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Abstract 
Background 
Cell differentiation is driven by changes in transcription factor (TF) activity and 
subsequent alterations in transcription. To study this process, differences in TF binding 
between cell types can be deduced by methods that probe chromatin accessibility. We 
used cell type-specific nuclei purification followed by the Assay for Transposase 
Accessible Chromatin (ATAC-seq) to delineate differences in chromatin accessibility and 
TF regulatory networks between stem cells of the shoot apical meristem (SAM) and 
differentiated leaf mesophyll cells of Arabidopsis thaliana.  
 
Results 
Chromatin accessibility profiles of SAM stem cells and leaf mesophyll cells were highly 
similar at a qualitative level, yet thousands of regions of quantitatively different 
chromatin accessibility were also identified. We found that chromatin regions 
preferentially accessible in mesophyll cells tended to also be substantially accessible in 
the stem cells as compared to the genome-wide average, whereas the converse was not 
true. Analysis of genomic regions preferentially accessible in each cell type identified 
hundreds of overrepresented TF binding motifs, highlighting a set of TFs that are likely 
important for each cell type. Among these, we found evidence for extensive co-regulation 
of target genes by multiple TFs that are preferentially expressed in one cell type or the 
other. For example, a set of zinc-finger TFs appear to control a suite of growth- and 
development-related genes specifically in stem cells, while another TF set co-regulates 
genes involved in light responses and photosynthesis specifically in mesophyll cells. 
Interestingly, the TFs within both of these sets also show evidence of extensively co-
regulating each other. 
 
Conclusions 
Quantitative analysis of chromatin accessibility differences between stem cells and 
differentiated mesophyll cells allowed us to identify TF regulatory networks and 
downstream target genes that are likely to be functionally important in each cell type. Our 
findings that mesophyll cell-enriched accessible sites tend to already be substantially 
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accessible in stem cells, but not vice versa, suggests that widespread regulatory element 
accessibility may be important for the developmental plasticity of stem cells. This work 
also demonstrates the utility of cell type-specific chromatin accessibility profiling in 
quickly developing testable models of regulatory control differences between cell types. 
 
 
Keywords 
Cell differentiation, chromatin, transcription factor, shoot apical meristem, stem cell, 
mesophyll cell, Arabidopsis, INTACT, ATAC-seq. 
 

Background 
In higher plants, all above ground tissues are continuously produced due to the activities 
of self-renewing, pluripotent stem cells located in the central zone of the shoot apical 
meristem (SAM). Upon stem cell division, a subset of daughter cells is gradually 
displaced to the peripheral zones of the SAM where these cells continue to divide and 
differentiate. During this process, differentiating cells undergo transcriptional 
reprogramming as they acquire specialized fates within developing leaf primordia at the 
flanks of the SAM [1-2]. 

Chromatin compaction within the nucleus often restricts the access of 
transcription factors (TFs) to cis-regulatory elements, such as promoters and enhancers 
[3]. During differentiation, cells employ various mechanisms to induce local changes in 
chromatin properties, thereby modifying the accessibility of regulatory chromatin regions 
to the transcriptional machinery [3-4]. This ultimately leads to the establishment of 
lineage-specific TF regulatory modules and the resulting transcriptional output 
characteristic of a given cell type. To date, a limited number of such cell type-specific TF 
regulatory modules have been identified in plants. One well-studied example is the 
regulatory network of TFs that controls specification of the root non-hair cell type in the 
Arabidopsis root epidermis. In this system, the interactions of multiple TFs dictate 
expression of the non-hair fate master regulator, GLABRA2 (GL2), which subsequently 
determines cell fate [5-6]. This complex of TFs that regulate the expression of GL2 was 
delineated through extensive genetic studies in numerous laboratories and now represents 
one of the best understood fate specification pathways in plants. To expedite mechanistic 
studies of cell fate specification in many other cell types, it will be important to be able to 
identify cell-type specific cis-regulatory regions and the transcription factors that act on 
them.   

To measure DNA accessibility and TF binding, genome-wide analysis methods 
such as DNase I treatment of nuclei coupled with high-throughput sequencing (DNase-
seq) have been used [7-9]. Mapping of DNase I hypersensitive sites (DHSs) allows for 
the identification of cis-regulatory elements because DHSs represent open chromatin 
regions where protein binding to DNA has displaced nucleosomes, generating a nuclease 
sensitive zone [10]. Large-scale DNase-seq studies have been instrumental in identifying 
cell type-specific cis-regulatory elements, most notably including a study involving more 
than 100 human cell types [11]. One substantial drawback of this powerful technique, 
however, is the requirement for large quantities of nuclei as starting material. Recently, 
the simple and sensitive Assay for Transposase-Accessible Chromatin with high-
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throughput sequencing (ATAC-seq) has been described [12-13], which requires much 
smaller amount of input material (~500 to 50,000 nuclei) [14]. In this method, a 
hyperactive Tn5 transposase loaded with sequencing adapters acts to simultaneously 
fragment and tag a genome with these adapters. Mapping of the transposase 
hypersensitive sites allows for detection of highly accessible chromatin regions and 
subsequent identification of TF binding sites within these regions [14].  

One of the main limitations to successfully identifying cell type-specific cis-
regulatory regions and studying the networks of transcription factors that bind to these 
elements is the difficulty in isolating specific cell types. The INTACT (Isolation of 
Nuclei TAgged in specific Cell Types) technique is one solution to this problem that is 
highly amenable to chromatin studies [15-16]. This system utilizes transgenic plants 
carrying two transgenes. The first encodes the nuclear targeting fusion (NTF) protein, 
which is comprised of a nuclear envelope-targeting domain, green fluorescent protein 
(GFP), and biotin ligase recognition peptide (BLRP). The second transgene is the E. coli 
biotin ligase (BirA) which specifically biotinylates the NTF protein. The BirA transgene 
is expressed from a constitutively active promoter, while the expression of NTF is driven 
by a cell type-specific promoter. The co-expression of these transgenes results in the 
biotinylation of nuclei in a specific cell type, which can then be affinity purified with 
streptavidin-coated magnetic beads.  

In this study, we employed INTACT and ATAC-seq methods, collectively called 
INTACT-ATAC-seq, to identify and compare accessible chromatin regions between two 
distinct plant cell types: pluripotent stem cells in the central zone of the SAM, and highly 
specialized, fully-differentiated leaf mesophyll cells that originate from the stem cells of 
the SAM. The comparison of these two cell types offers a unique insight into chromatin 
dynamics and transcriptional regulatory control at both the starting and ending points of 
the differentiation process. Our results show that while most Transposase Hypersensitive 
Sites (THSs) are shared between both cell types, thousands of regions could be identified 
that were quantitatively more accessible in one cell type compared to the other. 
Furthermore, we identified transcription factor (TF) binding motifs within these THSs 
and used this information, in combination with publicly available expression and protein 
interaction data, to build cell-specific TF-to-TF regulatory networks, and to predict the 
downstream target genes of these TF networks. Our results suggest that distinct classes of 
TFs collaborate to produce cell type-specific transcriptomes in the stem cell and 
mesophyll cell types. We also demonstrate that INTACT-ATAC-seq is a powerful 
technique to quickly develop testable hypotheses regarding TF regulatory networks and 
their roles in cell fate specification. 
 
 
Results 
Validation of cell type-specific INTACT lines and INTACT-ATAC-seq data 
The CLAVATA3 (CLV3) gene, a known stem cell marker [17], is exclusively expressed in 
the meristematic stem cells found in the central zone of the SAM [18]. We used the 
upstream and downstream regulatory sequences of CLV3 to drive the expression of the 
nuclear targeting fusion (NTF) transgene selectively in the SAM stem cells. Expression 
of the CLV3p::NTF construct in CLV3p::NTF;ACT2p::BirA T2 transgenic plants was 
confirmed using confocal microscopy by visualizing the Green Fluorescent Protein (GFP), 
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which is a part of the NTF, specifically in the central zone of the SAM (Figure 1A). 
Similarly, the promoter of the Rubisco small subunit 2B (RBC) gene, active only in the 
mesophyll cells [19], was used to drive the expression of the NTF in leaf mesophyll cells. 
The expression of this construct was visualized by confocal microscopy in the leaves of 
the RBCp::NTF;ACT2p::BirA T2 transgenic plants. GFP expression was observed in the 
inner cell layers of the sectioned leaf, and is excluded from the leaf epidermis (Figure 
1A).  

The INTACT protocol for cell type-specific nuclei purification from 
CLV3p::NTF;ACT2p::BirA  and RBCp::NTF;ACT2p::BirA T2 transgenic plants was 
performed as previously described [20]. A total of 25,000 freshly isolated nuclei were 
used for ATAC-seq, and three biological replicates were performed per cell type. In 
parallel, we performed ATAC-seq on genomic DNA isolated from leaf tissue as a control 
for sequence-specific Tn5 transposase incorporation bias. More than 84 million reads 
were obtained for each biological replicate through paired-end sequencing (Figure S1A). 
After aligning the ATAC-seq reads to the Arabidopsis thaliana TAIR10 genome, we 
found that, on average, 46% of all reads from the stem cells and 21% from the mesophyll 
cells were successfully mapped to the nuclear genome, with the remainder of reads 
mapping to organelle genomes (Figure S1A). This level of organelle DNA carry over was 
unexpected based on our previous INTACT purifications from root tissue, and is likely 
attributable to the sheer abundance of chloroplasts in shoot tissue. All reads that aligned 
to the organellar genomes were subsequently omitted from downstream analyses. More 
than 15 million reads per replicate passed the quality filtering stage of analysis (Figure 
S1A), which is more than sufficient to successfully identify accessible chromatin regions 
in Arabidopsis, as has been recently demonstrated [14]. The processed, alignment files 
were compared using principal component analysis (PCA) [21]. The six libraries 
segregated by cell type, with low variation between replicates, indicating the high level of 
reproducibility in our datasets (Figure S1B). For each library, we analyzed the fragment 
size distribution of the aligned reads to determine the number of nucleosome-containing 
(>150 bp) and nucleosome-free reads (<150 bp). Nucleosome-free reads are regions of 
accessible chromatin where a transcription factor is likely bound. Conversely, 
nucleosome-containing reads are less accessible to transcription factor binding and are 
therefore less relevant to the scope of this study. In the stem cell and mesophyll ATAC-
seq datasets, we saw a fragment size distribution primarily of 100 bp fragments and 
smaller, indicating that our libraries were composed of primarily nucleosome-free reads 
(Figure S1C). Additionally, the periodic dips in the size distribution graphs demonstrate a 
clear pattern of the helical pitch of DNA, further confirming that our transposase 
treatment was of sufficient coverage. The fragment size distribution for genomic DNA 
ATAC-seq library was smaller, primarily 50 bp in size, and lacked a clear representation 
of the helical pitch of DNA (Figure S1C).  In summary, INTACT-ATAC-seq is a very 
effective method for obtaining a large quantity of highly reproducible accessible 
chromatin reads in Arabidopsis mesophyll and stem cells.  
 
Identification and genomic distribution of cell type-specific accessible chromatin 
regions 
Since the ATAC-seq data among all replicates were highly reproducible (Figure S1B), 
we focused our analysis on the two biological replicates with the highest number of 
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aligned reads for each cell type. To keep our analysis consistent across samples, we first 
scaled the reads from each cell type to the same sequencing depth (15,288,699 reads, 
Figure S1A) and then used the peak calling function of the HOMER package [22] to 
identify open chromatin regions. From this set of transposase hypersensitive sites (THSs) 
identified by HOMER, we examined only the THS regions that were identified in both 
replicates of each cell type, which we refer to as reproducible THSs (Table S1). The 
majority of these reproducible THSs (22,961 of 30,459 sites) were common to both cell 
types, while 5,283 and 2,215 THSs were reproducibly called only in one cell type (stem 
cells and mesophyll cells, respectively) (Figure 1B and C). The genomic distribution of 
reproducible THSs is very similar between the two cell types, with 53% of THSs located 
within 2 kb upstream of the gene transcription start sites (TSSs), 18% located within the 
gene body, 16% located within 1 kb downstream of transcription termination sites (TTSs), 
and 10% located in the intergenic region (Figure 1D). This genomic distribution of 
reproducible THSs suggests that the majority of cis-regulatory regions in Arabidopsis 
genome are located in the vicinity of gene core promoters, as previously observed in 
other Arabidopsis cell types [23]. 

Since the majority of identified THSs were common to both cell types (Figure 
1C) we hypothesized that there may still be quantitative differences between cell types at 
the shared THSs that would not be identified by our all-or-nothing peak calling approach. 
To examine quantitative differences in accessible chromatin regions between the two cell 
types, we calculated the normalized total read counts at each THS in the merged set of 
reproducible THSs for both cell types (i.e. all THSs shown in Figure 1C). The calculated 
read counts were then evaluated using DESeq2 to identify reproducible quantitative 
differences in accessibility between cell types [24] (Table S2). Only those THSs that had 
a log fold change of 1 or more in a specific cell type were categorized as THSs enriched 
in that cell type (see Methods). 

With this approach we identified a total of 7,394 THSs that are more accessible in 
stem cells and 5,895 THSs that are more accessible in mesophyll cells (Figure 2A). This 
analysis captured the majority of THSs originally identified as cell type-unique by peak 
calling, and added several thousand differential THSs to each cell type that were 
previously classified as being present in both cell types by peak calling alone. We now 
refer to these collections of THSs that are quantitatively significantly different between 
cell types as cell type-enriched THSs. 

Each set of cell type-enriched THSs had a similar genomic distribution which 
matched the trend of the overall THS distribution, with more than 75% of these THSs 
mapping within 2 kb upstream of the gene TSSs and 1 kb downstream of TTSs  (Figure 
S2A). Heatmaps and average plots of the ATAC-seq signal from mesophyll, stem cell, 
and genomic DNA datasets were visualized over stem cell-enriched and mesophyll-
enriched THSs to examine the chromatin accessibility differences between cell types at 
these sites (Figure 2B). At stem cell-enriched THSs, the stem cell ATAC-seq signal is 
strongest in the centers of these regions (with an average maximum of approximately 
1500 RPKM) and drops off sharply to either side. In contrast, the mesophyll cells show 
far less accessibility in these regions, but are nonetheless accessible to transposase 
integration to some degree (Figure 2B, left panels). At mesophyll-enriched THSs, the 
mesophyll cells show the highest accessibility in these regions with an average maximum 
of 4,400 RPKM (Figure 2B, right panels). It is worth noting that this read signal is much 
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higher than that seen in stem cells at stem cell-enriched THSs. Interestingly, stem cells 
also show relatively high accessibility at mesophyll-enriched THSs, with an average 
maximum in the same range as that seen at stem cell-enriched THSs. These results 
strongly indicate that mesophyll-enriched THSs are already highly accessible in stem 
cells, but not vice versa.  

On the other hand, ATAC-seq reads from genomic DNA were present at 
negligible levels at both the stem cell-enriched and mesophyll-enriched THSs (Figure 
2B). In fact, we identified only 35 THSs in genomic DNA by peak calling, with 
approximately 75% of them located in the intergenic regions of the genome (Figure S3A 
and B). These results suggest a very low level of Tn5 integration bias at this scale. Taken 
together, we successfully used INTACT-ATAC-seq to identify cell type-enriched THSs, 
which reflect the reproducible differences in the chromatin accessibility between the stem 
cells and mesophyll cells.  
 
Gene ontology analysis of the genes associated with cell type-enriched THSs 
THSs represent accessible, nucleosome-free, chromatin regions and are likely to contain 
cis-regulatory elements that control the expression of nearby genes. To identify the genes 
associated with the cell type-enriched THSs we used the PeakAnnotator program [25] to 
assign each THS to the nearest gene TSS, regardless of whether the TSS is upstream or 
downstream. We will hereafter refer to the genes associated with the stem cell-enriched 
THSs as the stem cell THS-proximal genes, and the genes associated with the mesophyll-
enriched THSs as the mesophyll THS-proximal genes. The 7,394 stem cell-enriched 
THSs mapped to the 5,490 stem cell THS-proximal genes, while the 5,895 mesophyll-
enriched THSs mapped to the 4,513 mesophyll THS-proximal genes (Figure 2C and 
Figure S2B). These results indicate that in each cell type a single gene sometimes has 
more than one cell type-enriched THS associated with it, while the majority of genes that 
have a nearby cell type-enriched THS are associated with a single such site. As shown in 
Figure S2B, a greater number of ATAC-seq reads were observed across the gene bodies 
of these THS-proximal gene sets for the cell type they were originally identified in. In 
other words, the stem cell THS-proximal genes showed more ATAC-seq reads across 
their gene bodies in the stem cell dataset compared to the mesophyll dataset, and vice 
versa (Figure S2B). These results suggest that the proximal genes of enriched THSs have 
more accessible chromatin across their gene body, and therefore are more likely to be 
highly transcribed in the cell type where the THS is enriched. It was also found that the 
majority of ATAC-seq reads relative to these genes are localized proximally upstream of 
the transcription start sites (TSSs) and downstream of the transcript end site (TES) 
(Figure S2B). Minimal transposase bias was found in these analyses, and was primarily 
confined to gene bodies in both sets of genes. Importantly, however, such bias was not 
observed at the specific sites where the majority of our enriched THSs were located 
(Figure 2B, S2B).  

We next used AgriGO [26-27] to identify overrepresented Gene Ontology (GO) 
terms within the THS-proximal gene sets for each cell type (Table S3). We focused our 
analysis only on the GO terms that had a false discovery rate (FDR) of less than 0.05. 
This analysis revealed that many of the genes associated with the stem cell-enriched 
THSs are involved in the regulation of cell differentiation and shoot development, while 
the genes proximal to the mesophyll-enriched THSs were predominantly involved in 
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response to biotic and abiotic stimuli, which is consistent with the known functions of 
these two cell types (Figure 2D).  
 
Enriched motif analysis and identification of cell type-specific transcriptional 
regulatory networks 
As described above, THSs represent more accessible chromatin regions, which likely 
contain TF binding sites that can recruit TFs to regulate the expression of nearby genes. 
To identify specific transcription factors that may play important roles in establishing and 
maintaining the stem cell and mesophyll cell fates during development, we first identified 
sequence motifs that were overrepresented in cell type-enriched THSs. This was achieved 
by performing a MEME-ChIP analysis on the repeat-masked sequences within these THS 
regions [28]. We discovered a total of 316 overrepresented motifs within the stem cell-
enriched THSs and 211 motifs within mesophyll-enriched THSs (Figure 3A and Table 
S4). Next, to determine which TFs show differential expression in one cell type or other, 
we ranked the TFs that bind the identified motifs based on their expression level in each 
cell type using publicly available RNA-seq and microarray data [29-30]. This was done 
by first calculating the relative expression rank by percentile for each gene in these 
datasets (see Methods). Then, the difference in expression rank for each TF of interest 
was measured between the two cell types (Table S5). In total, we identified 23 stem cell-
enriched and 129 mesophyll-enriched TFs that have at least a two fold difference in their 
relative expression ranking between cell types (Figure 3 and Table S5). We then used 
these TF sets as input for the STRING database, which combines both known protein-
protein interactions and functional interactions among genes (e.g. co-expression, text 
mining association, interactions in orthologs from other species, etc.) to infer and predict 
functional connections between a set of input genes [31].  

Using this approach, we discovered a putative stem cell-specific functional 
network of 5 interconnected TFs that belong to two distinct families: INDETERMINATE 
DOMAIN C2H2 zinc finger protein family (IDD) and GATA factor zinc finger 
transcription factor protein family (Figure 3B and Figure S4A). The Arabidopsis IDD 
family of TFs has 16 members, which are involved in promoting gibberellin signaling, 
auxin biosynthesis and transport, and lateral organ differentiation, but are best known for 
their control of tissue formation during root development [32-34]. The GATA TF family 
is comprised of approximately 30 members, which can be divided into four subfamilies 
[35]. Of these subfamilies, the best studied TFs are the members of the B-GATA 
subfamily, including GNC and its paralog GNL, which are involved in the control of 
greening and regulation of plant development downstream of the hormones gibberellin, 
cytokinin, and auxin [36-38]. 

We carried out FIMO analysis [39] using all the stem cell THS sequences to 
identify motif occurrences and thus predicted binding sites for each of the four TFs from 
the STRING-derived regulatory network: INDETERMINATE DOMAIN 2 
(IDD2),  INDETERMINATE DOMAIN 7 (IDD7), GATA TRANSCRIPTION FACTOR 
1 (GATA1), and GATA TRANSCRIPTION FACTOR 15 (GATA15). These predicted 
binding sites were then used to locate the nearest TSS to identify the set of predicted 
target genes for each of the four TFs (Figure 4A and B). Using this approach, we 
discovered 3,218 predicted target genes for GATA15, 5,946 for IDD2, 3,603 for GATA1, 
and 5,322 for IDD7. Out of the 9,962 target genes for these TFs, 569 genes are predicted 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213900doi: bioRxiv preprint 

https://doi.org/10.1101/213900
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

targets for all four TFs. We performed GO analysis on this group of genes using AgriGO 
(Figure 4C). The GO terms overrepresented in this analysis revealed that many of the 
target genes predicted to be regulated by IDD and GATA TFs are involved in control of 
auxin-mediated signaling, regulation of transcription, and shoot development (Figure 4C). 
A STRING network of interactions among these target genes, under high stringency (a 
minimum interaction score of 0.700), is shown in Figure S5.  Notably, we found that the 
known stem cell regulator CLV3 is a target of this IDD/GATA gene regulatory network.   
 The 129 mesophyll-enriched TFs whose motifs were overrepresented in the 
mesophyll-enriched THSs (Figure 3A) had a high density of functional interconnections 
when analyzed with the STRING database (Figure S4B). We identified three major 
mesophyll-specific sub networks of TFs. The largest sub network was comprised of 41 
extensively interconnected TFs, including 10 members of WRKY and 11 members of 
ERF family of TFs, which are known to regulate various biotic and abiotic stress 
responses [40-46]. Seven out of the eight TFs in the second sub network belong to the 
TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) family, which is known to 
control plant growth and organ development, including leaf development [47-50]. The 
third sub network included eight well-connected TFs. Among these are three members of 
the PIF family: PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIL5), 
PHYTOCHROME INTERACTING FACTOR 3-LIKE 6 (PIL6), and PHYTOCHROME-
INTERACTING FACTOR 7 (PIF7). Two additional TFs found in this subnetwork, 
BES1-INTERACTING MYC-LIKE 1 (BIM1) and BRASSINAZOLE-RESISTANT 1 
(BZR1), are involved in the brassinosteroid (BR) hormone signaling pathway. PIFs 
belong to the bHLH family of TFs and are best known as negative regulators of 
chlorophyll biosynthesis and photomorphogenesis [51-54]. BRs are important regulators 
of many aspects of plant growth and developmental processes including cell elongation, 
responses to biotic and abiotic stresses, and photomorphogenesis [55-56]. We decided to 
explore this PIF/BR regulatory sub network in more detail since both PIFs and BRs have 
been implicated in the regulation of chloroplast biogenesis [51-54-57], and therefore may 
directly affect the physiology and development of mesophyll cells. 

As with the IDD/GATA regulatory network in the stem cells, our next goal was to 
identify the putative target genes of TFs enriched in mesophyll. In this case, we also 
included two additional TFs, out of the 129 mesophyll-enriched TFs, that belong to the 
bZIP family: bZIP16, and bZIP53. We chose to include bZIP TFs because it has been 
recently shown that PIF and bZIP TFs HY5 and HYH interact with each other and form 
heterodimers to antagonistically regulate chlorophyll biosynthesis [58-59] and the 
production of Reactive Oxygen Species (ROS) during deetiolation [58]. 

Using mesophyll-enriched THS sequences we performed FIMO analysis [39] to 
identify predicted binding sites for each of four TFs of interest: PIL5, PIL6, bZIP16, and 
bZIP53. We then identified putative target genes by assigning each predicted binding site 
to its nearest TSS. As seen for the stem cell TFs, all four of the mesophyll-enriched TFs 
also showed extensive co-regulation of common target genes. We then performed GO 
analysis on the set of 487 target genes putatively regulated by all four TFs (Figure 4B). 
Many of the GO terms identified describe known functions of mesophyll cells including 
response to abiotic stimulus and light stimulus, photosynthesis-light reaction, and 
carbohydrate biosynthetic process (Figure 4C and Table S6). These results suggest that 
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the PIL5, PIL6, bZIP16, and bZIP53 TFs likely play important roles in regulating 
mesophyll physiological functions. 
 We discovered that many of the putative target genes of the IDD and GATA TFs 
in stem cells, and PIFs and bZIPs in mesophyll cells, are TFs themselves. This finding 
alludes to the presence of cell type-specific transcription factor cascades, which may 
regulate important biological processes in these two cell types (GO term: regulation of 
transcription, Figure 4C). To explore TF-to-TF connections in greater detail, we explored 
putative regulatory connections among the stem cell and mesophyll TFs to illuminate 
how they might regulate each other. Previous studies have used similar models with great 
success in order to build de-novo TF regulatory networks for 41 human cell types [60]. 
The model presented in Figure 5A describes the logic of this analysis, in which each TF 
can bind to its recognition motif found within its own regulatory regions and/or within 
the regulatory regions of other TF genes. For instance, the proximal regulatory region of 
a hypothetical transcription factor gene (TF5) gene contains DNA-binding motifs of four 
other TFs: TF1, TF2, TF3, and TF4. The DNA-binding motif of the TF5 is, on the other 
hand, found in the upstream region of TF4, which also has its recognition motif present in 
the regulatory regions of TF1 and TF2 (Figure 5A). Thus, an extensive co-regulatory 
network of multiple TFs can be mapped in this manner. 

Using the strategy described in Figure 5A for the predicted target genes for each 
TF, we derived more comprehensive stem cell-specific and mesophyll-specific putative 
regulatory circuitries of TFs, further uncovering complex combinatorial interactions 
among TFs within these networks (Figure 5B). For example, in the stem cell-specific TF 
network, IDD7 appears to regulate itself and three other TFs: IDD2, GATA1, and 
GATA15, but not JKD or MYB13 (Figure 5B). On the other hand, JKD may regulate the 
expression of IDD2, IDD7, and GATA1, but not that of GATA15 and MYB13. GATA1 
and MYB13 seem to regulate each other, while GATA15 appears to be most downstream 
component in this TF hierarchy since it does not regulate any other TF in this network. 

Similarly, in the mesophyll-specific TF regulatory network, PIL6 and BZR1 seem 
to regulate both themselves and each other. bZIP16 appears to be at the apex of this 
regulatory module since it regulates three different TFs, while all others regulate the 
expression of two or fewer different TFs. Importantly, this model predicts that PIL6 and 
bZIP16, as well as PIL5 and bZIP53, co-regulate the expression of RVE1, which 
resembles the coordinated TF interaction previously described for another pair of 
bHLH/bZIP TFs: PIFs and HY5/HYH [58-59].  
 
Conclusions 
Cell type-specific THSs contain cis-regulatory elements relevant to the physiology of 
stem cells and mesophyll cells 
Since fully differentiated mesophyll cells in leaves are at the very end of the 
differentiation process from stem cells in the meristem, it was perhaps surprising to find 
that more than 91% of the reproducible mesophyll THSs identified by peak calling alone 
were also present in stem cells (Figure 1C). These results indicated that the accessible 
chromatin regions of these two cell types are not as different as we originally anticipated. 
Nevertheless, we were able to identify several thousand cell type-unique THSs (Figure 
1C) that were only detected in one cell type or the other. Since the majority of THSs were 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213900doi: bioRxiv preprint 

https://doi.org/10.1101/213900
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

shared between the two cell types, we performed a quantitative analysis to identify THSs 
that were differentially accessible between stem cells and mesophyll cells. This analysis 
led to the identification of several thousand more THSs in each cell type than were 
identified by the absolute, all-or-nothing, peak calling strategy. We assigned each of 
these cell type-enriched THSs to their nearest TSS as the putative target gene regulated 
by the differential accessibility event. Gene Ontology (GO) analysis of the stem cell 
THS-proximal genes identified overrepresented GO terms that describe known functions 
of the SAM stem cells in regulating cell differentiation and organ development (Figure 
2D). Similarly, we identified GO terms for the mesophyll THS-proximal genes that are 
consistent with established roles of mesophyll cells in mediating the responses of various 
biotic and abiotic stresses (Figure 2D). 
 Overall, these results indicate that INTACT-ATAC-seq allows us not only to 
successfully identify cell type-enriched THSs, but also that these THSs likely contain 
regulatory elements that are highly relevant for the biology of these two cell types.  
 
Mesophyll-enriched THSs are already accessible in stem cells 
In comparing open chromatin regions between cell types, we discovered that the stem 
cell-enriched THSs tend to be much more highly accessible in stem cells relative to 
mesophyll, but that these regions still showed a low level of accessibility in the 
mesophyll cell type (Figure 3B). This is consistent with our previous observation that the 
root epidermal hair and non-hair cell types show mainly quantitative, rather than 
qualitative differences in chromatin accessibility [23]. These results also suggest that, at 
least in the Arabidopsis cell types examined, a given regulatory region is never 
completely inaccessible in any cell type, and this may simply reflect the proportion of 
cells in the population in which a TF binding event is occurring at that location.  
 When we examined chromatin accessibility at mesophyll-enriched THSs, we 
found that while accessibility was far higher in mesophyll cells, the stem cells also 
showed significant accessibility at these sites (Figure 3B). Thus, while stem cell-enriched 
THSs represent regions that are highly accessible in stem cell and far less so in mesophyll, 
the mesophyll-enriched THSs tend to already be highly accessible in the progenitor stem 
cells. This suggests that even mesophyll cell-enriched THSs are available for TF binding 
in stem cells, and this phenomenon could underlie the developmental flexibility of stem 
cells. Whether this observation is a unique characteristic of the SAM stem cell chromatin 
or more universal feature of any plant stem cell chromatin in comparison to differentiated 
cells remains to be tested. Regardless, we can hypothesize that one of the reasons why 
pluripotent stem cells in the SAM would maintain more accessible regulatory elements is 
to allow them flexibility to change their transcriptome in response to stimuli. In other 
words, by being more open, the stem cell chromatin is more “primed” for transcriptional 
reprogramming, thereby endowing stem cells with the plasticity to efficiently respond to 
differentiation cues.  
 
Identified cell type-specific transcriptional modules are likely important for the 
establishment of lineage-specific regulatory programs in each cell type 
In a search for TFs that should be relevant to the biology of each cell type, we analyzed 
the differentially enriched THS regions to identify putative cell type-specific cis-
regulatory motifs as well as the TFs that bind them (Figure 3A). Using publicly available 
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expression data for these two cell types, we found TFs that were differentially expressed 
in each cell type and whose motifs were also overrepresented in THSs enriched in that 
cell type. We analyzed these cell type-enriched TFs using the STRING database to 
identify modules of TFs that might act coordinately in each cell type (Figure 3B).  
 Following the logic that the identified TF motifs likely represent true TF binding 
events when they occur within an open chromatin region of the corresponding cell type, 
we were able to predict the target genes of TFs of interest (Figure 4A). We found that in 
each cell type, cell type-enriched TFs showing connections in the STRING database also 
tended to co-regulate many genes (Figure 4C). In each case, a relatively large gene set 
appeared to be co-regulated by all four TFs, and GO analysis of these gene sets revealed 
functions consistent with the biology of each cell type. Thus, while using predicted target 
genes, rather than direct measurement of TF binding by ChIP-seq, may lead to the 
inclusion of false positive binding events, there is strong evidence that many true 
positives exist among the putative target genes.  
 The TF modules we identified in each cell type by expression and STRING 
analysis were then used to define regulatory interactions between cell type-specific TFs 
(Figure 5B). The predicted combinatorial interactions among TFs within these regulatory 
networks were extensive and likely play important roles in establishing and/or 
maintaining cell type-specific transcriptional programs during differentiation. These new 
hypotheses can now be experimentally tested. For instance, the STRING-derived stem 
cell TF network was comprised of the members of IDD and GATA TF families. While 
the functions of individual members of IDD and GATA families of TFs are more or less 
known, to our knowledge, the functional interactions between GATA and IDD TFs have 
never been proposed or studied. In addition, IDDs are known to regulate lineage identity, 
patterning, and formative divisions throughout Arabidopsis root growth [34] but have not 
been implicated in a similar role during vegetative meristem development and 
differentiation, which our data now suggest. Interestingly, CLV3 itself was identified as a 
target gene of the IDD/GATA regulatory network (Figure S5), further supporting our 
hypothesis that this regulatory circuitry may play an important role in stem cell 
homeostasis. One way to test these hypotheses is by manipulating the expression of the 
IDD/GATA TFs specifically in the SAM stem cells. For instance, the CLV3 regulatory 
sequences can be used to drive the expression of RNAi or artificial microRNA constructs 
to specifically knock down the IDD/GATA TFs in the stem cell population. In addition, 
an inducible overexpression system may be utilized to overproduce IDD/GATA TFs 
specifically in the SAM in order to monitor chromatin and transcriptional changes. The 
results from these experiments will address whether the IDD/GATA TFs indeed act as 
important regulators of SAM function, and further characterize these regulatory 
connections. 
 It has been previously demonstrated that the PIF and bZIP transcription factors 
HY5 and HYH antagonistically regulate chlorophyll biosynthesis during seedling 
development [58-59]. Our results now indicate that other members of the PIF and bZIP 
families of TFs may cooperate in regulating chlorophyll biosynthesis and light responses 
in mesophyll cells. This intricate cooperation between two TFs with potentially opposite 
functions may allow mesophyll cells to fine-tune their transcriptional programs in 
response to various hormonal and environmental stimuli during leaf development and/or 
throughout daily light/dark cycles. Experimental manipulations to modulate the 
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expression of mesophyll PIFs and bZIPs by overexpressing or suppressing these TFs 
specifically in mesophyll cells can now be performed to test these new hypotheses. 
 
INTACT-ATAC-seq as a powerful technique for predicting cell type-specific 
transcriptional regulatory networks 
In this study, we combined the INTACT method with ATAC-seq to successfully isolate 
nuclei from two specific cell types and locate differentially accessible chromatin regions 
containing important cis-regulatory motifs. This allowed us to identify the TFs that likely 
bind at these regulatory elements and to construct cell type-specific TF regulatory 
networks. Our data provide new hypotheses and will serve as a valuable resource that can 
be used to derive further de-novo models of transcriptional regulatory networks relevant 
to cell fate specification during differentiation. These hypotheses can be experimentally 
tested and the results from these experiments used to further build upon and expand our 
current understanding of the regulatory mechanisms controlling cell fate and function 
during plant development. 
 
Methods 
Plant growth conditions and transformation 
Arabidopsis thaliana plants of the Columbia (Col-0) ecotype were grown in soil or on 
half-strength Murashige and Skoog (MS) media [61] agar plates in growth chambers 
under fluorescent lights, with 16 hour light-8 hour dark cycle at 20°C. All seeds, either on 
agar plates or in the soil, were stratified for three days at 4°C prior to moving them to the 
growth chambers. Plasmid constructs were introduced into Agrobacterium tumefaciens 
GV3101 strain by electroporation. Plant transformation was performed using the floral 
dip method with corresponding Agrobacterium clones [62]. Primary transformant 
seedlings (T1) were first selected on half-strength MS media agar plates containing 
35mg/L hygromycin, 25mg/L glufosinate ammonium (BASTA), and 100mg/L timentin, 
and then transferred to soil.  
 
Plasmid DNA constructs  
We used the promoters of CLAVATA3 (CLV3) and Rubisco small subunit 2B (RBC) 
genes, known to be exclusively transcribed in stem cells and mesophyll cells, respectively 
[17-19], to drive cell-type specific expression of the NTF gene. To construct the 
CLV3p::NTF plasmid, the NTF coding sequence [15] was first PCR amplified using the 
forward primer 5’-catctgcagatgaatcattcagcgaaaacc-3’, introducing a PstI restriction site 
(underlined), and the reverse primer 5’-catggatcctcaagatccaccagtatcctc-3’, introducing a 
BamHI restriction site (underlined). The PCR product was then digested with PstI/BamHI 
enzymes and ligated into PstI/BamHI sites of the pBU14 plasmid containing the CLV3 
promoter and terminator sequences [63]. The ACT2p::BirA plasmid has been previously 
described [64]. The RBCp::NTF construct was produced by removing the ADF8 
promoter from the previously described ADF8p::NTF plasmid [15] via XmaI and NheI, 
and replacing it with a 1.5 kb upstream fragment of RBC, including the start codon. 
 
Microscopy  
The shoot apical meristems of six days old T3 CLV3p::NTF;ACT2p::BirA seedlings and 
leaves 5 and 6 of three weeks old T3 RBCp::NTF;ACT2p::BirA plants were observed 
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using a Leica SP8 confocal laser scanning microscope with 42x immersion objectives to 
confirm proper expression and localization of the NTF protein. GFP fluorescence was 
visualized by excitation at 488 nm. The shoot apical meristems were visualized by 
manually removing the surrounding leaf tissue and imaging the shoot apical meristem 
from the side. Mesophyll cells were visualized by dissecting the leaf with a scalpel and 
imaging the cross section. For each sample, the tissue was immersed in 
perfluoroperhydrophenanthrene, covered with a cover slip, and imaged.  
 
Nuclei isolation by INTACT 
Purification of nuclei from specific cell types using the Isolation of Nuclei TAgged in 
specific Cell Types (INTACT) method was performed as described previously [20] with 
following modifications: 0.5 grams of freshly harvested plant tissue was used for nuclei 
isolation; CLV3p::NTF;ACT2p::BirA transgenic seedlings were collected at 6 days of age 
and were processed by grinding the tissue to a fine powder using liquid nitrogen. Leaves 
5 and 6 from three week old plants with the RBCp::NTF;ACT2p::BirA transgenics were 
collected and finely chopped with a razor blade in Nuclei Purification Buffer (NPB) on 
ice. For both preparations, a volume of 10 μl of Streptavidin M280 magnetic beads was 
used to capture biotinylated nuclei.  
   Compared to previous INTACT-ATAC-seq experiments using root tissue, we 
observed a much higher level of organelle contamination in purified nuclei from shoot 
tissue of both the CLV3p::NTF;ACT2p::BirA and RBCp::NTF;ACT2p::BirA transgenic 
lines, as revealed by the large percentage of organelle-derived reads in our datasets. 
During mesophyll nuclei purification in particular, we observed many large clusters of 
nuclei associated with magnetic beads, suggesting that chloroplasts and mitochondria 
may become trapped within these clusters. Further optimization of the INTACT 
procedure on green tissue will likely eliminate this issue. For instance, it may be 
necessary to use even smaller amounts of starting tissue, to further decrease the amount 
of streptavidin beads used in order to decrease bead clustering, and to add additional 
washing steps or use higher non-ionic detergent concentrations during purification. 
 
Assay for transposase accessible chromatin (ATAC) and library preparation 
It is important to note that all INTACT-purified nuclei were isolated and used fresh, and 
were never frozen prior to the transposase integration reaction. Transposase tagmentation 
and sequencing library preparations were then carried out as previously described [20]. 
Briefly, 25,000 purified nuclei were resuspended in a 50 μl transposase integration 
reaction and incubated at 37° C for 30 min using Nextera reagents (Illumina, FC-121-
1030). Tagmented DNA was purified using the MiniElute PCR purification kit (Qiagen), 
eluted in 11 μl of elution buffer, and then the sample was amplified using 2X high 
fidelity PCR mix (NEB) with custom barcoded primers for 10-12 total PCR cycles. The 
amplified ATAC-seq libraries were purified using AMPure XP beads (Beckman Coulter) 
and then quantified by qPCR using the NEBNext library quant kit (NEB). The quantified 
libraries were analyzed using a Bioanalyzer high sensitivity DNA chip (Agilent) before 
pooling and next-generation sequencing.  
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High throughput sequencing 
Next-generation sequencing was done using the NextSeq 500 instrument (Illumina) at the 
Georgia Genomics Facility at the University of Georgia. All libraries were pooled and 
sequenced in the same flow cell using paired-end 36 nt reads. 
 
Sequence read mapping, processing, and visualization 
Sequencing reads were mapped to the Arabidopsis thaliana genome (version TAIR10) 
using Bowtie2 software [65] with default parameters. Mapped reads in .sam format were 
converted to .bam format and sorted using Samtools 0.1.19 [66]. Mapped reads were 
filtered using Samtools to retain only those reads that had a mapping quality score of 2 or 
higher (Samtools “view” command with option “-q 2” to set mapping quality cutoff). 
These reads were further filtered with Samtools to keep only the reads that mapped to 
nuclear chromosomes, thereby removing reads that mapped to either the chloroplast or 
mitochondrial genomes. Finally, the stem cell and mesophyll cell datasets were also 
processed such that the experiments within a biological replicate had the same number of 
mapped reads prior to further analysis (Samtools “view” command with option “-c” to 
count the number of aligned reads in each dataset and “-S” to scale down by the 
numerical fraction the number of aligned reads to be kept). For visualization, the filtered, 
sorted, and scaled .bam files were converted to the bigwig format using the 
“bamcoverage” script in deepTools 2.0 [21] with a bin size of 1 bp and RPKM 
normalization. Heatmaps and average plots displaying ATAC-seq data were also 
generated using the “computeMatrix” “plotHeatmap” and “plotProfile” functions in the 
deepTools package. Genome browser images were made using the Integrative Genomics 
Viewer (IGV) 2.3.68 [67] with bigwig files processed as described above. 
 
Peak calling to detect transposase hypersensitive sites (THSs) 
Peak calling on ATAC-seq data was performed using the “Findpeaks” function of the 
HOMER package [22] with the parameters “-minDist 150” and “-region”. These 
parameters set a minimum distance of 150 bp between peaks before they are merged into 
a single peak and to allow identification of variable length peaks, respectively. We refer 
to the peaks called in this way as “transposase hypersensitive sites,” or THSs. To deepen 
our analysis and increase the resolution and number of THSs called in the two cell types 
we utilized an additional parameter when comparing the degree of accessibility between 
the two cell types. The additional parameter “-regionRes 1” separated larger THSs into 
several smaller THSs without affecting the way in which THSs that were several hundred 
base pairs in size or smaller are called. For calling peaks in genomic DNA we similarly 
employed the “Findpeaks” function using the parameters “-minDist 150” and “-region”. 
  
Genomic distribution of THSs 
The distribution of THSs relative to genomic features was identified using the PAVIS 
web tool [68] with “upstream” regions set as the 2,000 bp upstream of the annotated 
transcription start site, and “downstream” regions set as the 1,000 bp downstream of the 
transcript end site. 
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THSs enriched in a specific cell type 
The number of reads (counts) present in each cell type at all the THSs called in stem cell 
and mesophyll ATAC-seq data was obtained using HTSeq’s htseq-count script [69]. Two 
replicates of each cell type were counted and the counts were processed using DESeq2 
[24]. THSs that had an adjusted p-value < 0.05 and log fold change of 1 or more for a 
specific cell type were identified as THSs enriched in that cell type. 
 
Transcription factor motif analysis 
ATAC-seq THSs that were enriched in one cell type or the other were used for motif 
analysis. The cell type-enriched THSs from each cell type were first adjusted to the same 
size (300 bp). The sequences present in these scaled regions were isolated using the 
Regulatory Sequence Analysis Tools (RSAT), which also masks any repeat sequences 
[70]. The masked sequences were run through MEME-ChIP with default parameters to 
identify motifs that were present in higher proportions than expected by chance (i.e. 
overrepresented motifs) [28]. The DREME, MEME, and CentriMo programs were used 
to identify overrepresented motifs, and Tomtom matched these motifs to previously 
reported TF binding motifs. Motifs from both Cis-BP [71] and DAP-seq [72] databases 
were used in all motif searches, and only those that had an E-value < 0.05 were 
considered significant. 
 
Assignment of THSs to nearby genes 
For each ATAC-seq dataset, the THSs were assigned to putative target genes using the 
“TSS” function of the PeakAnnotator 1.4 program [25]. This program assigns each THS 
to the closest transcription start site regardless of whether it is upstream or downstream 
from the THS, and reports the distance from the peak center to the TSS based on the 
genome annotations described above.  
 
Publicly available RNA-seq and microarray data 
Published RNA-seq data from the CLV3-expressing cell population of shoot meristems 
[29], isolated from 21 day old plants, and microarray data from mesophyll cells isolated 
at ZT04 from 10 days old cotyledons grown under a long day (LD) cycle (GSM1219271, 
[30]), were used to define TFs that were differentially expressed in the stem cells relative 
to the mesophyll cells, and vice versa.  
 
Calculating the relative expression ranks of TFs in RNA-seq and microarray data 
sets 
Within the stem cell RNA-seq dataset, the genes were considered expressed if the FPKM 
value was ≥1, and 17,811 genes satisfied this criterion. Within the mesophyll microarray 
data, there were 28,583 expressed genes. For each data set, we first arranged the genes 
based on the level of their expression from highest to lowest. Next, for each TF of interest 
we calculated the percentile of its expression relative to total number of expressed genes 
in each data set and then measured the difference in its expression rank between the two 
cell types (Table S5). For instance, GATA15 TF ranked as the 2085th most highly 
expressed gene in the stem cell RNA-seq data set, which equals 11.7% (2,085/17,811) in 
expression ranking. The same TF in the mesophyll expression data set ranked 24,755th 
most highly expressed, which is 86% (24,755/28,583) in expression ranking.  We then 
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calculated the difference in expression ranking of GATA15 between the two cell types by 
dividing the relative expression ranks in percentages (11.7/86). TFs that have at least a 
two fold difference in their relative expression ranking between cell types were 
considered as more highly expressed in one cell type or the other. 
 
Protein interaction analysis using STRING  
Gene lists were analyzed using the STRING database to identify groups of TFs that have 
predicted interactions based on the co-expression analysis, publication co-occurrences, 
colocalization, gene orthology, and experimental information such as yeast-2-hybrid 
interactions [31]. The network connections between the submitted TFs were visualized by 
their confidence score, where a thicker line indicates a higher interaction score. 
Furthermore, the network was subdivided into differentially colored nodes by the Markov 
Cluster Algorithm score set to 3.0. This allows for the detection of genes with some 
evidence for interactions, but whose association does not pass the interaction threshold 
required to have a bona fide connection. The scale of interaction scores in STRING is as 
follows: 0.15=low confidence, 0.4=medium confidence, 0.7=high confidence, and 
0.9=highest confidence. The minimum interaction threshold used in this study was set to 
at least 0.400 or 0.700. The inputs used for the STRING database were the Arabidopsis 
gene IDs. 
 
Defining predicted binding sites for transcription factors 
We used FIMO [39] to identify TF motif occurrences within the repeat-masked sequence 
of the Arabidopsis genome. Significant motif occurrences were those with a p-value < 
0.0001. Predicted binding sites for a given TF were defined as motif occurrences that 
were present within THSs of a given cell type (see Figure 4A for a schematic diagram of 
this process).  
 
Gene ontology analysis 
Gene ontology (GO) analysis was carried out on gene lists using the AgriGO GO 
Analysis Toolkit, with default parameters [26-27]. GO terms that had a false discovery 
rate (FDR) of 0.05 or less were considered significant. 
 
 
Additional files 
List of Supplemental figures and tables and a short description of each 
 
Additional file 1: Figure S1. ATAC-seq read alignments, sample variability, and 
fragment size distribution.  
 
Additional file 2: Table S1. THS coordinates in cell type replicates, genomic DNA, 
enriched THSs, and higher resolution peak calling. 
 
Additional file 3: Table S2. DESeq2 results for counts obtained in two replicates of each 
cell type. 
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Additional file 4: Figure S2. Genomic distribution of cell type-enriched THSs and 
chromatin profiles of nearby genes. 
 
Additional file 5: Table S3. AgriGO results for genes nearest to cell type-enriched THSs. 
 
Additional file 6: Figure S3. Identification of THSs in genomic DNA. 
 
Additional file 7: Table S4. MEME-ChIP results for cell type-enriched THS sequences. 
 
Additional file 8: Table S5. Transcription Factor expression differences analyzed by 
comparing expression rank change between previously published stem cell RNA-seq and 
mesophyll microarray data.  
 
Additional file 9: Figure S4. Interactions among TFs enriched in each cell type. 
 
Additional file 10: Table S6. Coordinates of predicted binding sites in the two cell types, 
the nearest genes they likely regulate, and AgriGO results for genes with predicted 
binding sites for all four TFs, for each cell type. 
 
Additional file 11: Figure S5. Predicted regulatory networks for stem cell and mesophyll 
cells. 
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Figure 1. Characterization of INTACT transgenic lines and overview of ATAC-seq data from each cell type. (a) The upper panel is a 
schematic representation of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) system for isolating nuclei from specific cell types. 
The Nuclear Targeting Fusion (NTF) contains a WPP nuclear envelope-binding domain, Green Fluorescent Protein (GFP) for visualization, and 
a biotin ligase recognition peptide (BLRP), which can be biotinylated by the BirA biotin ligase. BirA is expressed constitutively while NTF is 
driven from a cell type specific promoter.  When these transgenes are coexpressed in a cell the nucleus becomes biotinylated, allowing all nuclei 
of that cell type to be selectively purified with streptavidin beads. Below the gene diagram are confocal images of GFP expression in the 
CLV3p:NTF;ACT2p:BirA line (upper) and RBCp:NTF;ACT2p:BirA line (lower), showing NTF expression in the shoot apical meristem and 
mesophyll  cells,  respectively.  Fluorescent  nuclei  are  labeled  with  arrowheads.  (b)  Three  Integrated  Genome Viewer  (IGV)  snapshots  of 
normalized ATAC-seq reads from shoot apical stem cell (red) and mesophyll (green) nuclei. Different categories of Transposase Hypersensitive 
Sites (THSs) are observed: Top panel) Stem cell-unique: THSs identified only in stem cells; Middle panel) Common to both cell types: THSs 
that were identified in both stem cells and mesophyll cells; and Bottom panel) Mesophyll-unique: THSs that were identified only in mesophyll 
cells. (c) Overlap of stem cell and mesophyll ATAC-seq THSs identified by peak calling in at least two biological replicates of that cell type. (d) 
Genomic distribution of all the THSs identified in two replicates for either stem cell or mesophyll ATAC-seq.
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Figure 2 Chromatin accessibility differences between stem cells and mesophyll cells. (a) Heatmap showing the log ratio of normalized read count of 
the top 13,289 THSs that are statistically different between stem cell and mesophyll ATAC-seq samples. Each line on the heatmap represents a single 
THS, and the values at that region are given for each of two replicates in each cell type. Increased chromatin accessibility between the four samples is 
colored red and decreased chromatin accessibility is colored blue, compared to an average value set to 0. (b) Normalized read signal in stem cell, 
mesophyll, and genomic DNA ATAC-seq samples over cell type-enriched THS regions. The left set of panels show ATAC-seq signal over the 7,394 stem 
cell-enriched THSs, while the right set of panels shows ATAC-seq signal over the 5,895 THSs enriched in mesophyll cells. (c) Each cell type-enriched 
THS was assigned to its nearest TSS as the putatively regulated target gene. Venn diagram shows the overlap of cell type-enriched THS-proximal genes. 
(d) Examples of 10 GO terms that were found only among the lists of genes that have a nearby cell type-enriched THS in a given cell type (i.e. from the 
non-overlapping portions of the diagram in (c)). FDR = False Discovery Rate, GO = Gene Ontology.
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a

Figure 3. Sequence motifs identified in cell type-enriched THSs. (a) Cell type-enriched THS sequences were 
centered and scaled to 300 bp, repeat masked, and analyzed with MEME-ChIP (Methods). Motifs that had an E-
value equal to or less than 0.05 were considered significant. The 316 and 211 transcription factors (TFs) associated 
with overrepresented motifs from stem cell- and mesophyll-enriched THSs, respectively, were further separated by 
their ranked expression difference between previously reported stem cell RNA-seq and mesophyll microarray data 
[28-29]. Only those TFs that had at least a two-fold higher expression difference for the cell type their motif was 
identified in were kept (Table S5). (b) Six TFs that potentially regulate transcriptional networks for each cell type, 
their position weight matrix, and E-value from the MEME-ChIP analysis are shown for the stem cell (left) and 
mesophyll  (right).  The TFs are ranked by their  difference in expression between the two cell  types,  with the 
highest expression difference for the corresponding cell type at the top.
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Figure 4. Predicted binding sites and target genes for cell type-enriched TFs. (a) Schematic for identifying predicted binding sites using 
ATAC-seq THSs and FIMO-identified TF motif occurrences in the genome. These predicted sites were used to identify the nearest TSS to define 
the target gene potentially regulated by the TF. (b) Schematic for using the predicted binding sites (as shown in a) to identify genes that regulate 
cell identity, and which TFs control the expression of these genes. (c) Overlap of predicted target genes of IDD2, IDD7, GATA15, and GATA1 
(top, left). The genes targeted by all four TFs (569) were analyzed with AgriGO, and the resulting GO terms that had an FDR value of 0.05 or 
less were retained. A subset of these enriched GO terms are shown (top, right). Overlap of predicted target genes of PIL6, PIL5, bZIP53, and 
bZIP16 (bottom, left). The genes targeted by all four factors (487) were analyzed with AgriGO, and the resulting GO terms that had an FDR 
value of 0.05 or less were retained. A subset of these enriched GO terms are shown (bottom, right). 
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Figure 5. Proposed regulatory pathways for key transcription factors in stem cells and mesophyll cells. (a) 
Schematic for identifying regulatory interactions between transcription factors (TFs). A predicted binding site for a TF, 
such as TF5, may regulate the expression of another TF, such as TF4. Subsequently regulated TFs may regulate other 
TFs, making up a transcription factor network that is active within a cell type. (b) The putative regulatory networks for 
stem cells (left) and mesophyll (right) are shown. Each TF circle has regulatory inputs (stem cell or mesophyll predicted 
TF binding site within its proximal regulatory regions) and regulatory outputs (that TF’s predicted binding site in the 
other TF gene’s proximal regulatory regions). For example, IDD7 has four regulatory outputs to IDD2, GATA1, GATA15, 
and itself, and one regulatory input to itself.
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