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Abstract

Pathogen genome sequencing can reveal details of transmission histories and is a
powerful tool in the fight against infectious disease. In particular, within-host pathogen
genomic variants identified through heterozygous nucleotide base calls are a potential
source of information to identify linked cases and infer direction and time of
transmission. However, using such data effectively to model disease transmission
presents a number of challenges, including differentiating genuine variants from those
observed due to sequencing error, as well as the specification of a realistic model for
within-host pathogen population dynamics.

Here we propose a new Bayesian approach to transmission inference, BadTrIP
(BAyesian epiDemiological TRansmission Inference from Polymorphisms), that
explicitly models evolution of pathogen populations in an outbreak, transmission
(including transmission bottlenecks), and sequencing error. BadTrIP enables the
inference of host-to-host transmission from pathogen sequencing data and
epidemiological data. By assuming that genomic variants are unlinked, our method does
not require the computationally intensive and unreliable reconstruction of individual
haplotypes. Using simulations we show that BadTrIP is robust in most scenarios and
can accurately infer transmission events by efficiently combining information from
genetic and epidemiological sources; thanks to its realistic model of pathogen evolution
and the inclusion of epidemiological data, BadTrIP is also more accurate than existing
approaches. BadTrIP is distributed as an open source package
(https://bitbucket.org/nicofmay/badtrip) for the phylogenetic software BEAST2.

We apply our method to reconstruct transmission history at the early stages of the
2014 Ebola outbreak, showcasing the power of within-host genomic variants to
reconstruct transmission events.

Author Summary

We present a new tool to reconstruct transmission events within outbreaks. Our
approach makes use of pathogen genetic information, notably genetic variants at low
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frequency within host that are usually discarded, and combines it with epidemiological
information of host exposure to infection. This leads to accurate reconstruction of
transmission even in cases where abundant within-host pathogen genetic variation and
weak transmission bottlenecks (multiple pathogen units colonising a new host at
transmission) would otherwise make inference difficult due to the transmission history
differing from the pathogen evolution history inferred from pathogen isolets. Also, the
use of within-host pathogen genomic variants increases the resolution of the
reconstruction of the transmission tree even in scenarios with limited within-outbreak
pathogen genetic diversity: within-host pathogen populations that appear identical at
the level of consensus sequences can be discriminated using within-host variants. Our
Bayesian approach provides a measure of the confidence in different possible
transmission histories, and is published as open source software. We show with
simulations and with an analysis of the beginning of the 2014 Ebola outbreak that our
approach is applicable in many scenarios, improves our understanding of transmission
dynamics, and will contribute to finding and limiting sources and routes of transmission,
and therefore preventing the spread of infectious disease.

Introduction 1

Understanding transmission is important for devising effective policies and measures 2

that limit the spread of infectious diseases. In recent years, affordable whole genome 3

sequencing has provided unprecedented detail on the relatedness of pathogen 4

samples [1–4]. Consequently, accurately inferring transmission between hosts is 5

becoming more feasible. However, this requires robust statistical approaches that make 6

use of the full extent of genetic and epidemiological data available. Here, we present a 7

new approach that makes use of within-host genetic variation and epidemiological data 8

to infer transmission. 9

A number of approaches have been developed that reconstruct transmission from 10

genetic data. The number of substitutions between samples from different hosts can be 11

used to rule out transmission [5–7], or the phylogenetic tree of the pathogen samples can 12

be used as a proxy for the transmission history [8, 9]. However, while the phylogenetic 13

signal can be very informative of transmission, it can also be misleading [10,11], due to 14

within-host variation that can generate discrepancies between the phylogenetic and 15

epidemiological relatedness of hosts, and can bias estimates of infection times [12,13]. 16

In recent years a number of methods have been proposed explicitly modelling both 17

the transmission process and within-host pathogen genetic evolution to infer 18

transmission events [11,13–28]. Some of these methods use epidemiological data and 19

genetic sequences from pathogen samples, and ignore within-host evolution and other 20

causes of phylogenetic discordance with transmission history [14–19,21–23]. Methods 21

that explicitly model pathogen evolution within hosts and within an 22

outbreak [13,20,24,25,27] generally assume, among other things, that samples provide 23

individual and reliable pathogen haplotypes. This is often true for bacteria that are 24

sampled and cultured before being sequenced, but it is mostly false for viruses and 25

bacteria that are sequenced directly from samples without culturing. In fact, in these 26

cases the sequencing process delivers reads coming from the different pathogen 27

haplotypes that constitute the within-host pathogen population, and it is often very 28

hard (if not impossible) to reconstruct complete haplotypes from these reads. In such 29

cases, within-sample genetic variation is often neglected, and a single haplotype (which 30

we call the consensus sequence of the sample) is built. While this procedure might lead 31

to biases, it also certainly discards a very informative part of the available genetic data, 32

because within-sample genetic variants can be very informative of epidemiological 33

distance, direction of transmission, time from infection and transmission bottleneck 34
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intensity (see [29–32] and Figure 1). Furthermore, it is generally assumed that the 35

pathogen does not recombine, so that a single phylogeny describes the evolutionary 36

history of the whole genome, but this assumption does not fit highly recombinant 37

pathogens such as HIV [33]. For these reasons, a few approaches have recently been 38

proposed that use within-host genetic variants to reconstruct transmission [30,32]. 39

Here, we propose a new Bayesian approach called BadTrIP (BAyesian 40

epiDemiological TRansmission Inference from Polymorphisms) that not only uses 41

within-sample genetic variants (from possibly multiple samples per host) to reconstruct 42

transmission (including directionality and time of infection), but also combines this 43

information with epidemiological data and an explicit model of within-host pathogen 44

population evolution and transmission. We use the phylogenetic models with 45

polymorphisms PoMo [36–38] to model population evolution along branches of the 46

transmission tree; thanks to this, our transmission tree and phylogenetic tree are the 47

same entity, and within-host evolution and recombination (resulting from a single 48

primary infection, not multiple infections) do not create discrepancies that make 49

statistical inference hard and computationally demanding [24,25, 27]. We also explicitly 50

model transmission bottlenecks, with one parameter defining the intensity of the 51

bottleneck, and therefore the number of pathogen particles that establish a new 52

population at transmission. Another feature of our approach is that, similarly to 53

methods using within-host variants [30,32], but differently from most other methods, we 54

assume different genomic positions are unlinked; as such, our approach is expected to 55

work well when recombination is strong enough to break linkage between genetic 56

variants in the same host, or when very few high frequency variants and substitutions 57

are expected per case, but could otherwise lead to poorly calibrated (excessively narrow) 58

posterior probability distributions. 59

BadTrIP is implemented as an open-source package for the Bayesian phylogenetic 60

software BEAST2 [39], and as such, it can be freely installed and used. We compare the 61

performance of BadTrIP and the shared variants-based clustering (SVC) method of [30] 62

on simulated data and on a real dataset from the early stages of the 2014 Ebola 63

outbreak [40]. These applications show that BadTrIP has high accuracy to reconstruct 64

transmission thanks to its explicit model of population evolution, the use of within-host 65

genetic variants, and the inclusion of epidemiological data, and can provide important 66

information to understand and limit the spread of infectious disease. 67

In the rest of the manuscript, we refer to a “host” as any entity that can contain and 68

transmit a pathogen. Typically a host is a human within a community or nosocomial 69

outbreak, or patients, but the concept of host can also be generalised for example to 70

farms within a livestock outbreak. We will refer to the collection of all pathogens of the 71

type under consideration within an individual host at a certain time as a “pathogen 72

population” (for example all Ebola virions within an infected host, excluding non-Ebola 73

pathogens and Ebola virions from other hosts). We will call a “pathogen unit” a single 74

pathogen individual within a population, for example an individual bacterial cell or an 75

individual virion. We call a pathogen population “polymorphic” at a particular genome 76

position if pathogen units with different nucleotides at that position are present in the 77

population; in this case, we also call the considered genome position a “genetic variant”. 78

Results 79

Modelling Within-Host Evolution, Transmission, and 80

Sequencing 81

Methods to reconstruct transmission that account for within-host evolution usually have 82

to deal with the complex task of modelling and inferring the discrepancies between the 83
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Figure 1. Examples of informativeness of within-host genetic variants. Here
we show how within-host within-sample genetic variants can be useful without requiring
pathogen haplotypes. Each string of letters (a frequency sequence logo [34,35])
represents the collective genome of the pathogen at a certain point in time, as could be
observed through deep sequencing. Multiple letters in the same column represent a
genetic variant, with letter size representing allelic abundance. Time is on the Y axis,
hosts are represented as black rectangles (a host is only active in the outbreak for the
portion of vertical axis it occupies), and plausible transmission events as arrows. The
posterior probability of different transmission events is represented by the arrow
thickness. The number of little circles within arrows represents the inoculum size
(transmission bottleneck). A) Shared genetic variants hint to epidemiological
relatedness: the two top hosts (H1 and H2) are both possible infectors of the central
host (H3), but H2 shares two genetic variants with H3, making it a likely infector of H3.
Furthermore, the presence of shared genetic variants suggests a large transmission
inoculum (a weak transmission bottleneck). B) A genetic variant of the same type of a
substitution can hint to an infector: as before, but now H3 has a substitution (at third
genome position, from T to C), which means that its within-host population is
non-polymorphic at this position, but with a different nucleotide than the index case.
This substitution is between the two nucleotides present at the same position in H2
(where this position is a genetic variant), consistent with H2 being the infector of H3.
Also, this time the absence of shared genetic variants is indicative of a small
transmission inoculum (a strong transmission bottleneck). C-D) The number of new
genetic variants is informative of the age of an infection (but possibly also of the history
of the pathogen population size within the host): in C the presence of non-shared
variants in H2 suggests that the infection is older, while in D their absence suggests
that the infection is younger.
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transmission tree and the pathogen phylogenetic trees [13,20,24,25,27]. We avoid this 84

complication by adopting and adapting a substitution model, PoMo [36–38], that 85

describes population evolution along the branches of a species (or population) tree. In 86

this model, a virtual population, similar to a Moran model [41] without selection and 87

with fixed population size, evolves by accumulating random changes in nucleotide 88

frequencies (genetic drift, eventually resulting in the fixation of polymorphic sites), and 89

new mutations resulting in new polymorphic sites. Different genome positions are 90

modelled as completely unlinked. 91

The adoption of such a population genetic model within a transmission tree 92

structure means that the phylogenetic tree and the transmission tree are now the same 93

entity, and that each point of the tree represents the state of the pathogen population at 94

a certain time within a host (Figure 2). Each bifurcation in the tree represents a 95

transmission event, where the pathogen population splits in two groups: one remaining 96

in the current host, and a small sub-population colonising a new host. We use a 97

population bottleneck at time of transmission for the colonising branch to better model 98

the transmission process. 99

Our method uses two sources of information: epidemiological and genetic data. 100

Epidemiological data is in the form of dates: the times when genetic samples are 101

collected (it is possible to give any number of samples ≥ 0 for any host, even no sample 102

at all) and a time interval for each host describing when it can contribute to the 103

outbreak. Each host can only be infected, be sampled, and can infect other hosts within 104

its time interval [13]. Genetic data from each sample is in the form of nucleotide counts: 105

for each position of the genome, for a certain sample, the model expects the number of 106

times each of the four nucleotides is observed in the reads (for example: 59 As, 0 Cs, 12 107

Gs, 1 Ts). We assume that reads are sampled with replacement from the pathogen 108

population according to the (hidden) true nucleotide frequencies, and we model the 109

sequencing error. This in particular means that sites without any sequencing coverage, 110

or with very low coverage, are also allowed, and that differently from similar approaches 111

(i.e. [30, 32]) we don’t required the specification of a minimum genetic variant frequency 112

threshold. 113

While in our model we make the strong assumption that sites are completely 114

unlinked, we test the performance of our approach with simulations in which we 115

explicitly model within-host recombination events and we assume that a limited number 116

of individuals in the pathogen population is sequenced. We even simulate scenarios in 117

the total absence of recombination (complete linkage) to measure the robustness of our 118

method. We simulate a broad range of scenarios: different transmission bottleneck 119

severities (weak vs. strong), different amounts of genetic information, different 120

recombination and mutation rates, different sequencing coverage levels, different 121

sequencing error rates, and different virtual population sizes. We give further details on 122

the model used and the simulations in the Materials and Methods section. 123

Accuracy of Inference on Simulated Data 124

To test the accuracy of our new method BadTrIP in inferring transmission events, and 125

to compare it to previous methods [30], we simulated pathogen evolution within 126

outbreaks and sample sequencing, and we used different methods to reconstruct the 127

transmission history from sequencing and epidemiological data. To simulate pathogen 128

evolution, first we simulated an outbreak using SEEDY [42] (we used a fixed population 129

of 15 hosts, one initial case, and an infection/recovery rate ratio of 1.43, see Materials 130

and Methods); then, we translated the transmission history into a population history, 131

and simulated within-population pathogen coalescent, recombination and mutation with 132

fastsimcoal2 [43]. Throughout the simulations each host in the outbreak is sampled 133

exactly once. We measure the accuracy of a method as the frequency with which the 134
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Figure 2. Graphical representation of the transmission, evolution and
sequencing model. Here we describe some key aspects of our model. The figure
depicts a possible evolutionary outcome for one position of the pathogen genome and
the given transmission history. There are three hosts in this outbreak, represented by
the black rectangles: H1 infects H2, which in turn infects H3. Time is on the vertical
axis, and transmission events are represented by the thick arrows between hosts. Within
each host, while it is colonised, the pathogen population consists of 15 units, each of
which can have one of the four nucleotides at the considered position and at any time.
For example, H1 starts off with all 15 pathogen units having an A, but during infection
one of them mutates to C, and through genetic drift when H1 infects H2 it has 4 C’s
and 11 A’s. While instantaneously only small changes can occur (one pathogen unit
changing its nucleotide), along a time interval any number of changes can occur. As H2
is infected by H1, H2 is colonised by a copy of the pathogen population of H1, but the
transmission bottleneck in this case causes one of the nucleotides to be lost, so that H2
is founded by a homogenous population of A’s. Within H2 again a mutation occurs and
now a G is present in the pathogen population, but when H3 is colonised by H2 both
nucleotides survive the transmission bottleneck, so H3 starts off with a polymorphic
population. In the figure, H1 and H3 both have samples extracted and sequenced once,
while H2 is not sampled at all. The sequencing process can result in any coverage (24
for H1 and 7 for H3 at the considered position). Furthermore, the observed nucleotide
frequencies don’t necessarily exactly match the real nucleotides frequencies due to the
randomness of read sampling, and because sequencing error can cause absent
nucleotides to be observed at very low frequencies.
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correct transmission source is inferred to be the most likely a posteriori. We also give a 135

measure of the calibration of different methods by counting how often the correct source 136

is in the 95% posterior credible set, defined as the minimum set of sources with 137

cumulative probability ≥ 95% such that all sources in the set have higher posterior 138

probability than all sources outside of it. 139

BadTrIP shows elevated accuracy in detecting the correct source of transmission 140

(between 50% and 90%) and calibration (between 80% and 100%), in particular 141

compared to the SVC approach (accuracy between 20% and 45% and calibration 142

between 45% and 95%), see Figure 3. This shows that the use of epidemiological data 143

and an explicit model of evolution can help to reconstruct transmission. In particular, 144

comparing the base scenario with the one with almost no mutation, we see that 145

BadTrIP accuracy drops from about 80% to about 50%, while the SVC accuracy drops 146

from slightly more than 30% to about 20%; these drops approximately represent the 147

contribution given by genetic data to the inference of transmission, while the difference 148

between the two methods at almost no mutation (about 50% versus about 20%) shows 149

the contribution of epidemiological information. Calibration of both methods increases 150

as mutation rate decreases, one probable contributing factor being that as mutation rate 151

decreases the effect of genetic linkage on the pathogen evolutionary dynamics decreases 152

(neither method models genetic linkage). Similarly, the complete absence of 153

recombination negatively affects calibration, but the difference is not dramatic (from 154

about 90% to about 80% for BadTrIP, and even less for SVC) suggesting that even in 155

the worst case scenario of complete absence of recombination BadTrIP can still provide 156

meaningful inference and posterior distributions. Accuracy decreases with decreasing 157

mutation rate, as is expected because of the reduced genetic information. However, 158

increasing mutation rates to very high levels (to the point that about half the genome, 159

of length 5kb, is polymorphic within the outbreak) does not seem to improve inference, 160

probably because of saturation. Accuracy seems higher (around 10% difference) in the 161

presence of a strong bottleneck (small inoculum) than a weak bottleneck (large 162

inoculum), while calibration seems almost unaffected; this probably happens because, 163

with strong bottlenecks polymorphisms are unlikely shared between hosts, and so 164

polymorphisms leading to substitutions (see Figure 1B) become more informative for 165

identifying infectors. An increase in coverage (from 40x to 100x) does not seem to bring 166

improvement in accuracy or calibration; on the other hand, when a single uniform 167

colony is sequenced (which is equivalent to reducing coverage to 1x, and therefore 168

removing information on within-host genetic variation) seems to moderately reduce 169

accuracy (≈ 10%) but not calibration. Introducing sequencing error (0.2% of mis-called 170

bases, slightly more than what typical for high-throughput DNA sequencing [44]) 171

accompanied by reduced coverage (20x) and genome length (1kb) still resulted in 172

elevated accuracy (72.5%) and calibration (97.5%). Increasing the PoMo virtual 173

population size (from 15 to 25, while the actual simulated population size remains 1000) 174

had negligible effects on the inference. 175

BadTrIP also infers the time of infection. Calibration seems to increase with 176

recombination, and to decrease with mutation (Figure 4), probably again an effect of 177

our assumption of no linkage. Also, very high mutation rates seem to reduce the error 178

in time inference, as do high coverage and virtual population size. 179

The running time of BadTrIP is affected by the number of genetic variants present 180

in the alignment and by the number of hosts present in the outbreak (Figure S1). The 181

number of variants affect the number of likelihoods that need to be calculated at each 182

MCMC step, while the number of hosts affects the size of the transmission/population 183

tree (so both the computational and statistical complexity of BadTrIP). However, the 184

time required to complete an analysis is not always a linear function of these two 185

quantities: at low mutation rates BadTrIP requires similar times for different outbreak 186
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Figure 3. Accuracy and calibration of BadTrIP on simulated data. A) We
represent accuracy as the frequency with which the correct simulated transmission event
is more likely a posteriori than the alternatives. B) Calibration is the frequency with
which the correct transmission event is in the 95% posterior credible set (the minimum
set of sources with cumulative probability ≥ 95% such that all sources in the set have
higher posterior probability than all sources outside of it). Bars represent percentages
(from 0, worst, to 100, best) for BadTrIP (red) and the shared variants-based clustering
(SVC) approach [30] (azure). On the x axis are different simulation scenarios with the
first one, “base”, being the basic simulation scenario with 10-15 cases per outbreak,
about 300-500 SNPs among all hosts, recombination 10 times stronger than mutation,
complete bottleneck (no transmission of within-host genetic variants), read coverage of
40x, PoMo virtual population size of 15, actual pathogen population size of 1000, and
genome size of 5 kb. All other scenarios are obtained from the base one changing one or
two parameters: in “no recombination” the recombination rate is set to 0; in “high
recombination” the recombination rate is 10 times higher; in “high mutation” the
mutation rate is 10 times higher resulting in 2000-3000 SNPs per outbreak; in “low
mutation” the mutation rate is 10 times lower resulting in 30-50 SNPs per outbreak; in
“very low mutation” the mutation rate is 1000 times lower, resulting in 0-1 SNPs per
outbreak; in “weak bottleneck” at transmission 5 pathogen units from the infector
colonised the infected host, instead of just 1; in “high rec. weak bott.” both the
recombination rate is 10 times higher and the founding population at transmission is
made of 5 pathogen particles; in “high coverage” read coverage in sequencing is 100x
instead of 40x; in “1x coverage” read coverage in sequencing is 1x instead of 40x; in
“sequencing error” 0.2% of read bases are randomly modified to simulate sequencing
error, coverage is reduced to 20x, and genome size is reduced to 1kb; in “high N” the
PoMo virtual population size is 25 instead of 15.
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Figure 4. Error and calibration of BadTrIP inferring infection time from
simulated data. A) Error (root mean square error) inferring times of infection with
BadTrIP. The time unit is days, with a simulated transmission rate of 0.1 per day. B)
Calibration (the percentage with which the true time of infection is within two standard
deviations of the posterior median in the posterior distribution) of the inference of the
time of infection with BadTrIP. Simulation scenarios are as in Figure 3.
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sizes. The reason is probably that with less data there is more uncertainty (in particular 187

in the posterior distribution of the mutation rate), and so it takes longer to explore the 188

the parameter space effectively. Overall, it takes a few hours to completely investigate 189

an outbreak of moderate size (one or two dozen hosts) with BadTrIP. 190

Analysis of the Early 2014 Ebola Outbreak in Sierra Leone 191

To demonstrate the applicability of BadTrIP and the advantage of using a model that 192

combines epidemiological and within-sample genetic variation data, we use BadTrIP to 193

infer transmission within the early cases of the 2014 Ebola outbreak in Sierra Leone. 194

We use data published by Gire and colleagues [40] and previously analysed with the 195

SVC method by Worby and colleagues [30]. One of the factors that make this dataset 196

important to this study is the presence of within-host variants shared by multiple hosts, 197

with one genetic variant that was even shared by eleven hosts [40]. While classical 198

approaches based on consensus sequences would struggle to accommodate such data, in 199

particular due to their assumption of strong transmission bottleneck that would not 200

allow the transmission of variants, BadTrIP can accommodate such features, and such 201

shared genomic variants are expected to increase the resolution of our transmission 202

history inference. We investigate a collection of 62 samples with associated time and 203

location of sampling. As observed by previous researchers, the number of substitutions 204

(and more generally the number of SNPs) within this partial outbreak is very limited, 205

and as such we expect to see a lot of uncertainty in the inference [30]; furthermore, all 206

the samples were collected over a time interval of two months, and we assume 207

transmission from a host to be possible from three weeks prior to three weeks following 208

the sample collection, so the epidemiological data are also not very informative. Indeed, 209

we see that most of the cases are inferred by BadTrIP to have a flat distribution of 210
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possible infectors, with highest per-infectee values generally under 30% posterior 211

probability (Figure 5). However, we also see that BadTrIP identifies some pairs of 212

infector-infectee with very high posterior probabilities (Figure S2). These pairs not only 213

generally fit with the geographical epidemiological data, with most transmission with 214

posterior probability > 50% happening within chiefdoms (with two exceptions discussed 215

later), but also with the SVC inference [30]. Of these, transmission from EM119 to 216

G3770 was inferred by Worby and colleagues [30] using consensus sequence genetic 217

distance, while transmission from EM096 to G3679, from G3826 to G3827, from G3820 218

to G3838, from EM110 to G3809, and from G3729 to G3795 was inferred with the help 219

of shared within-host genetic variants. All highly likely transmission pairs in [30] are 220

also inferred by BadTrIP, but there are some highly likely transmission events inferred 221

by BadTrIP that were not detected by SVC. For example, transmission from G3834 to 222

G3817 is inferred by BadTrIP and is supported by a 3% frequency variant within G3834 223

that becomes fixed in G3817; however, such a variant fixation, attributable to the 224

transmission dynamics described in Figure 1B, is not informative in the SVC 225

method [30] and was further ignored due to the imposition of a 5% variant frequency 226

threshold that we could avoid thanks to our explicit model of sequence evolution and 227

sequencing error. Other cases similar to the latter are the inferred transmissions from 228

EM110 to G3856, from EM110 to G3822, and from EM111 to G3724. 229

Cross-chiefdom transmissions inferred by BadTrIP with elevated posterior 230

distributions are from EM110 in the chiefdom of Jawie, district of Kailahun, to G3856 231

in the chiefdom of Nongowa, district of Kenema; and from G3834 in the chiefdom of 232

Kpeje to G3817 in the chiefdom of Jawie, both in the district of Kailahun. Neither of 233

them had a high probability in [30], but they are both supported by low-frequency 234

variants becoming fixed in the recipient. 235

Our inference of the sequencing error rate ε is extremely low (2 · 10−7 < ε < 7 · 10−7) 236

consistent with the thorough filtering steps adopted by Gire and colleagues [40] prior to 237

within-host variant calling. 238

Discussion 239

Methods to infer transmission histories within outbreaks are important to determine the 240

causes of transmission, to predict the most probable sources in the future, and therefore 241

to inform policies preventing and limiting transmission. Genomic pathogen data from 242

samples collected within an outbreak give the opportunity to observe at an 243

unprecedented level of detail the genetic relatedness of pathogens from different cases. 244

However, it is very hard to reconstruct the complete genome sequences of different 245

pathogen units within the same host, even when sequencing output and read accuracy 246

are elevated. The reason is that individual reads are generally shorter than the whole 247

pathogen genome, and different reads usually come from different pathogen units. 248

Within-host recombination, within-host mutation, and weak transmission bottleneck in 249

fact cause the within-host pathogen population to be genetically varied. Within-host 250

pathogen haplotype reconstruction is generally possible only when few high-frequency 251

and diverged haplotypes are present, such as in the case of bacterial mixed infections 252

with two diverged pathogen populations [45], or when within-host mutation is very 253

high [46]. However, most methods to infer transmission from pathogen genetic data 254

require full haplotypes, leading in many cases to loss of information (the within-sample 255

genetic diversity) and consensus bias. 256

In recent years two methods have been proposed to infer transmission using not only 257

genetic distances between consensus sequences, but also information about shared 258

within-sample variants [30,32]. In fact, within-host variants can be very informative 259

regarding past transmission events (Figure 1), but it is not simple to accurately model 260
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Figure 5. Inference of transmission in the early 2014 Ebola outbreak in
Sierra Leone. A) Transmission events with posterior probability higher than 5% as
inferred by BadTrIP. Circles represent hosts, while arrows are transmission events
between hosts. The numbers next to arrows represent their posterior probability
(between 0.0 and 1.0), as does their shade of red (from pale to dark red) and arrow
thickness. Numbers within circles represent the inferred (posterior median) time of
infection of the respective host, as also does the shade of green (from pale to dark green)
of the circle. Time is expressed in days from the date of the first availability of the first
host.
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pathogen population evolution within outbreaks and pathogen population sequencing. 261

Here we present BadTrIP, a Bayesian approach to transmission inference that not only 262

makes use of information regarding within-sample variants, but also implements an 263

explicit model of pathogen population evolution within outbreak that allows inference of 264

transmission direction and time, and allows the inclusion of epidemiological data that 265

can further refine the inference of plausible transmission events. Compared to other 266

similar methods [30,32], our approach has the advantage of implementing an explicit 267

model of pathogen population evolution and transmission, of allowing the inclusion of 268

epidemiological data (sampling times and host exposure times), of not requiring 269

minimum thresholds for within-host variant frequencies, of accounting for sequencing 270

errors, and of being implemented as part of an open source phylogenetic package 271

(BEAST2 [39]). Using simulations, we show that our approach achieves higher accuracy 272

and calibration than SVC [30], and can reliably individuate likely transmission histories. 273

Also, using a dataset of the early 2014 Ebola outbreak in Sierra Leone, and making use 274

of information of within-sample variation and its evolution model, BadTrIP could 275

individuate previously unidentified likely transmission events, including transmissions 276

between geographic locations. 277

Despite these results, BadTrIP also has limitations, for example its model of genetic 278

linkage. By assuming that all sites are unlinked, our model could be poorly calibrated 279

in cases where there is no within-host recombination but high within-host mutation, 280

causing strong correlations between inherited variants that are not expected in our 281

model. However, we show in our simulations that our method is robust in a large 282

variety of scenarios, including in the absence of recombination and with reads coming 283

from few pathogen units. Another limitation is that our approach is generally not fast 284

enough to deal with very large datasets, and, at the current stage, application is 285

recommended to outbreaks with fewer than 100 cases. Also, BadTrIP is only applicable 286

to the case where all hosts in the outbreak have been sampled, or at least observed. 287

While this assumption is very common among transmission inference 288

methods [11,14–20,23–26,28] it also limits their applicability. Inferring possible 289

non-sampled and non-observed intermediate hosts would probably lead to a significant 290

increase in the statistical complexity and computational demand of BadTrIP (but 291

see [13,27]). Another scenario that is not accounted for in our model and should be 292

therefore watched for is multiple infections of the same host (one host being infected by 293

multiple sources, or from the same source multiple times). Another similarly looking 294

and equally concerning problem is potential sample contamination. We recommend 295

sequencing data to be searched for possible contaminations and multiple infections using 296

methods such as PHYLOSCANNER [47] prior to be investigated with BadTRiP. We 297

have also not accounted for selective pressure, which could sometimes introduce biases, 298

for example creating homoplasies due to the same mutation appearing multiple times in 299

different hosts, or the same polymorphism being maintained by balancing selection. 300

However, our approach weighs information from both fixed substitutions and 301

polymorphic variants, so the same mutation appearing in different genetic backgrounds 302

will not be as nearly as biasing as for the SVC method. Furthermore, as our model is 303

implemented in BEAST2, it is possible to specify a broad range of models of genomic 304

variation in substitution rates which could at least partly account for the effects of 305

selection. Finally, it is possible that errors in the bioinformatic processing of reads, for 306

example mapping errors, cause the identification of the same spurious genetic variants 307

in multiple hosts. We therefore encourage the investigations of genetic variants shard by 308

many hosts to assess their biological plausibility. In the future we will work to solve 309

some of the limitations of BadTrIP, in particular to reduce its computational demand 310

and to model non-sampled non-observed hosts. 311

In conclusion, we have presented a new method that addresses the urgent need for 312
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software to efficiently and accurately analyse genomic and epidemiological data, in 313

particular taking advantage of within-sample genetic variants to identify transmission 314

pairs and reconstruct direction and time of infection. BadTrIP can be used in a broad 315

range of outbreaks, and will be important for devising effective strategies to fight the 316

spread of infectious disease. 317

Software Availability 318

BadTrIP is distributed as an open source package for the Bayesian phylogenetic 319

software BEAST2 [39]. It can be downloaded from 320

https://bitbucket.org/nicofmay/badtrip/ or via the BEAUti interface [48] of BEAST2. 321

Materials and Methods 322

Model of Transmission 323

We model each host as a deme d ∈ D that can be colonised by a pathogen population, 324

with total number of hosts-demes being nD. Each deme d is associated with an 325

exposure interval limited by an introduction time di ∈ (−∞,+∞] and a removal time 326

dr ∈ [−∞,+∞), with dr < di (we consider time backward as typical in coalescent 327

theory); the host only contributes to the outbreak within this interval, which is 328

determined by the epidemiological data. In the least informative scenario where no 329

information on host d exposure is provided, it is assumed that d is exposed for the 330

whole outbreak (di = +∞ and dr = −∞). We will denote as E the collection of 331

exposure times. 332

Each host-deme starts off as non-colonised and is colonised (infected) at some time 333

td between di and the time that the first sample is collected from d (if no sample is 334

collected from d, then we require only td > dr). Also, unless d is the first host to be 335

infected in the outbreak, d is infected by another host in the outbreak Id 6= d, such that 336

Idr < td < tId , that is, d is infected after Id is infected, but before Id reaches its removal 337

time. If d is indeed the first case of the outbreak, then Id is assigned the ∅ (we assume 338

∅ /∈ D). We assume for simplicity that transmission between any pair of hosts and at 339

any time is equally likely, as long as it is consistent with the epidemiological data. 340

Each host is also provided with a (possibly empty) set of samples, Sd. Each sample s 341

consists of a sampling time ts and genetic data Gs. Each sample s in Sd has to be 342

collected after d is infected (ts < td) and before d is removed (ts > dr). Assuming that 343

the genome is L bases long, then the genetic data Gs of every sample s has to be in the 344

form of a list of L quadruples, with for example the quadruple for genome position i 345

being Gsi = (ai, ci, gi, ti), the four positive natural values being the numbers of A’s, C’s, 346

G’s and T’s observed at position i in the sample. If there is no read mapping to position 347

i in sample s, then its quadruple is simply Gsi = (0, 0, 0, 0). We denote the set of all 348

sequencing data as G. 349

All hosts share a common parameter B (with real positive values) describing the 350

intensity of the transmission bottlenecks associated with transmission events. Generally, 351

the value of B can be inferred jointly with other model parameters, however its 352

interpretation in terms of the size of the transmission inoculum is not straightforward. 353

T denotes the transmission-population tree consisting of all sampling times, all infection 354

times and all infectors of each host, and µ denotes the pathogen evolution model 355

(described below). 356

We aim to sample from the following joint posterior distribution with a Monte Carlo 357
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Markov Chain approach: 358

P (T,µ, B|S,E) ∝ P (G|T,µ, B)P (T |E)P (µ)P (B). (1)

P (µ) and P (B) are the prior probabilities for respectively the substitution model 359

and the bottleneck size, which can be chosen arbitrarily by the user. Instead, we ignore 360

the prior for the transmission tree P (T |E) as in [13]. P (G|T,µ, B) is the likelihood of 361

the sequences given the genealogy and substitution model, and can be calculate as 362

described below, using an adaptation of [36–38] to transmission trees. So once we 363

calculate the likelihood P (G|T,µ, B), we can use equation1 with an MCMC to infer a 364

posterior distribution of infection times, infectors, bottleneck size and substitution 365

model parameters. 366

Model of Pathogen Evolution 367

Here, we make use of a phylogenetic model for population evolution, PoMo [36–38], to 368

model mutation and drift in the within-host pathogen populations; also, we extend the 369

model to include transmission bottlenecks and sequencing errors. Sequence evolution is 370

usually modelled along phylogenetic trees, which can differ from the transmission 371

tree [13]. However, PoMo describes evolution along species (or population) trees, and 372

the population tree of a pathogen within an outbreak corresponds to the transmission 373

tree T described in the previous section. If we consider the pathogen community within 374

a host d as a population, we see that this population exists from time of infection td, 375

when it originates from a split with the population of its infector Id. So, transmission 376

events corresponds to timed splits in the population tree, similar to the bifurcations of a 377

species tree. However, one difference is that the split is asymmetrical, as we assume that 378

the pathogen population size is not affected at td in Id, but at the start of the branch 379

leading to d it undergoes a bottleneck of intensity B. All events in the tree are timed in 380

real time (e.g., days) with some values fixed (for samples) and some values inferred in 381

the MCMC (infection times). 382

We use a procedure very similar to the Felsenstein pruning algorithm [49] to calculate 383

the likelihood of the genetic data over the tree. First of all, the substitution process 384

along the branches of the transmission-population tree is not a simple DNA substitution 385

process, but is similar to a 4-allelic Moran model [41] with mutation. We assume we 386

have a continuous-time Markov process along each branch of the tree, where the state 387

space is not made by the four nucleotides, as is typical, but by all 1- and 2-allelic states 388

possible for a population of N units. Typical values of N that we use here are 15 or 25, 389

that is, we describe evolution of a large population (possibly with billions of units) with 390

a small virtual population of N units. Such an approximation generally lead to 391

reasonably good results as long as we rescale the mutation rates between the real and 392

the virtual population [36–38]. N here is not estimated, but is fixed by the user. Lower 393

values of N are expected to reduce the computational demand of the method, but can 394

result in lower accuracy. The states of our Markov process always include the four fixed 395

states, where only one nucleotide is present in the population. In addition, they also 396

include six groups of polymorphic states, where two nucleotides are present in the 397

virtual population at the same site at the same time. Each group corresponds to one of 398

the six unordered pairs of nucleotides ({A,C}, {A,G}, {A, T}, {C,G}, {C, T}, {G,T}) 399

and contains N − 1 states: if the two nucleotides present in the population are n1 and 400

n2, then such N − 1 states are the ones in which the population contains i times 401

nucleotide n1 and N − i times nucleotide n2, for 0 < i < N . So in total our state space 402

is of size 4 + 6(N − 1). Our substitution rate matrix is sparse, in that we only allow one 403

unit in the virtual population to change at the time. So, from a fixed state with 404

nucleotide n1, a instantaneous move is only possible to one of the three states with 405
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N − 1 times nucleotide n1 and one time any other nucleotide n2 different from n1. Such 406

moves correspond to mutation events, and we represent their rates as µn1,n2
. Instead, if 407

we are already in a polymorphic state with i times nucleotide n1 and N − i times 408

nucleotide n2, we only allow nucleotide counts to instantaneously change by one, so an 409

instantaneous move is only possible to the state with i+ 1 times nucleotide n1 and 410

N − i− 1 times nucleotide n2, or to state i− 1 times nucleotide n1 and N + 1− i times 411

nucleotide n2 (one of these two latter states might be a fixed state). The instantaneous 412

rate at which such changes happen is
i(N − i)
N2

R which corresponds to the rate of 413

genetic drift (R represents the rate of drift in the virtual population in units of real 414

time, which will depend on the generation time and is estimated by the model jointly 415

with the other parameters). All other non-diagonal substitution rates are set to 0. All 416

these states and rates constitute the substitution process E. 417

The likelihood of T is calculated starting from the hosts in the outbreaks who don’t 418

infect others (the leaves of the transmission tree). For such leaves, the likelihood is first 419

calculated from the latest sample (if no sample is present, then the likelihood of such 420

leaf at time of their transmission is 1 for every state). Given any state of our 421

substitution process with nucleotides n1 and n2 with respectively abundances i and 422

N − i in the virtual population (here for generality i can also be 0), given a sample and 423

site at which the nucleotides with the highest coverage are x1 with coverage c1, and x2 424

with coverage c2 (we ignore the nucleotides with lower counts for numerical stability), 425

then the likelihood of this state at this sample and site is approximated as: 426

P (c1, x1, c2, x2|i, n1, N − i, n2, ε) =

= (Ix1=n1
(
i(1− ε)
N

+
(N − i)ε

3N
) + Ix1=n2

(
(N − i)(1− ε)

N
+

iε

3N
) + Ix1 6=n1,x1 6=n2

∗ ε
3

)c1 ·

· (Ix2=n1(
i(1− ε)
N

+
(N − i)ε

3N
) + Ix2=n2(

(N − i)(1− ε)
N

+
iε

3N
) + Ix2 6=n1,x2 6=n2 ∗

ε

3
)c2 ·

·
(
c1 + c2
c1

)
(2)

Where ε is a parameter describing the sequencing error rate. ε can be estimated with 427

the other model parameters as we do with the real data and with the simulations 428

including sequencing error. For all other simulations we set ε = 0. Along branches of T , 429

the likelihood is updated using the matrix exponential of E. At bifurcations 430

(corresponding either to internal samples or transmission events) the likelihood is also 431

updated according to the classical pruning algorithm, but at transmission events an 432

extra step is added. A new drift-only substitution matrix ED is defined by setting the 433

mutation rates in E to 0. Then, we describe a bottleneck as an branch of length B 434

along which the population evolves under drift alone, that is, under ED. The length B 435

does not count toward the branch lengths in real time, so that changing the intensity of 436

the bottleneck does not affect the timing of the events in T . Under this model, a more 437

intense bottleneck, corresponding to a small transmission inoculum, will be represented 438

by a longer bottleneck branch, so a larger B. If we have a transmission event from Id to 439

d at time td, we first calculate the likelihood within population Id up to right before 440

time td (likelihoods are updated backward in time), then within population d up to 441

right before time td, then we update the likelihood within d using the bottleneck branch, 442

and finally we multiply the two likelihoods in d and Id to obtain the likelihood in Id 443

right after td (again backward in time). This backward-in-time likelihood update 444

process is terminated after the transmission event of the index case, and before its 445

bottleneck we assume state equilibrium frequencies. 446
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MCMC operators 447

In addition to typical operator for B, ε and E, we also define five new operators for 448

updating our transmission-population tree. The first operator modifies the transmission 449

time td of a host d, without modifying any other parameter, not even the infector Id. 450

The second operator picks a random non-index case d and, without modifying its 451

infection time td, picks a random new infector Id among the ones compatible with 452

infection time td. The third operator is the same as the second, but first picks a new 453

infection time for d, and then picks a new infector Id. The fourth operator exchanges a 454

case d with its first infected case; the exchange swaps the infection times, and inverts 455

the directionality of transmission between the two hosts. The last operator picks a 456

random non0index case d, changes it infection time td, and then picks a random new 457

infector Ĩd compatible with td and within the epidemiological neighborhood of d and Id 458

(for example IId , other infectees of Id, or other infectees of IId) 459

Simulations of Pathogen Evolution 460

To test the accuracy of our new method BadTrIP in inferring transmission events, and 461

to compare it with the SVC method [30], we simulated pathogen evolution within 462

outbreaks and sample sequencing, and we used different methods to reconstruct the 463

transmission history from sequencing and epidemiological data. To simulate pathogen 464

evolution, first we simulated an outbreak using SEEDY [42] with a host population of 465

15 hosts and an infection rate of 0.1 per day, a recovery rate 0.07 per day, a 466

conditionally accepting only outbreaks that achieve a minimum total of 10 infected case. 467

Then, we translated the transmission history into a population history, assuming a 468

within-host pathogen population size of 1000 and using fastsimcoal2 [43] to simulate 469

pathogen coalescent, recombination and mutation with scenario-dependent parameters. 470

Throughout all simulations each host was sampled exactly once. 471

We define a basic group of simulations (called “base”), and nine variants, in each of 472

which one or two aspects of the base group of simulations is modified. In “base” we 473

simulated about 300-500 SNPs (counting also variants present at very low frequency in 474

just one host) or 45 substitutions per outbreak (which might be typical for HIV but 475

high for many other pathogens), recombination rate 10 times higher than the mutation 476

rate, complete bottlenecks (no transmission of within-host genetic variants), 477

homogeneous read coverage of 40x, no sequencing error, PoMo virtual population size of 478

15, all equal mutation rates, and genome size of 5 kb. The nine variant settings are: 479

• no recombination - the recombination rate is set to 0. 480

• high recombination - the recombination rate is increased 10-fold. 481

• high mutation - the mutation rate is 10-fold higher resulting in 2000-3000 SNPs 482

and about 385 substitutions per outbreak. 483

• low mutation - the mutation rate is 10-fold lower resulting in 30-50 SNPs and 484

about 4-5 substituions per outbreak. 485

• very low mutation - the mutation rate is 1000-fold lower, resulting in 0-1 SNPs 486

and 0 substitutions per outbreak. 487

• weak bottleneck - at transmission, 5 pathogen particles from the infector 488

colonise the infected host, instead of just 1. 489

• high recombination and weak bottleneck - the recombination rate is 10-fold 490

higher and the founding population at transmission is made of 5 pathogen 491

particles. 492

• high coverage - read coverage is higher (100x instead of 40x). 493
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• 1x coverage - read coverage is extremely low (1x instead of 40x). 494

• sequencing error - read coverage is lower (20x instead of 40x), genome size is 495

reduced (1kb instead of 5kb) and read bases are randomly modified to simulate 496

sequencing error (0.2% of bases in reads are wrong). 497

• high N - the PoMo virtual population size is 25 instead of 15. 498

We ran 10 replicates for all scenarios, and 20 for “base”, “weak bottleneck” and “no 499

recombination”. We ran the BadTrIP MCMC for 5 · 105 steps for each replicate, 500

sampled from the posterior every 100 steps and with a 20% burn-in. We specified in 501

BadTrIP the true simulated sampling time and removal time of each host, while we 502

specified as introduction time of each host its infection time minus one quarter of the 503

mean duration of infection (so that the true infection time is contained within the 504

exposure time of the host). 505

We measured accuracy as the frequency with which the correct transmission source 506

is inferred by a method to be the most likely a posteriori. We also measured calibration 507

as how often the correct transmission source is the the 95% posterior credible set (the 508

minimum set of sources with cumulative probability ≥ 95% such that all sources in the 509

set have higher posterior probability than all sources outside of it). In addition to 510

performing inference from simulated data with BadTrIP, we also use the SVC 511

method [30] which consists in selecting, for each host, the infector as the one with most 512

shared variants, or, in the absence of shared variants, the one with the smallest 513

consensus genetic distance. If multiple possible infectors score equally, they are assigned 514

the same probability. 515

The 2014 Sierra Leone Ebola Dataset 516

We use sequencing and epidemiological data published by Gire and colleagues [40] and 517

analysed by Worby and colleagues [30]. In particular, we use information from sampling 518

dates, nucleotide frequencies and sequencing coverage. We specify the introduction date 519

(removal date) of each host as its sampling date minus (plus) 21 days. This means that 520

we allow each host to be infected at most 21 days before it being sampled, and to infect 521

others at most 21 days after being sampled. We ran the BadTrIP MCMC until an 522

effective sample size of 1000 was reached for each parameter and for the posterior 523

probability (requiring ≈ 3.5 million MCMC steps). to reduce the computational time 524

required we subsampled the reads from each sample to obtain a per-base coverage of at 525

most 100. 526

Supporting Information 527

S1 Text 528

Supplementary Text S1. The Supplementary text containing supplementary figures. 529

S1 Data 530

Supplementary Data. Contains the xml script to replicate our Ebola analysis with 531

BadTrIP, and a python script to replicate our simulations. 532
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Supplementary Text S1

Figure S1. Computational demand of BadTrIP. Mean computational demand,
in seconds, to run 105 MCMC steps (blue) and to achieve an effective sample size of 200
for the posterior probability (grey) in BadTrIP. Each barplot represents the mean over
10 simulations. The three rows in the table represent the number of hosts in the
simulated outbreaks (3, 5 or 10) and the two columns represent different mutation rates
(10−5 corresponds to the “base” scenario in Figure 3 while 10−6 corresponds to the “low
mutation” scenario in Figure 3). On top of each bar is the same running time but
represented in minutes (“m”) or hours (“h”).
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Figure S2. Inference of transmission in the early 2014 Ebola outbreak in
Sierra Leone, only high-probability transmissions. Transmission events with
posterior probability higher than 15% as inferred by BadTrIP. The notation is as in
Figure 5
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