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Running	profoundly	alters	stimulus-response	properties	in	mouse	primary	visual	
cortex	(V1),	but	its	effects	in	higher-order	visual	cortex	remain	unknown.	Here	we	
systematically	investigated	how	locomotion	modulates	visual	responses	across	six	
visual	areas	and	three	cortical	layers	using	a	massive	dataset	from	the	Allen	Brain	
Institute.		Although	running	has	been	shown	to	increase	firing	in	V1,	we	found	that	it	
suppressed	firing	in	higher-order	visual	areas.		Despite	this	reduction	in	gain,	visual	
responses	during	running	could	be	decoded	more	accurately	than	visual	responses	
during	stationary	periods.		We	show	that	this	effect	was	not	attributable	to	changes	
in	noise	correlations,	and	propose	that	it	instead	arises	from	increased	reliability	of	
single	neuron	responses	during	running.	
	

To	understand	perception,	it	is	important	to	study	how	contextual	variables	affect	the	
representation	of	sensory	information	in	neural	populations.	Locomotion,	a	highly	
ethological	behavior	in	rodents,	has	been	shown	to	have	pronounced	effects	on	the	
magnitude	and	consistency	of	responses	to	visual	stimuli1–9.	However,	the	investigation	of	
these	effects	has	so	far	been	limited	to	primary	visual	cortex	(V1).	Recent	work	has	shown	
that	in	V1,	firing	rates	increase2,	response	variability	decreases4,9,	noise	correlations	
decrease8,	and	signal-to-noise	ratio	(SNR)	increases8	during	bouts	of	running.	These	
observations	lead	to	the	prevalent	view	that	running	acts	to	enhance	visual	representations	
both	in	firing	rate	and	coding	accuracy1–4,8,10.	A	normative	theory	that	accounts	for	this	
enhancement	proposes	that	running	triggers	a	visual	selective-attention	mechanism,	as	
vision	is	the		most	navigationally-important	sense	for	rodents11.	An	alternate	theory	posits	
that	the	goal	of	visual	cortex	is	to	predict	the	next	frame	of	visual	stimulus	(as	in	predictive	
coding12),	a	framework	in	which	access	to	the	speed	at	which	an	animal	is	navigating	the	
environment	is	essential.	Knowledge	of	the	impact	of	running	speed	modulation	on	higher	
order,	functionally	specified	visual	regions	is	unknown,	and	might	either	support	or	reject	
these	hypotheses.			
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Using	the	Allen	Institute	Brain	Observatory13	dataset,	we	quantified	how	running	speed	

affects	visual	responses	in	six	visual	cortical	regions:	primary	visual	cortex	(V1),	lateral	

visual	cortex	(VISl)	(`LM',	or	secondary	visual	cortex),	posterior	medial	visual	cortex	

(VISpm)	(a	putative	ventral	stream	region14),	anterior	lateral	visual	cortex	(VISal),	and	

anterior	medial	visual	cortex	(VISam),	rostral	lateral	visual	cortex	(VISrl)	(putative	dorsal	

stream	regions14),		in	cortical	layers	2/3,	4,	and	5	(Fig	1a).	This	dataset	allowed	us	to	assess	

the	tuning	of	hundreds	to	thousands	of	cells	in	each	region	and	cortical	layer	

(Supplementary	Fig	1a,	b).	A	substantial	fraction	of	neurons	in	all	regions	and	layers	were	

tuned	to	running	speed	(Fig	1e,	f),	and	the	total	percent	of	neurons	tuned	to	running	in	

each	region	was	highly	predictive	of	the	average	correlation	coefficient	between	running	

and	neural	data	in	that	region	(Figure	1i,	j).	The	distribution	of	running	speed	modulation	

differed	across	cortical	layers;	layer	5	had	the	largest	fraction	of	neurons	tuned	to	running,	

while	layer	4	had	the	smallest	(Fig	1h).	The	relative	paucity	of	neurons	tuned	to	running	in	

the	input	layer	and	relative	abundance	tuned	to	running	in	the	output	layer	supports	the	

view	that	running	speed	modulation	is	not	inherited	from	thalamic	inputs,	and	may	

originate	in	cortex.	This	is	consistent	with	reports	that	neurons	in	LGN	are	not	strongly	

modulated	by	running	speed2.		

	

In	all	areas	we	examined,	we	found	a	diversity	of	tuning	to	running	speed,	including	

neurons	with	monotonically	increasing,	neurons	with	monotonically	decreasing,	and	

neurons	with	significant	but	non-monotonic	tuning	to	running	speed	(fig	1b).	Although	a	

large	proportion	of	the	neurons	were	significantly	tuned	to	running	speed,	we	found	that	in	

higher	order	visual	cortices	(especially	VISam,	VISpm,	and	VISrl),	running	tended	to	be	

suppressive,	meaning	that	increased	running	speed	decreased	neural	firing	rates	(fig	1c).		

This	suppressive	modulation	was	consistent	across	cortical	layers,	and	was	also	present	in	

experiments	where	running-speed	tuning	was	calculated	when	no	stimulus	was	present	

(Supplemental	figure	1g).	These	trends	were	also	present	when	we	separately	analyzed	

data	from	natural	and	artificial	visual	stimuli	(Supplementary	figure	1e,f).	In	general,	more	

anterior	extra	striate	regions	had	both	a	higher	fraction	of	cells	tuned	to	running,	and	a	

higher	fraction	of	cells	suppressed	by	running	(figure	1d,	g).	These	data	did	not	address	

whether	this	observed	reduction	in	firing	simply	reflected	lower	baseline	firing	rates	
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during	arousal8.	Nevertheless,	the	observed	suppressive	effects	of	running	on	firing	rates	

contradicts	the	naïve	hypothesis	that	running	induces	selective	attention	to	vision	that	

increases	the	gain	of	responses	throughout	visual	cortex,	or	that	increased	gain	throughout	

cortex	is	a	hallmark	of	mechanisms	for	disambiguating	self-motion	from	object	motion.	

	

Figure	1	a.	Schematic	of	regions	included	in	study.	b.	Example	non-monotonic,	monotonically	decreasing,	and	
monotonically	increasing	tuning	curves	to	running	speed,	top	to	bottom.	c.	Spearman’s	correlation	coefficient	
between	fluorescence	(df/f)	and	mouse	running	speed.	Error	bars	are	SEM	over	individual	imaging	experiments.	
Data	from	layer	2/3,	4,	and	5	are	combined	in	each	region.	d.	Spatial	distribution	of	neurons	of	different	tuning	
types,	with	blue	(red)	representing	neurons	with	decreasing	(increasing)	running-speed	tuning.	Squares	not	to	
scale	between	regions.	e.	Overall	fraction	of	neurons	significantly	tuned	to	running	in	each	region	and	Cre-line,	
calculated	during	visual	stimulus	presentation.	f.	Same	as	e.	except	calculated	in	the	absence	of	visual	stimuli.		g.	
Visualization	of	spatial	distribution	of	overall	tuning	to	running	in	the	visual	regions.	h.	Comparison	of	percent	of	
neurons	tuned	in	layer	2/3,	layer	4	and	layer	5	(significance	computed	by	Wilcoxon	signed	rank	test).	Each	data	
point	is	a	different	visual	region.	i.	Correlation	between	percent	of	cells	tuned	to	running	and	Spearman’s	
correlation	coefficient	between	running	and	average	df/f.	Each	data	point	is	grouped	over	all	mice	in	an	individual	
region	and	cre-line.	j.	Same	as	i.	except	calculated	in	the	absence	of	visual	stimulus.		

	

Previous	studies	have	shown	that,	in	addition	to	its	effects	on	firing	rates,	running	

increases	the	fidelity	of	visual	responses	as	measured	by	the	accuracy	with	which	visual	

stimuli	can	be	decoded8,15.	This	effect	has	been	attributed	to	both	increases	in	firing	rates	

and	decreases	noise	correlations	during	running15.	We	sought	to	test	whether,	despite	their	
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reduced	firing	rates,	increased	decoding	performance	was	still	present	in	higher	order	

visual	areas.		

	

To	assess	decoding	performance,	we	trained	a	linear	classifier	(using	multinomial	logistic	

regression)	to	decode	which	of	8	different	grating	orientations	was	presented	to	a	mouse.	

Decoding	performance	was	significantly	higher	for	responses	during	running	than	for	

responses	during	stationary	periods	(figure	2a).	This	trend	was	also	present	in	most	

individual	visual	region	and	Cre-lines	we	investigated,	despite	the	fact	that	in	many	of	these	

regions	firing	rates	decreased	during	periods	of	locomotion.	Indeed,	when	we	excluded	

from	all	datasets	any	neurons	whose	firing	rates	were	enhanced	during	locomotion,	we	

observed	the	same	enhancement	of	decoding	performance	(figure	2b).		

To	investigate	what	changes	in	neural	response	statistics	led	to	this	improvement	in	

classifier	performance,	we	analyzed	the	noise	correlations	of	population	responses.	

Previous	work	has	shown		that	noise	correlations	in	V1	decrease	during	running7,8,	and	this	

has	been	thought	to	be	a	primary	reason	for	improved	decoding	accuracy	during	running	

compared	to	during	stationary	periods15.	Additionally,	increased	behavioral	discrimination	

performance	in	mice	during	cholinergic	modulation	(which	is	typically	present	during	

locomotion)	has	been	attributed	to	de-correlated	neural	firing	patterns3.	To	determine	

whether	decreased	noise	correlations	during	running	epochs	were	responsible	for	the	

increases	in	classifier	performance	we	observed,	we	compared	decoder	performance	on	

data	that	were	trial	shuffled.	Surprisingly,	we	found	that	—	although	trial	shuffling	slightly	

reduced	the	size	of	the	improvement	in	decoding	accuracy	during	running	—	a	robust	

difference	in	decoder	performance	between	running	and	stationary	periods	persisted	for	

shuffled	data	(figure	2c).		We	were	nevertheless	curious	whether	a	combination	of	

increased	response	gain	during	running	and	reduced	noise	curious	could	account	for	the	

difference	in	decoding	performance,	as	has	been	previously	suggested15.	We	therefore	

repeated	our	decoding	analysis	on	a	dataset	that	was	trial	shuffled	after	removing	all	

neurons	excited	by	running;	surprisingly,	the	difference	in	decoding	between	running	and	

stationary	periods	was	still	present	(figure	2d).	These	trends	were	consistent	across	

multiple	choices	of	classifier	(Supplemental	figure	2).		
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Motivated	by	these	findings,	we	hypothesized	that	individual	neurons	might	encode	the	

stimulus	identity	more	reliably	when	the	animal	was	running,	even	if	their	firing	rates	did	

not	increase.		Indeed,	we	found	that	neurons	whose	firing	rates	did	not	increase	during	

running	showed	increased	'reliability',	defined	as	the	variance	of	each	neuron’s	average	

response	to	each	image	divided	by	the	total	variance	of	each	neuron’s	response10	(figure	

3a-c).	This	improved	reliability	was	correlated	with	the	increased	decoding	performance	

(figure	2k).	Thus,	unlike	previous	reports	based	on	data	from	V1,	we	found	increased	

decoding	accuracy	correlated	with	increased	fidelity	in	single	neuron	responses,	and	was	

not	explainable	entirely	by	decreased	noise	correlations	or	increased	stimulus	

responsivity.	

	
Figure	2		Decoding	performance	(multinomial	logistic	regression)	during	running	and	stationary	periods.	a.	Average	
fraction	of	correctly	classified	visual	stimuli	during	running	and	stationary	periods	(average	over	ten	50:50	
train/test	splits).	Each	data	point	is	an	individual	experiment.	Colors	indicate	brain	region	recorded;	size	of	dot	
indicates	significance	level	for	difference	between	running	and	stationary	decoding	in	an	individual	experiment.	b.	
Same	as	a.	but	excluding	neurons	that	increase	their	firing	rate	during	running.	c.	same	as	a.	but	trial-shuffled	to	
remove	noise	correlations.	d.	same	as	a.	but	excluding	neurons	that	increase	their	firing	rate	during	running	and	
trial-shuffled	to	remove	noise	correlations.	All	statistics	Wilcoxon	signed	rank	test.		
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Lastly,	we	sought	to	investigate	possible	physiological	mechanisms	underlying	the	

increased	reliability	of	single-neuron	responses	during	running.	It	has	been	previously	

reported	that	during	periods	of	locomotion,	background	membrane	voltage	fluctuations	of	

neurons	in	V1	decrease8,9.	We	performed	simulations	of	leaky	integrate	and	fire	neurons	

(LIF)	(figure	3e)	to	determine	whether	this	decreased	membrane	voltage	fluctuation	could	

counteract	the	expected	reduction	in	reliability	in	neurons	whose	firing	rates	either	

decreased	or	did	not	change	due	to	running.	We	added	Gaussian	noise	to	the	membrane	

voltage	of	LIF	neurons,	while	driving	them	with	input	current	drawn	from	Gaussian	shaped	

tuning	to	15	different	objects.	As	expected,	we	observed	that	increasing	the	peak	input	

current	increased	the	neuron's	firing	rate	and	its	reliability,	and	that	adding	noise	to	the	

membrane	potential	also	increased	the	neuron's	firing	rate,	but	reduced	its	reliability	

(figure	3k).	We	chose	two	noise	levels	reflective	of	levels	measured	in	vivo	(19	mV^2	and	

36	mV^2)	for	running	and	stationary	epochs	respectively9,	and	simulated	responses	across	

a	range	of	peak	input	current	amplitudes.		We	found	a	sharp	increase	in	reliability	of	these	

simulated	responses	between	noise	variances	of	36	mV^2	and	19	mV	^2,	implying	that	

neurons	had	significant	room	to	decrease	their	firing	rates	while	still	improving	reliability.	

In	combination	with	the	observation	that	lowered	background	noise	itself	can	lead	to	lower	

firing	rates	without	changes	the	mean	synaptic	drive	to	a	neuron,	our	simulations	explain	

how	neurons	firing	rates	could	easily	be	reduced	by	~50%	during	locomotion,	while	

response	reliability	nonetheless	increased.	Further	experimentation	and	physiological	

measurements	will	be	required	to	establish	whether	a	reduction	in	membrane	voltage	

fluctuations	during	locomotion	explains	the	enhancement	in	decoding	performance	we	

observed,	however	our	simulations	are	consistent	with	this	hypothesis.	

	

In	conclusion,	we	observed	a	striking	difference	in	the	type	of	firing	rate	changes	during	

locomotion	across	different	visual	cortical	regions.	Surprisingly,	neurons	in	all	layers	of	

higher	order	visual	areas	were	more	likely	to	be	suppressed	than	enhanced	by	running,	in	

contrast	to	previous	results	showing	response	enhancement	V1.	This	suppressive	tuning	is	

not	easily	reconcilable	with	theories	that	explain	the	running	speed	modulation	in	V1	

simply	by	enhanced	'attention'	to	vision	during	running,	or	by	the	need	to	disambiguate		
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Figure	3	a.	Average	reliability	of	neurons	in	each	brain	region	and	Cre	line	when	the	mice	are	running,	excluding	
neurons	that	are	excited	by	running.	b.	Same	as	a.	except	during	times	when	mice	are	stationary.	c.	Relative	
change	in	reliability	between	running	and	stationary	periods.	d.	Correlation	between	decoding	performance	and	
average	percent	change	in	reliability	in	each	experiment.	e.	LIF	simulation	with	additive	Gaussian	noise	
corresponding	to	membrane	voltage	measured	during	stationary	(top)	and	running	(bottom)	epochs	f.	Reliability	
versus	input	current	for	running	and	stationary	membrane	voltage	noise	levels.	g.	Reliability	versus	membrane	
voltage	and	peak	input	current.		

	

self-motion	from	the	independent	motion	of	visual	stimuli.		However,	despite	the	trend	

towards	running-induced	suppression	in	higher	order	visual	cortices,	running	still	

enhanced	the	representations	of	visual	stimuli,	as	measured	by	decoding	accuracy.	This	

effect	was	not	attributable	to	noise	correlations	or	enhanced	sparsity,	but	instead	was	

attributable	to	increased	reliability	of	individual	neural	responses.	Physiologically,	this	

could	result	from	lower	background	membrane	voltage	fluctuations	during	locomotion.	

These	results	highlight	previously	unknown	differences	in	running	speed	modulation	in	

primary	visual	cortex	and	higher	order	visual	cortices,	and	should	inform	future	theories	

that	seek	to	explain	the	function	of	the	observed	modulation	of	visual	signals	during	

locomotion.	
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Supplementary	Information	

	
Supplemental	Figure	1	a.	Number	of	tuned	neurons	displaying	monotonic	increasing	vs.	monotonic	decreasing	tuning	to	
running,	split	out	by	natural	and	artificial	stimulus	types.	b.	Number	of	neurons	tuned	to	running,	split	out	by	periods	with	and	
without	stimulus.		c.	Percent	of	neurons	tuned	to	running,	natural	stimuli.	d.	Percent	of	neurons	tuned	to	running,	artificial	
stimuli.	e.	Pearson’s	correlation	coefficient	between	running	speed	and	dF/F	in	each	region,	calculated	only	artificial	stimuli	
(e.g.	gratings,	noise)	were	displayed.	f.	Same	as	e.	but	calculated	only	when	natural	stimuli	(natural	scenes,	natural	movies)	
were	displayed.	g.	same	as	e.	but	calculated	only	when	no	stimuli	were	presented.	h.	Same	as	e.	but	with	individual	cre-lines	
displayed,	calculated	across	all	stimuli	types.		
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Supplemental	Figure	2	a.	Average	fraction	of	correctly	classified	stimuli	across	10	CV	splits,	during	running	and	stationary	
periods.	Each	data	point	is	an	individual	recording	experiment,	colors	indicate	from	which	brain	region	data	were	recorded,	size	
of	dot	indicates	whether	the	difference	between	running	and	stationary	decoding	performance	was	statistically	significant	in	an	
individual	experiment.	b.	Same	as	a.	but	excluding	neurons	that	increase	their	firing	rate	during	running.	c.	same	as	a.	but	trial	
shuffling	to	remove	noise	correlations.	d.	same	as	a.	but	excluding	neurons	that	increase	their	firing	rate	during	running	and	
trial	shuffling	to	remove	noise	correlations.	All	statistics	Wilcoxon	signed	rank	test.	Decoder:	Gaussian	Naïve	Bayes.		

	

	
Supplemental	Figure	2	a.	Variance	of	class	means	versus	noise	level	and	peak	input	current	in	LIF	simulations.	b.	Marginal	
variance	versus	peak	input	current	and	noise	level	in	LIF	simulations.	c.	Firing	rate	versus	noise	level	and	peak	input	current	in	
LIF	simulations.		
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Methods	

Data	Collection	

We	analyzed	data	from	the	publicly	available	Allen	Institute	for	Brain	Science	Brain	

Observatory	data	set.	Their	full	data	collection	methodology	can	be	found	in	the	white	

paper13.	In	brief,	transgenic	mice	expressing	GCaMP6f	in	laminar-specific	subsets	of	cortical	

pyramidal	neurons	underwent	intrinsic	signal	imaging	to	map	their	visual	cortical	regions	

before	cranial	windows	were	implanted	above	the	desired	visual	region.	Mice	were	

habituated	to	head	fixation	before	imaging	sessions	in	which	they	were	shown	either	

natural	scenes,	natural	movies,	locally	sparse	noise,	or	gratings.	Neuropil	corrected	

fluorescence	change	(df/f)	traces	for	each	cell	were	extracted	using	automated,	structural	

ROI	based-methods	(See	Allen	Institute	white	paper	for	details).	We	performed	no	pre-

processing	on	df/f	traces	after	downloading	through	the	AllenSDK.	Eye	movements	and	

locomotion	speed	were	recorded;	locomotion	speed	is	available	as	part	of	the	publicly	

available	data	set.	We	analyzed	data	from	the	Cux2-Cre-ERT2	(layer	2/3),	rbp4-Cre	(layer	

5),	and	Rorb-Ires-Cre	(layer	4)	mice,	as	data	from	these	transgenic	lines	were	available	for	

all	regions	in	the	data	set.	

Running	speed	tuning	

For	our	analyses	of	running	speed	tuning,	we	selected	mice	who	ran	for	at	least	one	quarter	

of	the	stimulus	presentation	period	(to	ensure	enough	data-points	to	accurately	calculate	

tuning).	We	also	excluded	mice	whose	maximum	running	speed	was	less	than	15cm	per	

second,	to	ensure	enough	of	a	range	of	running	speeds	were	present	to	accurately	assess	

correlations.	We	estimated	running-speed	tuning	curves	by	first	binning	data	into	20	equal-

sized	bins	(i.e.,	20	quantiles)	of	running	speed,	ranging	from	zero	to	the	maximum	speed	

attained	by	each	mouse,	and	taking	the	mean	neural	activity	in	each	bin,	effectively	creating	

a	non-parametric	‘tuning	curve’	to	running.		To	determine	whether	a	neuron’s	firing	was	

significantly	modulated	by	running,	we	compared	the	neuron’s	running-speed	tuning	curve	

to	a	running-speed	tuning	curve	computed	from	randomly	permuted	data	using	Levene's	t-

test	of	variance;	we	considered	a	neuron	tuned	if	its	non-shuffled	tuning	curve	had	

significantly	more	variance	than	it's	shuffled	tuning	curve5.	We	calculated	Spearman's	rho	

on	the	binned	data,	to	determine	whether	each	neuron	was	monotonically	tuned	to	
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running.	We	considered	neuron	with	a	rho	<	0	to	be	suppressed	by	running,	and	a	rho	>	0	

to	be	enhanced	by	running.	We	used	an	alpha-level	of	p	=	0.05	for	our	estimate	of	

significant	tuning.	We	calculated	this	tuning	both	separately	for	natural	(natural	scenes	and	

natural	movies),	artificial	(drifting	gratings,	static	gratings,	and	noise	stimuli),	and	

spontaneous	activity.		We	found	that	tuning	was	similar	across	natural	and	artificial	

stimulus	conditions,	and	therefore	grouped	them	together	in	the	main	text	(but	see	

Supplemental	figure	1).	

	

Decoding	analysis	

We	performed	all	decoding	analyses	on	the	Drifting	Gratings	dataset	from	the	Allen	

Institute	Brain	Observatory.	Details	of	this	dataset	can	be	found	in	their	white	paper13,	but	

briefly:	each	mouse	was	presented	with	75	repetitions	of	8	drifting	gratings	of	different	

directions,	for	2s	per	presentation,	with	a	1	second	blank	period	in	between	stimuli.	Each	

grating	presentation	had	a	spatial	frequency	of	0.04	cpd	and	a	temporal	frequency	

randomly	selected	from	a	set	of	5	different	temporal	frequencies.		We	performed	decoding	

of	grating	direction	while	ignoring	temporal	frequency.		For	the	purposes	of	the	decoding	

analysis,	we	excluded	individual	experiments	in	which	fewer	than	10	neurons	were	

recorded	–	this	exclusion	criteria	mainly	applied	to	lower	levels	of	VISrl	in	the	analyses	

when	considering	all	neurons	except	those	with	positive	tuning	to	running.		Note	that	

decoding	analyses	included	data	from	additional	mice	that	were	excluded	from	the	speed	

tuning	curve	analyses	(due	to	insufficient	time	spent	running).	Decoding	analyses	that	

excluded	neurons	with	positive	tuning	to	running,	however,	only	included	data	from	the	

subset	of	mice	whose	tuning	curves	had	been	well	characterized.		

	

To	perform	decoding,	we	extracted	a	vector	of	neural	population	activity	for	each	trial	by	

averaging	fluorescence	(df/f)	over	a	2s	window	that	was	offset	by	330	ms	(10	imaging	

frames)	from	the	beginning	of	stimulus	presentation.	This	time	window	was	chosen	by	

selecting	the	window	that	maximized	the	R2	prediction	performance	of	held	out	trials	from	

the	PSTH.	To	compare	decoding	during	running	vs.	during	stationary	periods,	we	split	the	

data	into	“running	trials”	(trials	with	average	velocity	>	3cm/s)	and	“stationary	trials”	

(trials	with	average	speed	<	.5	cm/s).	We	randomly	sub-sampled	the	data	to	ensure	equal	

number	of	trials	per	visual	stimulus	class	in	both	running	and	non-running	subsets.	For	the	
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data	presented	in	the	main	paper,	we	performed	decoding	of	neural	responses	using	an	8-

way	multinomial	logistic	regression	(MLR)	classifier,	as	implemented	in	the	scikit-learn16	

python	package.	Classifier	weights	were	learned	via	the	LBFGS	algorithm,	and	no	

regularization	was	applied	(in	separate	cross-validation	experiments	we	determined	that	

neither	L1	or	L2	regularization	significantly	improved	classifier	performance,	data	not	

shown).	Classifier	performance	was	assessed	via	a	cross-validation	procedure:	fraction	of	

correctly	labelled	stimuli	on	a	test	set	comprising	50%	of	the	data	was	averaged	over	10	

random	(class	balanced)	train-test	splits.		For	shuffling	analyses,	we	randomly	permuted	

each	neuron’s	responses	across	trials	(within	the	same	class)	so	that	population	response	

vectors	contained	non-simultaneous	responses,	breaking	trial	to	trial	correlations	between	

simultaneously	recorded	neurons.	In	the	figures,	decoders	were	both	trained	and	tested	on	

shuffled	data,	although	in	separate	analysis	we	either	only	tested	or	only	trained	on	the	

shuffled	data,	without	significantly	different	results.	The	main	results	are	consistent	across	

different	decoder	types,	with	results	obtained	with	Gaussian	Naïve	Bayes	presented	in	the	

supplemental	materials.			

	

We	assessed	each	cell’s	reliability,	defined	as	the	variance	of	the	average	df/f	response	

across	different	stimuli	divided	by	the	total	variance	across	responses	to	all	stimuli10.	Thus,	

if	a	cell	has	high	variance	of	response	across	all	stimuli	(e.g.	a	greater	dynamic	range	in	its	

responses	to	different	stimuli	types),	with	low	trial	to	trial	noise,	it	is	considered	to	be	

extremely	reliable	–	thus,	a	single	measurement	of	that	neuron’s	response	contains	a	large	

amount	of	information	about	stimulus	identity.	

	

Leaky	Integrate	and	Fire	Simulations	

To	examine	the	possible	effects	of	membrane	voltage	fluctuation	on	response	reliability,	we	

performed	simulations	of	leaky	integrate	and	fire	neurons	with	the	following	parameters:	

Vthresh:	-49mV,	Vinit:	-70	mV,	integration	time	step	=	0.05	ms,	Cm	=	4.9	ms,	gl	=	.16	us,	El	=	

-65.	We	created	a	Gaussian	shaped	tuning	curve	across	15	different	stimuli	to	define	the	

input	current	generated	by	each	stimulus.	We	simulated	different	levels	of	membrane	

voltage	fluctuation	by	adding	independent	Gaussian	noise	to	membrane	voltage	at	each	

time	step.	Noise	variance	was	empirically	determined	to	match	values	recorded	in	vivo	for	
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running	and	stationary	animals.	We	presented	300ms	trials	of	each	stimulus	10	times	in	a	

randomized	order,	and	calculated	reliability	in	the	same	fashion	as	in	the	main	text.			
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