC 2 on the y-axis largely separating the WL and WW into two groups 575 

and explaining 14.1% of the total variance (Figure 5A). These results suggested that the seed 576 
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ionome could be predictive of abiotic stress. To test this hypothesis, five supervised machine 577 

learning approaches, logistic regression, linear discriminate analysis (LDA), quadratic 578 

discriminate analysis (QDA), k-nearest neighbors (KNN), and support vector machines (SVM), 579 

were used to determine the irrigation regime within which a RIL was grown. To help control for 580 

non-reproducible environmental effects, the elemental BLUEs for the individual years were first 581 

centered and scaled within respective years prior to their use in the five models. Extremely high 582 

prediction accuracies were obtained for all five methods, but SVM achieved the highest average 583 

prediction accuracy across the three years at 97.7% (Figure 5B) and a maximum accuracy of 584 

98.5% for 2011. The KNN method produced the lowest average prediction accuracy of 92.5%, 585 

which was observed in 2010 and 2011. The remaining three methods, LDA, logistic regression, 586 

and QDA, had an across-year-and-irrigation regime average of ~94%. 587 

DISCUSSION 588 

Over the last decade, ionomics has been established as a powerful tool for both examining the 589 

nutrient status of plants to assess homeostasis and for revealing the genetic mechanisms 590 

responsible for elemental variation. However, research efforts have largely been focused on 591 

characterizing the elemental concentration of various plant tissues and identifying mutant lines 592 

for further genetic characterization (Lahner et al., 2003; Baxter et al., 2009; Pinson et al., 2015). 593 

These studies have led to valuable knowledge on the genetic control of element accumulation in 594 

plants, but have offered limited insight into how the ionome interacts with the environment. To 595 

address these information gaps in ionomics research, we evaluated a cotton RIL mapping 596 

population under contrasting irrigation regimes to assess the effects of water deficit on the 597 

ionome in a hot, arid environment. The elemental profiles of the localized soil environment were 598 

also analyzed so that these results could be incorporated into the analysis of the cotton seed 599 

ionome. Further expanding on this work, the elemental concentration data were utilized for 600 

prediction of abiotic stress, as defined by WL or WW irrigation regimes, to investigate how 601 

accurately the ionome predicts the physiological status of the plant. 602 

The heterogeneous nature of the soil environment can impact phenotypic variation of 603 

most quantitative traits and influence growth characteristics like root density, biomass allocation, 604 

and interplant competition (Caldwell et al., 1996; Hutchings et al., 2003). Because of this innate 605 

relationship between the soil environment and plant development, we used geospatial 606 

interpolation methods to model the elemental concentrations across the field site (Figure 1) in 607 
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order to assess if there was a direct association between soil and seed element levels. Although 608 

we only found three elements (Co, Mg, and Rb) that exhibited a significant linear relationship 609 

between soil and seed concentrations (Supplemental Table 4), under other more varied 610 

environments the associations may be stronger and more numerous among the elements. Without 611 

the inclusion of the soil data it would have been more difficult to determine if variation observed 612 

in the seed ionome was due to genetic effects, abiotic stress, or only the localized environment. 613 

This was demonstrated in the case of Mg, which had both a significant irrigation effect and a 614 

linear relationship between soil and seed Mg concentrations. The inclusion of the interpolated 615 

soil level data permitted us to decouple the impacts of water deficit stress from soil variability 616 

and improve our genetic mapping, along with calculation of phenotypic and genotypic 617 

correlations. 618 

The irrigation regimes imposed in this experiment provided the ability to evaluate how 619 

the cotton seed ionome responds to abiotic stress, specifically water deficit. Seven of the 14 620 

elements assayed had significant differences between the irrigation regimes (Figure 2), including 621 

Ca, Mg, and S which are important macronutrients (Mengel and Kirkby, 2012). Although we can 622 

only speculate what mechanisms may be responsible for observed differences in most element 623 

concentrations due to water deficit, the increased seed Ca concentration under WL conditions is 624 

consistent with its involvement in intra-plant signaling and osmoregulation via increased solute 625 

concentration. This hypothesis is in agreement with the results of Patakas et al. (2002) who 626 

found similar elevated Ca levels in leaves of grape (Vitis vinifera L, cv. Savatiano), another 627 

woody perennial species like cotton, when evaluated under drought-stress conditions. Although 628 

their analyses were based on leaf tissue samples and not seed, one could hypothesize that seeds 629 

would show a similar response based on Ca signaling, which occurs both as an early and 630 

secondary signaling response, with local and global effects mediated through transport in the 631 

xylem (Knight, 1999; Sanders et al., 1999; Xiong et al., 2002; White and Broadley, 2003). 632 

Additionally, the elevated levels of Ca in seeds harvested from WL plots could also be due to 633 

increased levels of Ca associated with stomatal closure in response to drought stress (Atkinson, 634 

1991; Schroeder et al., 2001; Taiz and Zeiger, 2006). However the long-term dynamics of Ca 635 

flux in these responses and what influence they would have on the seed ionome remains unclear 636 

given that time-course studies are currently lacking in the literature. 637 
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To gain insight into the ionome and potential joint regulation of elemental accumulation 638 

in cotton seed, we evaluated the correlations, both phenotypic and genotypic, among the 639 

elements profiled (Figure 3). The phenotypic correlations confirmed our initial hypothesis that 640 

elements with similar biological relevance and chemical properties would be highly correlated, 641 

consistent with the results of Shakoor et al. (2016) and others. However, the lack of a contrast in 642 

the correlation values and patterns between the two irrigation regimes was somewhat surprising 643 

(Figure 3). Initially, we hypothesized that differences in available soil moisture would impact the 644 

relationship among the individual elements. To evaluate if this association was due to 645 

environment or genetics, we assessed the genetic correlation among the elements using a 646 

multivariate restricted maximum likelihood approach, an analysis not previously used in ionomic 647 

studies. The results of these analyses mirrored those obtained for the phenotypic correlations, 648 

namely that the strength and relationship among genotypic correlations were highly similar 649 

across the two irrigation regimes. In both sets of correlations, the majority of macronutrients 650 

clustered in the center of the correlation network graphs, along with those micronutrient elements 651 

involved in redox reactions (Cu, Fe, Ni, and Zn) (Taiz and Zeiger, 2006; Mengel and Kirkby, 652 

2012). The remaining elements were grouped along the perimeter including arsenic, which was 653 

the only element to be negatively correlated with all other elements, most likely due to its 654 

toxicity to plants and thus exclusion (Meharg and Hartley-Whitaker, 2002). Although our study 655 

represents an ideal situation given the precisely controlled water deficit stress and single field 656 

site, the consistent trends in correlation, both phenotypic and genotypic, support the supposition 657 

that the cotton ionome is a highly interrelated system under strong genetic control. 658 

Given the observed genotypic correlation values suggesting a shared genetic basis 659 

responsible for elemental accumulation, QTL mapping was carried out to assess if loci 660 

responsible for phenotypic variation were indeed shared amongst the elements. A Bayesian 661 

classification method (Zhang et al., 2005) that fitted all markers simultaneously while exploiting 662 

a priori information was used to more fully control for the genetic background effects to enable 663 

better detection of causal loci. This approach was successful in detecting QTL, but more 664 

importantly it identified six genomic regions to which multiple QTL mapped. The QTL for 665 

elements that colocalized to the same location, such as Ca/Mg on A06, Fe/Zn on A05, and Ni/Fe 666 

on D12, had similar biochemical properties, such as being divalent cations, and were also 667 
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involved in parallel biochemical processes like regulation of osmotic potentials and electron 668 

transfer (Taiz and Zeiger, 2006). 669 

To date, most ionomic genetic mapping studies, whether linkage analysis or genome-670 

wide association studies, have relied on univariate mapping approaches (Baxter et al., 2013; 671 

Baxter et al., 2014; Zhang et al., 2014; Asaro et al., 2016; Shakoor et al., 2016). Despite the 672 

ability of these methods to detect QTL that individually contribute to phenotypic variation, they 673 

fail to account for the relationship among the various elements, and thus the shared biology 674 

underpinning these traits (Baxter, 2015). Given the QTL results from the Bayesian analysis in 675 

which QTL impacting physiologically related elements colocalized to genomic regions, and the 676 

shared genetic basis revealed by genotypic correlations, a novel analysis was needed to more 677 

fully capitalize on the inter-trait relatedness. 678 

With these considerations in mind, a multi-trait (multivariate) mapping approach was 679 

taken to exploit the relationships among the elements to improve the ability to detect QTL 680 

controlling the accumulation of multiple elements within the cotton seed. Seeming unrelated 681 

regression (SUR, Zellner 1962) was implemented so that elements with similar characteristics 682 

could be grouped together and treated as one phenotype. The colocalizing QTL from the 683 

Bayesian analysis corroborated the division of elements into “ionic” and “redox” groups posited 684 

in the literature (Mengel and Kirkby, 2012) and further supported the use of a multi-trait 685 

analysis. By analyzing like elements in aggregate and accounting for the correlation among 686 

them, statistical power to detect QTL was increased. This improved power led to more consistent 687 

detection of QTL with respect to irrigation regime; 14 QTL were identified in both WL and WW 688 

conditions compared to four QTL found in the Bayesian analysis. These results are more 689 

congruent with what the genetic correlations revealed, largely that relationships among elements 690 

are stable despite the perturbations by abiotic stress. Additionally, the multi-trait analysis 691 

detected 10 QTL whose Bayes factors were below the significance threshold in the Bayesian 692 

analysis, and thus missed, further highlighting why previous genetic mapping studies not 693 

utilizing a multi-trait analysis likely missed identifying important loci. Although the two 694 

mapping approaches rely on two distinctly different branches of statistics, Bayesian and 695 

frequentist methods, there was agreement between the two; a total of 18 QTL were concordant 696 

between methods providing further support for the mutually identified QTL (Figure 4). Also, 697 

elements with co-located QTL had similar ionic charges, suggesting that the genetic factors 698 
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underlying these QTL are not element-specific but instead dependent on chemical properties like 699 

those used by cellular ion transporters for ion selectivity (Tester, 1990). 700 

Although the detected QTL explained a moderate amount of the phenotypic variation 701 

observed for cotton seed elemental concentrations, there was a question of whether these data 702 

themselves could describe the physiological status of the plant. The results from PCA clearly 703 

demonstrated that the elemental data could capture the effects of water deficit and served to 704 

separate the RILs into respective irrigation regimes in which they were evaluated (Figure 5A). 705 

Building on these results, various supervised machine learning algorithms were used to predict 706 

which irrigation regime RILs were evaluated under out of the three years in which this 707 

experiment was conducted. When the year-to-year variation was removed via standardization, 708 

extremely high prediction accuracies, greater than 92%, were achieved for all of the methods 709 

used with minimal variation in prediction amongst years within a method. These results 710 

demonstrate that the ionome is capable of encapsulating the physiological status of cotton plants 711 

without the use of more traditional physiological phenotypes like carbon isotope discrimination, 712 

relative leaf water content, osmotic adjustment, and other, more time-consuming and costly 713 

measurements.  714 

CONCLUSION 715 

The ionome is capable of capturing the mineral and nutrient content of the plant tissue from 716 

which samples are taken thereby offering valuable insight on the physiological status of the plant 717 

(Salt et al., 2008). Because of this, ionomic profiling was used for both cotton seeds and the 718 

ambient soil to study how the ionome interacts with and responds to its localized environment, 719 

with a focus on the impact of water deficit. Our results provide further evidence that the ionome 720 

is a complex, interrelated biosystem that is largely under shared genetic control, and as such, it 721 

responds as an integrated unit to abiotic stress as evident by the stable relationship among 722 

phenotypic and genotypic correlations despite the contrasting irrigation treatments. Because of 723 

the interrelatedness among the ionomic traits, a genetic mapping approach that capitalizes on this 724 

shared genetic architecture was used to detect loci that influence the composition of the various 725 

elements in plant seed. To further extend these findings and concepts, the ionome was found to 726 

have a remarkably high predictive accuracy for irrigation regime status that accurately reflected 727 

the physiological status of the plant. Although this was a two-category classification problem of 728 

drought-stressed versus non-drought stressed, it reflects the ability of these types of data to 729 
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describe the status and overall wellbeing of the plant. Taken together, the present work provides 730 

new insight into how complex biological systems are controlled at the genetic level through 731 

multiple shared loci that are associated with correlated responses, including responses to water 732 

deficit regimes. 733 
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Table 1. Summary statistics of cotton seed elements. Means, standard deviations, and ranges 961 

(parts per billion) of best linear unbiased estimators (BLUEs) for seed elements for the TM-962 

1×NM24016 recombinant inbred line (RIL) population evaluated under two irrigation regimes, 963 

water-limited (WL) and well-watered (WW) conditions, including parental lines and their 964 

midparent values. Field trials were conducted from 2010-12 at the Maricopa Agricultural Center 965 

located in Maricopa, AZ.  966 

 967 

 Parents RIL population 

Ion 
Irrigation 

regime 
TM-1 NM24016 Midparent Mean Std. Dev. Min. Max. 

As 
WL 10.60 10.54 10.57 10.58 0.09 10.43 10.88 

WW 10.57 10.54 10.56 10.53 0.07 10.39 10.74 

Ca 
WL 12528.86 17067.21 14798.04 13125.79 2357.68 8316.97 18824.00 

WW 11163.35 14774.05 12968.70 12206.20 2125.10 6348.93 16899.59 

Co 
WL 12.29 13.09 12.69 12.09 0.38 11.40 13.03 

WW 12.29 12.92 12.60 12.12 0.42 11.12 13.08 

Cu 
WL 33.42 94.22 63.82 61.58 10.65 33.27 93.37 

WW 30.74 86.60 58.67 55.56 10.41 26.29 80.54 

Fe 
WL 237.12 459.06 348.09 305.44 50.25 210.46 427.10 

WW 212.06 412.20 312.13 279.95 46.66 175.77 388.16 

K 
WL 46164.35 48992.02 47578.18 46143.43 3280.07 38486.65 54048.57 

WW 47709.49 49919.47 48814.48 46905.04 3529.59 40055.63 55012.74 

Mg 
WL 14729.61 18466.01 16597.81 16797.41 1934.97 11709.99 20884.97 

WW 16230.02 20191.12 18210.57 18003.52 1863.47 13340.41 21434.30 

Mn 
WL 112.29 162.72 137.50 121.36 14.22 87.42 152.30 

WW 105.08 148.24 126.66 118.26 14.49 81.94 161.27 

Mo 
WL 19.02 21.00 20.01 19.74 1.24 17.32 22.76 

WW 16.86 19.44 18.15 17.52 1.00 15.23 19.85 

Ni 
WL 13.21 14.28 13.75 14.11 0.72 12.50 15.52 

WW 12.88 14.00 13.44 13.88 0.77 12.25 15.92 

P 
WL 45776.14 52804.11 49290.12 51054.12 4184.02 41247.43 61589.54 

WW 45192.32 55452.35 50322.34 52830.91 3838.64 40742.95 63115.53 

Rb 
WL 28.77 29.79 29.28 30.02 2.17 24.87 34.98 

WW 26.75 27.05 26.90 27.67 1.95 22.97 33.41 

S 
WL 14526.02 15488.89 15007.46 14663.85 1306.94 11394.59 18026.07 

WW 14087.15 15004.32 14545.73 13937.97 1276.18 10665.15 16948.30 

Zn 
WL 208.40 357.09 282.74 275.27 44.09 160.72 357.82 

WW 171.51 303.45 237.48 248.19 42.92 139.85 328.92 
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969 

Figure 1. Characterization of soil magnesium (Mg) concentration in the field site where the 970 

mapping population was evaluated. A) Variogram representing spatial continuity of Mg 971 

variability; samples become spatially independent at a distance of 24.98 m. Values near the fitted 972 

line within the plot denote the number of point pairs at a given distance. B) Interpolated Mg 973 

concentrations (log transformed, parts per million) throughout the field. Black and red colored 974 

dots represent the sampling locations in 2010 and 2012, respectively. 975 
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977 

Figure 2. Sources of variation for cotton seed elements. The figure shows the decomposition of 978 

phenotypic variance into respective components: teal for genotypic (G), yellow for irrigation 979 

regime (I), purple for year (Y), red for genotype-by-irrigation regime interaction (G×I), blue for 980 

genotype-by-year interaction (G×Y), orange for irrigation regime-by-year interaction (I×Y), 981 

green for the three way interaction of genotype-by-irrigation regime-by-year (G×I×Y), pink for 982 

field design variables replication, block, and column, and gray for residual variance. Variance 983 

component estimates were calculated from modeling all terms in Equation 2 as random. The 984 

table below lists the broad-sense heritabilities (Ĥ2) for the two irrigation regimes, water-limited 985 

(WL) and well-watered (WW), and the significance of the P-values for the different fixed effects 986 

from Equation 2. **** P-value < 0.0001, *** P-value < 0.001, ** P-value < 0.01, * P-value < 987 

0.05, and NS > 0.05.  988 
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989 

Figure 3. Network correlation graph of phenotypic (𝑟̂𝑝𝑖𝑗) and genotypic (𝑟̂𝑔𝑖𝑗) correlations among 990 

elements profiled in cotton seed. Purple and blue edge colors represent positive correlation 991 

values, red and gold represent negative correlation values. The edge thickness represents the 992 

magnitude of the correlation value with only those values greater than 0.20 being displayed (P < 993 

0.05).  994 
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995 

Figure 4. Identified QTL controlling phenotypic variation for elemental concentration in cotton 996 

seed. Results from the multi-trait analysis, in which elements were grouped into ionic and redox 997 

categories, are highlighted in gray. The results for the individual elements analyzed using the 998 

Bayesian classification are listed below the corresponding multi-trait groupings. Loci that were 999 

shared across ionic and redox groups are highlighted with symbols above the respective 1000 

chromosome and marker names. “Ungrouped” denotes individual elements that were not 1001 

contained in the multi-trait groupings and analyzed using only the Bayesian classification 1002 

method. No QTL were detected for Co, Mn, and S, thus these elements are not shown.  1003 
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1004 

Figure 5. Characterization and prediction of irrigation regime using seed ionomic data for the 14 1005 

elements. A) Results of a PCA using standardized individual year BLUEs from 2010-12 for the 1006 

95 RILs. Colors indicate the irrigation regime in which RILs were evaluated. B) Prediction 1007 

accuracies for irrigation regime achieved using five different classification methods. Bars 1008 

represent across-year cross validation accuracies. 1009 
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