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Abstract 

Gene expression analysis provides genome-wide insights into the transcriptional activity of a 

cell. One of the first computational steps in exploration and analysis of the gene expression data 

is clustering. With a number of standard clustering methods routinely used, most of the methods 

do not take prior biological information into account. In this paper, we propose a new approach 

for gene expression clustering analysis. The approach benefits from a new deep learning 

architecture, Robust Autoencoder, which provides a more accurate high-level representation of 

the feature sets, and from incorporating prior biological information into the clustering process. 

We tested our approach on two distinct gene expression datasets and compared the performance 

with two widely used clustering methods, hierarchical clustering and k-means, as well as with a 

recent deep learning clustering approach. As a result, our approach outperformed all other 

clustering methods on the labeled yeast gene expression dataset. Furthermore we showed that it 

is better in identifying the functionally common clusters than k-means on the unlabeled human 

gene expression dataset. The results demonstrate that our new deep learning architecture could 

generalize well the specific properties of gene expression profiles. Furthermore, the results 

confirm our hypothesis that the prior biological network knowledge could be helpful in the gene 

expression clustering task. 

 

Contact: korkin@korkinlab.org 
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Introduction 

Gene expression quantification and analysis using DNA microarrays, RNA sequencing (RNA-

Seq), and other methods (Edfors, et al., 2016; Lockhart and Winzeler, 2000; Wang, et al., 2009) 

have been proved to be an exceptionally powerful tool to quantitatively study the relationships 

among sets of genes. Global gene expression analysis provides quantitative information about 

the protein and mRNA abundance across the whole organism and in the individual tissues and 

cells (Lovén, et al., 2012), allowing to explore a wide range of biological processes (Belacel, et 

al., 2006). Capturing the gene expression patterns can help studying molecular mechanisms 

implicated in diseases and cellular responses to drug treatment, thus facilitating drug discovery 

and development (Lovén, et al., 2012). Global analysis of the gene expression data has been 

carried out by a number of supervised and unsupervised machine learning methods (Kuo, et al., 

2004; Lyons-Weiler, et al., 2003).  An intuitive approach to analysis of the massive volumes of 

expression data is to first group the genes into smaller subsets based on common expression 

patterns they share, and without any preliminary knowledge of what each of these groups should 

include. Unsupervised learning, or clustering, methods are well-suited to address this problem 

(D'Haeseleer, 2005).  

 

Until recent, clustering of the genes expression data has been commonly carried out using the 

classical unsupervised learning methods, such as k-means or Expectation Maximization (EM) 

algorithms (Hartigan and Wong, 1979; Moon, 1996). At the same time, deep learning has made 

great strides in advancing both supervised and unsupervised learning, becoming routine methods 

in image recognition (Ciregan, et al., 2012), natural language processing (Collobert and Weston, 

2008), and most recently in bioinformatics and genomics (Chen, et al., 2016; LeCun, et al., 

2015). Autoencoder is one of the commonly used deep architectures, and it has been proven 

successful to learn low-dimensional representations of biological data (Chen, et al., 2016). 

However, an autoencoder is insensitive to the outliers, which are widely present in the gene 

expression data. As a result, such architecture might not generalize well the specific properties of 
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gene expression data.   Furthermore, most of the current clustering methods do not take into 

account the prior biological information that could guide the clustering procedure.  

 

In the past decade, substantial improvements have been made in utilizing high-throughput 

‘‘-omics’’ to map most components of cellular networks (Barabasi and Oltvai, 2004; Cui, et al., 

2015). Among them, human protein interactome and its edgotyping studies have attracted major 

attention (Rolland, et al., 2014). Network properties of the interactome have provided insights 

into the system-wide biological properties and the interactome evolution (Alhindi, et al., 2017; 

Han, et al., 2004). Of special interest is a property that is also found in many real-world 

networks, the community structure (Leskovec, et al., 2008), in which the network nodes are 

joined together in tightly knit groups, while the groups themselves are only loosely connected 

with each other. One of the key ideas behind our work is incorporating the gene community 

information for the tested gene sets into the clustering process; we expect that such information 

would improve the clustering accuracy.  

 

Here, we propose a novel protocol, which combines a new deep architecture with the prior 

biological knowledge for gene expression clustering analysis. Our protocol could be divided into 

two main stages. First, we use a deep network to learn important characteristics of the gene 

expression profiles. We leverage a new autoencoder method, Robust autoencoder (Zhou, 2017). 

The approach is designed to extract more robust features from the input data. Once the network 

is trained, the low dimensional representation of the gene expression profile is used for the 

clustering task. In the second stage, we define a network-based metric which allows introducing 

the community information of each gene in the network into our clustering process. The 

hypothesis behind this idea is that, if two genes are in the same network community, then they 

are more likely to communicate with each other and share the same expression pattern. Our new 

clustering protocol is based on the Eisen clustering, an established hierarchical clustering 

approach (Eisen, et al., 1998).  

 

We evaluated our method on two distinct gene expression datasets, one with external labels and 

the other one unlabeled. Specifically, we compared the performance of our method for gene 
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expression clustering with two traditional clustering methods that are commonly used for the 

gene expression analysis, k-means and hierarchical clustering. We found that our method 

outperformed the traditional clustering methods on both labeled and unlabeled datasets. 

Furthermore, the proposed approach was more accurate than a deep learning autoencoder 

method. The results demonstrate that the new deep architecture could capture the high-level 

features from the gene expression profiles. Furthermore, the results confirm our hypothesis that 

the prior biological network knowledge could be utilized for optimizing the gene expression 

clustering task.  

Methods 

Problem Formulation 

The clustering tasks in our approach (Fig. 1) are carried-out using unsupervised learning 

methods. For a given similarity measure defined in an unsupervised learning method, the objects 

belonging to the same cluster are more similar to each other than to those ones from other 

clusters. In the case of gene expression data clustering, a cluster may contain a number of genes 

or samples with similar expression patterns. After the preprocessing stage, the data are presented 

as a matrix X={xij}, where xij stands for an expression level of gene i from sample j at a specific 

time point or in a specific condition. The clustering of gene expression data can be divided into 

two main categories: gene-based clustering and sample-based clustering (Jiang, et al., 2004). In 

this work, we focus on the gene-based clustering. The goal is to group genes with similar 

expression patterns (co-expressed genes). The expression patterns, in turn, will be used to help in 

our understanding of gene function, gene regulation, and cellular processes. 

Gene Expression Datasets 

To test our approach on the real-world data, we used two distinct large-scale datasets. The first 

dataset includes gene expression for the yeast cell cycle (Yeung and Ruzzo, 2001). It is 

organized in 17 time stamps for a set of 420 genes in yeast. Based on the gene functional 

categories, each gene was assigned to one or more "phases". We removed the gene expression 

profiles for the genes that were assigned to more than one phase, resulting in a subset of 384 

genes that were partitioned into 5 phases of cell cycle. The yeast dataset is widely used in 
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practice to assess the clustering quality using the five phases assignment as an external criterion 

(Gupta, et al., 2015; Jiang, et al., 2004). The second dataset is obtained from the Genomics of 

Drug Sensitivity in Cancer (GDSC) study (Yang, et al., 2013). The dataset captures the gene 

expression profiles of different human cancer cell lines in response to drug compounds. It 

 

Figure 1: General workflow of our protocol after acquiring the raw gene expression 
data. Our method consists of four basic steps: input data pre-processing, feature 
reconstruction using deep architectures, detecting community structure from the network, and 
incorporating gene network community information into clustering. The two datasets used in 
this study are gene expression dataset for the yeast cell cycle and human gene expression data 
from the genomics of drug sensitivity in cancer study. 
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consists of 17,419 genes expressed in 83 cell lines. Overall, these two datasets differ in several 

principal aspects. First, the datasets are of substantially different sizes. In addition, the first 

dataset is time series data, while the second dataset is from different cancer cell lines. Finally, the 

datasets come from two different species.  

 

Construction of the PPI networks 

To extract the community information for the gene set and link it to the expression data, we 

studied the protein products of these genes in the context of the physical protein-protein 

interaction (PPI) network (Fig. 1). To this end, two PPI networks are used: HINT yeast network 

(Das and Yu, 2012) and the human interactome project network (HI-II-14) (Rolland, et al., 

2014). HINT network is organized as a database of high-quality protein-protein interactions 

collected from several databases manually as well as using an automated protocol. The 

comprehensive coverage of the interactome makes it possible to fully understand the network 

properties of the yeast genes. The human interactome HI-II-14 is another recently released 

source of PPI data. It is constructed through mapping binary PPIs obtained by systematically 

interrogating all pairwise combinations of human proteins using yeast two-hybrid high-

throughput experiments. For each network, we run the community detection algorithm and apply 

the extracted community information during clustering. 

 

Community Detection Algorithms and Weighting Strategy 

Community structure could be viewed as a subnetwork of nodes that are more densely connected 

compared to the parts of the network (Fig. 2). It is a common characteristic in many physical 

networks, including the Internet and World Wide Web, social networks, and different kinds of 

biomolecular networks (Leskovec, et al., 2008). Determining these community structures in a 

network can provide insight into the structural and functional organization of the network and 

can be useful in improving graph algorithms, such as spectral clustering (Leskovec, et al., 2008). 

In a basic community detection setting, a network node is defined as belonging to at most one 

community.  The majority of community detection methods adopt such simplification. In this 

paper, we resort to a widely used methods for community detection based on modularity 
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maximization, the Louvain method (De Meo, et al., 2011). Modularity, Q, measures the quality

of a partition of the network into communities and is defined as:  

 

for the overall network with |E| edges that is partitioned into m communities, where ls is the

number of edges between the nodes belonging to the s-th community and ds is the sum of the

Q = ls

E
− ds
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Figure 2: Extracting community information from protein-protein interaction (PPI
networks. A. Two PPI networks used in this works are HINT yeast network (left) and th
human interactome project network (right). The networks share similarities in the siz
distribution of the largest communities (top 10 largest communities in yeast PPI network and top
15 communities in human PPI network, respectively, shown in the two pie charts). Furthermore
in both networks, communities with small numbers of nodes (<100) are predominant ones. B
An illustration of the basic principle behind community detection. The community detection
method searches for the network partitions that have particularly high modularities using an
approximate greedy optimization approach. C. The topology of a large community (red nodes
detected in the yeast PPI network and its immediate neighborhood (blue nodes). All network
are visualized using Cytoscape. 
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degrees of the nodes in the s-th community. The modularity maximization method detects 

communities by finding the network partitions that have particularly high modularities (Fig. 

2A,B). Since the exhaustive search over all possible partitions is usually intractable, the Louvain 

Method leverages an approximate greedy optimization approach. Specifically, it iteratively 

optimizes local communities until the global modularity can no longer be improved, given 

perturbations to the current community state (De Meo, et al., 2011).  

 

To identify genes that share similar patterns, a similarity (or dissimilarity) measure is required. 

However, most of the commonly used similarity/dissimilarity measures, such as Pearson 

correlation coefficient or Euclidean distance, do not take the prior biological information into 

account. In this work, we propose that such prior information on the biological network 

communities could be used to adjust the distance between the two gene expression profiles, thus 

improving the clustering performance. The weighting idea is based on a hypothesis that if two 

genes are a part of the same community, they are more likely to be joined via a direct or indirect 

interaction and hence share the same expression pattern. To achieve that, we introduce a new 

metric that is weighted by the community information of a gene pair in the PPI network. 

Specifically, for any two genes we check if these two genes are in the same community using the 

results of the above community detection algorithm. If they are in the same community, their 

original distance will be assigned a small weight with the effect of shortening the distance. 

Otherwise, their distance will be assigned a large weight, with the effect of elongating the 

distance.  

 

The specific strategy of assigning a weight to the distance between a pair of genes is of critical 

importance. To derive this strategy, we take advantage on the yeast expression dataset, whose 

external labels correspond to the 5 phases of cell cycles. By comparing the Adjusted Rand 

Indices (see subsection Evaluation criteria for two expression datasets below for more details), 

one can systematically evaluate a spectrum of strategies with various magnitudes of the weights. 

Here, we evaluate 5×5=25 combinations of the following pairs of weights (wk, wm). The 

distance between a pair of genes is assigned a weight with one of the five values, wk=0.6, 0.7, 

0.8, 0.9, or 1.0, if the genes are in the same community, and a weight with one of the five values, 
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wm=1.0, 1.1, 1.2, 1.3, or 1.4, if the genes are not in the same community. The best performing 

weight combination will be integrated into our clustering approach. 

Deep architecture to regenerate gene expression profile 

Our deep learning approach to microarray data clustering is driven by its ability to learn a 

hierarchical representation of the data through multiple layers of abstraction.  In this work, we 

propose to apply our newly developed Robust autoencoder method (Zhou, 2017). The method 

improves the basic deep learning autoencoder model by building an outlier filter on top of a 

standard autoencoder, an idea that was inspired by the Robust Principal Component Analysis 

(RPCA) (Wright, et al., 2009). 

 

An autoencoder is a feed-forward multi-layer neural network in which the output target is the 

input itself (Bengio, 2009). The method is trained to copy an input to its output. This process 

seems trivial, but the meaningful part is the low-dimensional hidden layers that are trained to 

reproduce the input. Specifically, the hidden layer is trained to be the lowest loss representation 

of the input constrained to some low dimensional representation. The autoencoder is a 

generalized framework for the non-linear dimension reduction process that is carried out by 

applying a non-linear activating function in the encoder and decoder parts of the method. As a 

result, the autoencoder can project data to a low dimensional non-linear manifold in a high 

dimensional space. 

 

In contrast to the autoencoder, PCA is a basic orthogonal linear transformation method (Jolliffe, 

1986). It transforms the data to a new coordinate system preserving the greatest variance. PCA 

projects data onto a linear subspace in a high dimensional space. However, this approach is not 

ideal for discovering non-linear representations, and the complexity and variability of many real-

world problems often require the non-linear methods. Furthermore, in many real-world 

clustering tasks, the data contain outliers. Unfortunately, PCA does not work well in the presence 

of outliers: the linear manifold of PCA tends to shift from its otherwise optimal position, trying 

to offset the substantial errors caused by the outliers. The distant outliers can have a similarly 
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profound effect on the non-linear manifold learned by the autoencoder, causing a large 

reconstruction error for all other data points. 

 

 To simultaneously address the problems of outliers and non-linearity, we integrate the basic 

ideas of Robust PCA into the autoencoder model. Robust PCA (RPCA) splits a raw input matrix 

X into a low-rank matrix L0 and a sparse matrix S0: X = L0 + S0. The low-rank matrix L0 

represents the pattern to be extracted from the data, while the sparse matrix S0 consists of the 

outliers that cannot be captured by the low-rank pattern L0. We constrain the rank of matrix L0 to 

be the lowest possible, while requiring for the matrix S0 to be as sparse as possible. Thus, L0 can 

be represented by a linear subspace, while the S0 corresponds to a filter that separates the distant 

outliers from the linear subspace. In other words, RPCA refines PCA by making it robust to the 

outliers. 

 

In the Robust autoencoder approach, we introduce a filter layer before a normal autoencoder 

(Fig. 3). The filter layer culls out the outlying parts that are difficult to reconstruct by the 

autoencoder. Thus, the outlier filter introduces robustness, while the autoencoder provides 

nonlinearity. The low dimensional representation learned by the autoencoder is defined by the 

compressed features that reflect the trend of the observation majority. Similar to Robust PCA, we 

decompose our input data X into two parts: X = LD + S, where LD is a matrix that can be 

represented by a non-linear manifold, and S represents the outliers which will corrupt and skew 

the non-linear manifold. By peeling off the outliers from X into S, the autoencoder could 

perfectly recover the remaining LD. Our loss function for a given input X is defined as: 

�������,�,�  �	� 
 ��,� ��,��	����
�

�  �����, ���� ����   � 
 	� 
 � � 0, 

where ��,� denotes an encoder function, ��,� denotes a decoder function, W is a projection 

matrix, b is the bias term, and � is a balancing parameter to tuning the power of sparsity. We 

feed LD as the input data to a standard deep autoencoder to learn the low-dimensional 

representations. The autoencoder is trained through minimizing the reconstruction error ��� �

��,� ���,����	
�. The minimized reconstruction error indicates that LD can be projected to a 

low-dimensional nonlinear manifold without significant information loss. S contains all outlying 
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observations, which have high reconstruction errors and cannot be interpreted by the majority

observations. We require S to be sparse because we want the autoencoder to capture the trend of

the majority of observations, while the outliers are expected to be rare. When minimizing the

first term, we want the input of the autoencoder LD to be perfectly reconstructed. Thus, we need

to move more observations to S. Similarly, when minimizing the second term, S will contain the

increasingly smaller number of the non-zero elements. Sparsifying the outlier filter S leaves more

errors to LD, and the reconstruction task of autoencoder becomes harder. In this optimization, LD

and S are mutually influenced by the constraint .  The  is the tuning parameter,

which balances the impact of two optimizers. After training the whole model, the matrix S

contains point-wise outliers, and LD should retain the majority of information about X inside the

hidden layer. 

 

We solve the minimization problem of Robust autoencoder using an similar to (Zhou, 2017).

While individual optimization techniques exist for training an autoencoder or Robust PCA (e.g.,

alternating direction method of multipliers, ADMM algorithm (Boyd, et al., 2011)), to the best of

 

Figure 3: Architecture of robust autoencoder. In Robust autoencoder approach, an outlier 
filter layer before a normal autoencoder is introduced, providing robustness, while the 
autoencoder provides nonlinearity. We decompose the input data X into two parts: LD, a 
matrix representing by a non-linear manifold, and S, a matrix representing the outliers which 
will corrupt and skew the non-linear manifold. The goal is to filter out the outliers from X, 
thus recovering LD. 
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our knowledge no methods previously existed that could simultaneously optimize both. In (Zhou, 

2017) , the authors train the autoencoder using back-propagation and the outlier filter using the 

shrinkage function. Back-propagation is an essential element of the deep autoencoder training, 

but it requires the objective function to be smooth to take advantage of chain rule of 

differentiation. This is not the case in our problem, since the second term in our objective 

function, ����, is not smooth or differentiable. However, in (Zhou, 2017) they solved this 

problem using a refined method is based on the basic idea of ADMM algorithm. The original 

objective function is broken into two smaller pieces, each of which is then easier to handle, 

where (1) a back-propagation algorithm is used to minimize the reconstruction cost of an 

autoencoder ��� � ��,� ���,����	
�, and (2) a shrinkage function on ���� is used to sparsify 

S with the fixed LD. Then (Zhou, 2017) borrow an idea from the alternating projection forcing 

both optimizers to obey the constraint.  

 

Evaluating Robust autoencoder clustering 

The gene expression data is first pre-processed using the standard data cleaning and 

normalization methods (Herrero, et al., 2003). Then, our new approach is introduced in two main 

steps. First, we use Robust autoencoder to initialize deep architectures. Once Robust 

autoencoders generalize specific properties of the gene expression profiles, the intermediate 

representation serves as an input for the clustering task. For clustering, instead of applying 

traditional similarity measures, we adopt the biological network based measure defined above. 

The measure is based on the Pearson correlation coefficient, which could detect both positive 

and negative correlations and is scale invariant on centered data. The similarity measure is then 

implemented for the agglomerative hierarchical clustering (Eisen, et al., 1998). The linkage 

criterion for the merge strategy in the agglomerative clustering procedure is the average linkage, 

which minimizes the average of the distances between all pairs of clusters.  

 

The two clustering methods predominantly used for microarray clustering are the hierarchical 

clustering and partitioning clustering (Belacel, et al., 2006; D'Haeseleer, 2005). The hierarchical 

clustering algorithms provide a natural way for graphical representation of data. In the clustering 
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process, each cluster is subdivided into sub-clusters, resulting in a dendrogram, in which each 

branch forms a group of genes sharing the similar pattern. A popular hierarchical clustering 

method was applied to analyze the first yeast gene expression data by Eisen et al (Eisen, et al., 

1998); hence it is often referred as ‘Eisen clustering’. Partitioning methods, also known as non-

hierarchical clustering algorithms, perform a partition of genes into a typically predetermined 

number of clusters so that expression patterns of genes in the same cluster are more similar to 

each other than those ones of genes in different clusters. k-means has been among the most 

popular partitioning methods (Zeger and Edelstein, 1989). The algorithm partitions around 

centroids, and each gene is assigned to the closest centroid. The method iterates until no genes 

change their cluster identity.  

 

In the past decade, hundreds of new clustering algorithms have been developed and applied to 

the gene expression data.  However, the performance of each clustering algorithm relies on 

specific properties of the input dataset and their underlying assumptions. There is no agreement 

on the best performing clustering algorithm for all datasets (Quackenbush, 2001). Therefore, for 

the baseline methods, we only implement two most widely used clustering methods: Eisen 

clustering and k-means. In addition, we compared our new approach to a basic autoencoder 

based clustering similar to the one that have been recently used for clustering the microarray 

gene expression data (Gupta, et al., 2015). By comparing the performance of our approach to 

these methods we test how much of improvement over the traditional clustering algorithms, if 

any, can an advanced clustering method achieve, and whether including prior biological 

information into the gene expression clustering analysis can further improve the clustering 

accuracy.  

 

Table 1. The basic statistics between the two PPI network used in the evaluation protocol.  
 

 N of genes N of PPIs  N of 
communities 

HINT 5,687 21,528 81 
HI-II-14 11,786 32,465 143 
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Evaluation criteria for two expression datasets 

First, we evaluate the clustering results against the reference partition for the yeast dataset, since 

the external labels for each gene are provided. Specifically, we use the Adjusted Rand Index 

(ARI) (Yeung and Ruzzo, 2001), a frequently used measure for cluster validation (Yeung and 

Ruzzo, 2001). ARI quantifies the degree of agreement between two partitions: one given by the 

clustering algorithm and the other labeled by external criteria. For a partition U generated by the 

clustering algorithm and a reference partition V, ARI is calculated as: 

��� �  ��
�
��� � �	 � ��� � �	�� � �	 � �� � �	�� � �	�
��
�
�� � ��� � �	�� � �	 � �� � �	�� � �	�

 

Here, n is the total number of samples; a is the number of gene pairs in the same cluster for both 

sets U and V; b is the number of gene pairs in the same cluster in U, but in different clusters in V; 

c is the number of gene pairs in the same cluster in V and in different clusters in U; and d is the 

number of gene pairs that are placed in different clusters for both, U and V. The value of ARI is 

defined to lie between 0 and 1, and a high score represents a good agreement between the 

clustering result and the reference partition. We computed the ARI scores for the clustering 

results using our protocol, and compared them with ARI scores obtained using the two baseline 

clustering methods and the basic autoencoder based clustering. 

 

In contrast to the yeast set, no external labels are given for the GDSC sets, and the ARI metric 

cannot be used. In this case, a different evaluation procedure is required. Thus, we evaluate the 

clustering results based on their agreement with the available biological knowledge, such as 

Gene Ontology (Ashburner, et al., 2000). Here, we apply the following evaluation protocol. First, 

for the GDSC dataset, we set the number of clusters to be 100. Next, since the baseline 

hierarchical clustering can result in many singleton clusters, we select 10 most populated clusters 

for the analysis. For each cluster, we perform gene enrichment analysis and obtain the 

corresponding list of enriched GO terms. In the GO enrichment analysis, we use the third level of 

the GO hierarchy and kept the GO terms with P-value ≤ 0.01. The third level represents a trade-

off between having too general, but well-populated GO terms from the second level (e.g., 

GO:0050789 regulation of biological process) and more specific but not well-populated terms 

from the fourth level, which cannot be used for the enrichment analysis. We compared our 
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results for the two baseline methods. More specifically, we compared the p-values of the 

enriched GO terms existing for Robust autoencoder and at least one baseline method results. We 

expect that, for most of the significant GO terms, our protocol would output smaller p-values 

compared to either of the two baseline methods. These results would suggest that our protocol 

could identify more coherent clusters. The GO enrichment was performed using DAVID (Huang, 

et al., 2009), and multiple testing correction was done via false discovery rate estimation. 

 

Results  

Two interactomes and their corresponding community structures 

Two PPI networks were extracted and analyzed, the yeast and human interactomes. For the yeast 

gene sets, we collected the PPI data from HINT database (Das and Yu, 2012). For the human 

interactome, we used the recently published interactome (referred to as HI-II-14 network 

(Rolland, et al., 2014)). Overall, HINT yeast network consisted of 5,687 proteins and 21,528 

corresponding PPIs, while HI-II-14 network consisted of 11,787 genes and 32,465 corresponding 

PPIs (Table 1). A major giant component (Bollobás, 2001) existed in both interactomes, with 

several isolated sets of interactions on the periphery. Both interactomes shared the scale-free 

property (Bollobás, 2001), which means that most nodes in the network had only a few 

interactions and a few highly connected nodes (hubs) held the whole network together (Fig. 2A, 

Figs. S1, S2 in Supplementary Data).  

 

The detection of community structure played a critical role in our protocol.  Once the 

interactome was constructed, we mapped the gene set to the interactome, determined which 

community they belonged to, and later used this information to weight the distance between any 

pair of gene expression profiles. We ran the Louvain method (De Meo, et al., 2011) on the two 

interactomes separately. After running the community detection algorithm on both networks, we 

obtained 81 and 143 communities from the yeast and human interactomes, correspondingly 

(Table 1, Fig. 2A). The largest community in the yeast interactome was composed of 764 genes.  

The top 10 largest communities covered 77% of the total proteins in the network. The other 

communities were all composed of only few nodes. Similarly to the yeast network, the first 15 
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communities accounted for 82% proteins in the human interactome, while the largest community 

contained 1,129 proteins (9.6%).   

 

Incorporating prior biological network information and finding a 

proper weighting strategy 

After the community detection stage, we examined every gene pair from the gene expression list 

to determine if they were in the same community. Then, we utilized this information to weight 

the distance between each pair of gene expression profiles. We compared the weighted clustering 

results with the baseline clustering results to demonstrate the effectiveness of incorporating 

network community information. For the baseline clustering methods, we implemented two most 

widely used approaches, k-means and hierarchical clustering. The two baseline methods were 

considered as the “un-weighted” clustering approaches.  We then determined the optimized 

combinations of weights using a basic grid search on the hierarchical clustering method.  

Specifically, the search explored the weights from the range 0.6 to 1 (with a step of 0.1) for each 

pair of genes that were in the same community, and from the range 1.0 to 1.4 (with the same 

step) if the genes were not in the same community. The best performing combination was 

selected for our protocol.  

 

The effectiveness of including the biological information was assessed on the labeled yeast gene 

expression dataset, since one could accurately evaluate the clustering performance only when the 

external labels were available (Fig. 4A, 4C). For each of the two baseline methods, we set the 

number of generated clusters to be five (matching the total number of different labels in the yeast 

dataset). Hierarchical clustering method performed with ARI of 0.448 on the yeast dataset, while 

k-means performed with ARI of 0.420. The ARI values after applying different weighting 

strategy ranged from 0.444 to 0.488 (Fig. 4A, Table 2). Overall, the accuracy after applying the 

weighting strategy was better compared to the un-weighted baseline methods. These results 

demonstrated that the biological network community information could be utilized to improve 

the traditional clustering. The results also supported the hypothesis that gene pairs in the same 

community of the PPI network are more likely to share the same expression pattern.  Also, we 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 5, 2017. ; https://doi.org/10.1101/214122doi: bioRxiv preprint 

https://doi.org/10.1101/214122
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

note that the weight combination 0.9 and 1.3 yielded the most accurate results. Therefore we 

adopted this weighting strategy for our protocol.  

 

 

Figure 4: Evaluation of the new clustering approach. A. Comparison of the performance 
of two deep architectures against baseline methods performed on previously labeled yeast 
gene expression dataset. The accuracy measure used here is Adjusted Rand Index (ARI). 
Shown is the comparison of our approach that combines the Robust autoencoder architecture 
with the PPI network community information (yellow) against the base line K-means 
clustering method (blue), standard denoising autoencoder (red), and Robust autoencoder 
without additional biological information (grey). B. Comparison of enriched Gene Ontology 
terms between our approach and K-means for the human gene expression dataset. The values 
are converted using negative log of p-value function. A smaller p-value reflects a larger 
proportion of the cluster members sharing the same GO term. C. Performance of our approach 
(left) against the base line K-means clustering (right) on the yeast gene expression dataset 
provides a visibly better clustering into 5 previously labeled gene classes across 17 different 
time stamps (c1-c17). 
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 The denoising autoencoder model (Vincent, et al., 2008) is another popular deep learning 

architecture and can be viewed as  a stochastic version of the autoencoder. It randomly corrupts 

the input data and trains the parameters to recover the uncorrupted data from the corrupted one. 

Denoising autoencoders can be stacked to form a deep network, i.e. stacked denoising 

autoencoder. The denoising autoencoder’s goal is to learn the mapping from the corrupted data 

to the original uncorrupted data. One of the method’s caveats is that it still needs the information 

about the original uncorrupted data for the training. Since the original, uncorrupted, data present 

the crucial prior knowledge for denoising autoencoder, the quality of the original data will 

influence the denoising autoencoder’s map building and the quality of discovered features. If the 

original input contains outliers, denoising autoencoder’s training will still learn to recover these 

outlying parts and the quality of discovered features could be misled by these outlying parts.  

In contrast, Robust autoencoder distinguishes the outliers from corrupted data without the 

knowledge of uncorrupted data. To illustrate that Robust autoencoder is a better choice than the 

denoising autoencoder for regenerating the gene expression profile, we applied both methods on 

the yeast expression dataset. We considered the individual effects of deep architecture on the 

clustering results, i.e., without applying the community information to weight the distance in the 

protocol. For Robust autoencoder, the best ARI obtained across different hidden layer sizes was 

0.5, whereas the highest ARI obtained for the denoising autoencoder was 0.48 (Fig. 4A). Thus, 

our deep architecture performed better, although not significantly. We also noted that Robust 

autoencoder suffered from the greater variation of ARI values compared to denoising 

autoencoder.  

 

Table 2. Comparison of results from different weighting strategies obtained when including 
the network community information. 
 
 Weight for genes in the 

different community 
1.1 1.2 1.3 1.4 

Weight for 
genes in 
the same 
community  

0.6 0.470 0.469 0.455 0.462 
0.7 0.480 0.473 0.475 0.448 
0.8 0.461 0.441 0.485 0.471 
0.9 0.444 0.474 0.488 0.474 
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Evaluation of our protocol on the yeast gene expression dataset 

In our protocol, instead of taking as an input for clustering the raw expression data, we 

reconstructed the features via Robust autoencoder and used this intermediate feature 

representation for clustering, so the best performing weight combination was not directly 

assigned to the raw dataset. To compare the results of our protocol with the baseline methods on 

the yeast dataset, the same ARI measure was calculated. The results showed that our protocol, 

which incorporates the prior biological information on the regenerated data from the deep 

architecture, outperformed the baseline methods applied to the raw data (Fig. 4A, 4C, Fig. S4 in 

Supplementary Data). Furthermore, the results of our protocol outperform the baseline method 

with the used community information for the pairs of genes. This behavior is perhaps due to the 

ability of the architecture to learn important properties in the underlying input distribution. Also, 

we note that, compared against the results without incorporating biological information, the 

former clustering results had smaller variation of ARI values, suggesting that incorporating the 

prior biological information could stabilize the clustering process. Finally, we found that deep 

architecture does not guarantee that it will always perform better than the basic clustering 

methods. For instance, our deep architecture with hidden size of 5, the performance is 

comparable to the baseline methods.  This implies that tuning parameters of deep architecture is 

a critical but not a simple step for these methods.  

  

Evaluation of our protocol on the human gene expression dataset 

When implementing our protocol on the GDSC dataset, we used the results got from the Yeast 

dataset to guide the construction of the deep architecture. Specifically, we used a comparable 

percentage of the input layer size as in the best performing deep structure for the Yeast dataset to 

build the hidden layer. This led to a hidden layer with 55 nodes.  

 

The human gene expression dataset consisted of 17,419 genes expressed in 83 cell lines. We 

independently applied our protocol as well as the k-means and hierarchical clustering methods 

on this gene set, while setting the cluster number in each case to be 100. Out of 100 clusters, we 

focused on the top 10 largest clusters and performed the GO enrichment analysis on these 
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clusters. We only selected the third level GO terms in the GO hierarchy tree and compared the 

results against k-means and hierarchical clustering (Fig. 4B, Fig. S3 and Tables S1, S2 in 

Supplementary Data). Comparing against k-means, 22 GO terms from the third level were 

enriched in at least one cluster in both cases, and most of the GO terms identified by our protocol 

had smaller P-values. This indicated that our protocol could group a more coherent and 

meaningful set of genes into a cluster. Compared against hierarchical clustering, we obtained 114 

GO terms enriched in at least one cluster. In this case, the number of GO terms obtained in our 

approach (N1=61) with smaller P-value was slightly larger than the number obtained in 

hierarchical clustering (N1=53).  This did not indicate that our protocol could significantly 

improve the traditional hierarchical clustering in terms of generating more coherent clusters.  

However, we noted another interesting observation. One main problem about hierarchical 

clustering is that it groups too many genes into a very large, giant, cluster. In this case, the largest 

cluster resulted from hierarchical clustering consisted of 11,043 genes, and its size was almost 

comparable to the first three largest clusters found by our protocol. This suggests that our 

protocol could compensate the inability of hierarchical clustering to further separate the clusters.  

 

Discussion 

In this paper, we proposed a novel approach to microarray-based gene expression clustering that 

combines a new deep learning approach with the prior biological knowledge. We trained a 

Robust autoencoder to learn interesting characteristics of the gene expression profiles. The 

obtained low dimensional representations of gene expression profiles were then used for the 

clustering task. To increase the clustering accuracy, the clustering algorithm employed a 

knowledge-based molecular network similarity measure. We compared the performance of our 

clustering approach with two traditional and commonly used clustering methods, k-means and 

agglomerative hierarchical clustering, on two distinct gene expression datasets. Our results 

demonstrated the effectiveness of using (i) deep networks and (ii) prior biological information 

for the gene expression clustering analysis. 
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Several conclusions have been made from this work. First, we used a fairly simple deep learning 

architecture because of the long computation time. In future work, we plan to adopt a much 

deeper architecture. An autoencoder with a single encoder and decoder is usually considered as a 

shallow model. The way of extending shallow autoencoder to deep autoencoders is to add more 

encoding and decoding phases. A typical implementation of this idea is the stacked autoencoders 

[42]. The same idea could be applied to the Robust autoencoder model presented here. To 

address the problem of computational overhead, one can resort to the GPU computing 

algorithms.  

 

Second, in spite of the improved accuracy over the standard clustering methods as well as over 

the basic autoencoder, our clustering protocol could be further optimized in several ways. For 

example, one can explore other distance metrics that have been previously shown to perform 

well in the clustering with homogenous features [5]. Alternatively, we plan to investigate if the 

clustering performance can be improved by supplying the complementary biological 

information. For example, instead of the gene community information used in this work, the 

shortest path between two nodes in the network can be considered, since the former sometimes 

provides more accurate information than the latter. 
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