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Abstract   1 

Goal-driven convolutional neural networks (CNN) have been shown to be able to predict 2 

and decode cortical responses to natural images or videos. Here, we explored an alternative deep 3 

neural network, variational auto-encoder (VAE), as a computational model of the visual cortex. 4 

We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual representations 5 

from a diverse set of unlabeled images. Inspired by the “free-energy principle” in neuroscience, 6 

we modeled the brain’s bottom-up and top-down pathways using the VAE’s encoder and decoder, 7 

respectively. Following such conceptual relationships, we found that the VAE was able to predict 8 

cortical activities observed with functional magnetic resonance imaging (fMRI) from three human 9 

subjects watching natural videos. Compared to CNN, VAE resulted in relatively lower prediction 10 

accuracies, especially for higher-order ventral visual areas. On the other hand, fMRI responses 11 

could be decoded to estimate the VAE’s latent variables, which in turn could reconstruct the visual 12 

input through the VAE’s decoder. This decoding strategy was more advantageous than alternative 13 

decoding methods based on partial least square regression. This study supports the notion that the 14 

brain, at least in part, bears a generative model of the visual world. 15 

Keywords: neural encoding, variational autoencoder, generative model, visual reconstruction 16 
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 3 

Introduction  17 

Humans readily make sense of the visual world through complex neuronal circuits. 18 
Understanding the human visual system requires not only measurements of brain activity but also 19 
computational models with built-in hypotheses about neural computation and learning 20 
(Kietzmann, McClure and Kriegeskorte 2017). Models that truly reflect the brain’s working in 21 
natural vision should be able to explain brain activity given any visual input (encoding), and 22 

decode brain activity to infer visual input (decoding) (Naselaris et al. 2011). Therefore, evaluating 23 
the model’s encoding and decoding performance serves to test and compare hypotheses about how 24 
the brain learns and organizes visual representations (Wu, David and Gallant 2006).  25 

In one class of hypotheses, the visual system consists of feature detectors that progressively 26 
extract and integrate features for visual recognition. For example, Gabor and wavelet filters allow 27 

extraction of such low-level features as edges and motion (Hubel and Wiesel 1962, van Hateren 28 

and van der Schaaf 1998), and explain brain responses in early visual areas (Kay et al. 2008, 29 
Nishimoto et al. 2011). More recently, convolutional neural networks (CNNs) encode multiple 30 
layers of features in a brain-inspired feedforward network (LeCun, Bengio and Hinton 2015), and 31 
support human-like performance in image recognition (Simonyan and Zisserman 2014, He et al. 32 

2016, Krizhevsky, Sutskever and Hinton 2012). Such models bear hierarchically organized 33 
representations similar as in the brain itself (Khaligh-Razavi and Kriegeskorte 2014, Cichy et al. 34 

2016), and shed light on neural encoding and decoding during natural vision (Yamins et al. 2014, 35 
Horikawa and Kamitani 2017, Eickenberg et al. 2017, Guclu and van Gerven 2015, Wen et al. 36 
2017b). For these reasons, goal-driven CNNs are gaining attention as favorable models of the 37 

visual system (Kriegeskorte 2015, Yamins and DiCarlo 2016). Nevertheless, biological learning 38 
is not entirely goal-driven but often unsupervised (Barlow 1989), and the visual system has not 39 

only feedforward (bottom-up) but feedback (top-down) connections (Salin and Bullier 1995, 40 
Bastos et al. 2012).    41 

In another class of hypotheses, the visual world is viewed as the outcome of a probabilistic 42 
and generative process (Fig. 1A): any visual input results from a generative model that samples 43 
the hidden “causes” of the input from their probability distributions (Friston 2010). In light of this 44 

view, the brain behaves as an inference machine: recognizing and predicting visual input through 45 
“analysis by synthesis” (Yuille and Kersten 2006). The brain’s bottom-up process analyzes visual 46 

input to infer the “cause” of the input, and its top-down process predicts the input from the brain’s 47 
internal representations. Both processes are optimized by learning from visual experience in order 48 

to avoid the “surprise” or error of prediction (Rao and Ballard 1999, Friston and Kiebel 2009). 49 
This hypothesis attempts to account for both feedforward and feedback connections in the brain, 50 

align with the humans’ ability to construct mental images, and offer a basis for unsupervised 51 
learning. Thus, it is compelling for both computational neuroscience (Friston 2010, Rao and 52 
Ballard 1999, Bastos et al. 2012, Yuille and Kersten 2006) and artificial intelligence (Hinton et al. 53 
1995, Lotter, Kreiman and Cox 2016, Mirza, Courville and Bengio 2016). 54 

In line with this notion is the so-called variational autoencoder (VAE) (Kingma and 55 
Welling 2013). VAE uses independently distributed “latent” random variables to code the causes 56 
of the visual world. VAE learns the latent variables from images via an encoder, and samples the 57 
latent variables to generate new images via a decoder, where the encoder and decoder are both 58 
neural networks that can be trained from a large dataset without supervision (Doersch 2016). 59 
Hypothetically, VAE offers a potential model of the brain’s visual system, if the brain also captures 60 
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the causal structure of the visual world. As such, the latent variables in VAE should match (up to 61 
linear projection) neural representations given naturalistic visual input; the generative component 62 
in VAE should enable an effective and generalizable way to decode brain activity during either 63 
visual perception or imagery (Du, Du and He 2017, Güçlütürk et al. 2017, van Gerven, de Lange 64 

and Heskes 2010a).  65 

 

Figure 1 | The unsupervised inference model of vision. (A) Regarding the brain as an inference 

machine. The brain analyzes sensory data by approximating the causes that generate the sensations. Its 

bottom-up process maps from input to sensory causes and top-down process predicts the input based on 

inferred causes. (B) Encoding and decoding cortical activities with variational autoencoder. For 

encoding, cortical activities are predicted by using VAE responses given visual stimuli; For decoding, latent 

variables are predicted from fMRI measurements and mapped to visual reconstruction through VAE 

decoder. 

 

This led us to investigate VAE as a candidate model of the visual cortex for unsupervised 66 
learning of visual representations (Fig. 1B). In this study, we addressed the relationship between 67 
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VAE and the brain’s “free-energy” principle (Friston 2010), and then tested the degree to which 68 
VAE could be used to predict and decode cortical responses observed with functional magnetic 69 
resonance imaging (fMRI) during naturalistic movie stimuli.  70 

 71 

Methods and Materials 72 

Theory: variational autoencoder  73 

In general, variational autoencoder (VAE) is a type of deep neural networks that learns 74 
representations from complex data without supervision (Kingma and Welling 2013). A VAE 75 
includes an encoder and a decoder, both of which are implemented as neural nets. The encoder 76 

learns latent variables from the input data, and the decoder learns to generate similar input data 77 
from samples of the latent variables. Given large input datasets, the encoder and the decoder are 78 

trained together by minimizing the reconstruction loss and the Kullback-Leibler (KL) divergence 79 
between the distributions of the latent variables and independent standard normal distributions 80 

(Doersch 2016). When the input data are natural images, the latent variables represent the causes 81 
of the images. The encoder serves as an inference model that attempts to infer the latent causes of 82 

any input image; the decoder serves as a generative model that generates new images by sampling 83 
latent variables.  84 

Mathematically, let 𝒛 be the latent variables and 𝒙 be images. The encoder parameterized 85 

with 𝝋 infers 𝒛 from 𝒙, and the decoder parameterized with 𝜽 generates 𝒙 from 𝒛. In VAE, both 𝒛 86 

and 𝒙 are random variables. The likelihood of 𝒙 given 𝒛 under the generative model 𝜽 is denoted 87 

as 𝑝𝜽(𝒙|𝒛). The probability of 𝒛 given 𝒙 under the inference model 𝝋 is denoted as 𝑞𝝋(𝒛|𝒙). The 88 

marginal likelihood of data can be written as the following form. 89 

log 𝑝𝜽(𝒙) = 𝐷𝐾𝐿[𝑞𝝋(𝒛|𝒙)||𝑝𝜽(𝒛|𝒙)] +  𝐿(𝜽, 𝝋; 𝒙)                                   (1) 90 

Since the Kullback-Leibler divergence in Equation (1) is non-negative, 𝐿(𝜽, 𝝋; 𝒙) can be regarded 91 
as the lower-bound of data likelihood and also be rewritten as Eq. (2). For VAE, the learning rule 92 

is to optimize 𝜽 and 𝝋 by maximizing the following function given the training samples of 𝒙. 93 

𝐿(𝜽, 𝝋; 𝒙) = −𝐷𝐾𝐿[𝑞𝝋(𝒛|𝒙)||𝑝𝜽(𝒛)] + 𝐸𝒛~𝑞𝝋(𝒛|𝒙)[log(𝑝𝜽(𝒙|𝒛))]                        (2) 94 

In this objective function, the first term is the KL divergence between the distribution of 𝒛 95 

inferred from 𝒙 and the prior distribution of 𝒛, both of which are assumed to follow a multivariate 96 
normal distribution. The second term is the expectation of the log-likelihood that the input image 97 

can be generated by the sampled values of 𝒛 from the inferred distribution 𝑞𝝋(𝒛|𝒙). When 𝑞𝝋(𝒛|𝒙) 98 

is a multivariate normal distribution with unknown expectations 𝝁 and variances 𝝈2, the objective 99 

function is differentiable with respect to (𝜽, 𝝋, 𝝁, 𝝈), which can therefore be optimized iteratively 100 
through gradient-descent algorithms (Kingma and Welling 2013).  101 

Similar concepts have been put forth in computational neuroscience theories, for example 102 
the free-energy principle (Friston 2010). In free-energy principle, the brain’s perceptual system 103 

includes bottom-up and top-down pathways. Like the encoder in VAE, the bottom-up pathway 104 
maps from sensory data to their inferred causes as probabilistic representations. Like the decoder 105 
in VAE, the top-down pathway predicts the sensation from what the brain infers as the causes of 106 
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sensations. Both the bottom-up and top-down pathways are optimized together, such that the brain 107 
infers the causes of the sensory input, and generates the sensory prediction that matches the input 108 
with the minimal error or surprise. Mathematically, the learning objectives in both VAE and free 109 
energy principle are similar, both aiming to minimize the difference between the inferred and 110 

hidden causes of sensory data (measured by Kullback–Leibler divergence) while maximizing the 111 
likelihood of the sensory data given the inferred causes. 112 

 

Figure 2 | VAE architecture and reconstruction examples. (A) VAE architecture. The encoder and the 

decoder both contained 5 layers. The dimension of latent variables was 1024. Operations were defined as: 

*1 convolution (kernel size=4, stride=2, padding=1), *2 rectified nonlinearity, *3 fully connected layer, *4 

re-parameterization trick, *5 transposed convolution (kernel size = 4, stride = 2, padding = 1), *6 sigmoid 

nonlinearity. (B) Examples of VAE reconstruction. Each testing image was coded 1024-dimensional 

latent variables with VAE encoder. The reconstruction from VAE decoder (blurred images on right side) 

retained basic and condensed information similar to the original input (clear images on left side). 

 

Training VAE with diverse natural images 113 

We designed a VAE with 1,024 latent variables while the encoder and the decoder were 114 

both convolutional neural networks with five hidden layers (Fig. 2A). Each convolutional layer 115 
included nonlinear units with a Rectified Linear Unit (ReLU) function (Nair and Hinton 2010), 116 
except the last layer in the decoder where a sigmoid function was used to generate normalized 117 
pixel values between 0 and 1. The model was trained on the ImageNet ILSVRC2012 dataset 118 
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(Russakovsky et al. 2015). Training images were resized into 1281283. To enlarge the amount 119 
of training data, the original training images were randomly flipped in the horizontal direction to 120 
yield additional training images, resulting in >2 million training samples in total. The training data 121 
were divided into mini-batches with a batch size of 200. For each training example, the pixel 122 
intensities were normalized to a range from 0 to 1, such that the normalized intensity could be 123 
interpreted as the probability of color emission (Gregor et al. 2015). To train the VAE, the Adam 124 

optimizer (Kingma and Ba 2014) was used with the learning rate of 1e-4. This VAE was 125 
implemented in PyTorch (http://pytorch.org/). 126 

Experimental data 127 

Three healthy volunteers (all female, age: 23-26) participated in this study with informed 128 
written consent according to a research protocol approved by the Institutional Review Board at 129 

Purdue University. All experiments were performed in accordance with relevant guidelines and 130 
regulations as described in this approved protocol. As described in detail elsewhere (Wen et al. 131 
2017b), the experimental design and data were briefly summarized as below. Each subject watched 132 

a diverse set of natural videos for a total length up to 13.3 hours. The videos were selected and 133 
downloaded from Videoblocks and YouTube, and then were separated into two independent sets. 134 

One data set was for training the models to predict the fMRI responses based on the input video 135 
(i.e. the encoding models) or the models to reconstruct the input video based on the measured 136 

fMRI responses (i.e. the decoding models). The other data set was for testing the trained the 137 
encoding or decoding models. The videos in the training and testing datasets were entirely 138 
distinctive to ensure unbiased model evaluation. Both the training and testing movies were split 139 

into different 8-min segments. Each segment was used as visual stimulation (20.3o×20.3o) along 140 
with a central fixation cross (0.8o×0.8o) presented via an MRI-compatible binocular goggle during 141 

a single fMRI session. The training movie included 98 segments (13.1 hours) for Subject 1, and 142 
18 segments (1.6 hours) for Subject 2 & 3. The testing movie included 5 segments (40 mins in 143 

total). Each subject watched the testing movie 10 times. All five testing movies were used to test 144 
the encoding model. One of the testing movies contained video clips that were continuous over 145 

long periods (mean± std: 13.3± 4.8 s) was used to test the decoding model for visual 146 

reconstruction.  147 

MRI/fMRI data were collected from a 3-T MRI system, including anatomical MRI (T1 and 148 

T2 weighted) of 1mm isotropic spatial resolution, and BOLD functional MRI with 2-s temporal 149 
resolution and 3.5mm isotropic spatial resolution. The fMRI data were registered onto anatomical 150 
MRI data, and were further co-registered on a cortical surface template (Glasser et al. 2013). The 151 

fMRI data were preprocessed with the minimal preprocessing pipeline released for the human 152 
connectome project (Glasser et al. 2013).  153 

VAE-based encoding models 154 

The trained VAE extracted the latent representations of any video by a feed-forward pass 155 
of every video frame into the encoder, and generated the reconstruction by a feed-back pass with 156 

the decoder. To predict cortical fMRI responses to the video stimuli, an encoding model was 157 
defined separately for each voxel as a linear regression model, through which the voxel-wise fMRI 158 
signal was estimated as a function of VAE model activity (including both the encoder and the 159 
decoder) given the input video. Every unit activity in VAE was convolved with a canonical 160 
hemodynamic response function (HRF). For dimension reduction, PCA was applied to the HRF-161 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2017. ; https://doi.org/10.1101/214247doi: bioRxiv preprint 

https://doi.org/10.1101/214247


 8 

convolved unit activity for each layer, keeping 99% of the variance of the layer-specific activity 162 
given the training movies. Then, the layer-wise activity was concatenated across layers; PCA was 163 
applied to the concatenated activity to keep the 99% of the variance of the activity from all layers 164 
given the training movies. See more details in our earlier paper (Wen et al. 2017a). Following the 165 

dimension reduction, the principal components of unit-activity were down-sampled to match the 166 
frequency of fMRI and used as the regressors to predict the fMRI signal at each voxel through the 167 
linear regression model specific to the voxel.  168 

The voxel-wise regression model was trained based on the data during the training movie. 169 

Mathematically, for any training sample, let 𝒙(𝒋) be the visual stimuli at the j-th time point, 𝒚𝒊
(𝒋)

 be 170 

the fMRI response at the 𝑖-th voxel, 𝒛(𝒋) be a vector representing the predictors for the fMRI signal 171 

derived from the 𝒙  through VAE, as described above. The voxel-wise regression model is 172 

expressed as Eq. (4). 173 

                                                      𝒚𝒊
(𝒋)

=  𝒘𝑖
𝑇𝐳(𝒋) + 𝒃𝑖 + 𝝐𝑖                                                        (4) 174 

where 𝒘𝑖 is a column vector representing the regression coefficients, 𝒃𝑖 is the bias term, and 𝝐𝑖 is 175 
the error unexplained by the model. The linear regression coefficients were estimated using least-176 

squares estimation with L2-norm regularization, or minimizing the loss function as Eq. (5).  177 

〈𝑤̂𝑖, 𝑏̂𝑖〉 = argmin 
1

𝑁
𝑤𝑖,𝑏𝑖

∑ (𝒚𝒊
(𝒋)

− 𝒘𝑖
𝑇𝒛(𝒋) − 𝒃𝑖)

2
𝑁
𝑗=1 + 𝜆𝑖‖𝒘𝑖‖2

2                                 (5) 178 

where N is the number of training samples. The regularization parameter 𝜆𝑖 was optimized for 179 

each voxel to minimize the loss in three-fold cross-validation. Once the optimal parameter 𝜆𝑖 was 180 
determined, the model was refitted with the entire training set and the optimal regularization 181 

parameter to finalize the model.  182 

After the above model training, we tested the voxel-wise encoding models with the testing 183 
movies. The testing movies were independent of the training movies to ensure unbiased model 184 

evaluation. The model performance was evaluated separately for each voxel as the correlation 185 
between the measured and predicted fMRI responses to the testing movie. The significance of the 186 
correlation was assessed by using a block permutation test (Adolf et al. 2014) with a block size of  187 

24-sec and 30,000 permutations and corrected at false discovery rate (FDR) 𝑞 < 0.05. 188 

 Encoding model comparison with supervised CNN 189 

We also built up a control model to predict cortical responses with supervised information. 190 
A 18-layer pretrained residual network (ResNet-18) was used as a benchmark to compare the VAE 191 

encoding performance with the performance of a supervised CNN. The model architecture was 192 
elaborated in the original ResNet paper (He et al. 2016). Briefly, ResNet-18 was consisting of 6 193 
layers: the first layer was a convolutional layer followed by max-pooling, yielding location and 194 

orientation selective features; The last layer was a logistic regression layer, yielding the 195 
classification output; The 4 intermediate layers were consisting of stacked residual blocks, yielding 196 
the progressive abstraction from low level features to semantic features. The output units of first 197 
five layers in ResNet-18 were extracted as model activities given input video. Then the unit 198 
activities were processed in the same way as the preprocessing steps of VAE. 199 
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 The encoding accuracy of VAE was compared with supervised CNN in two ways. First, 200 
regions of interest (ROI) were selected from various levels of visual hierarchy: V1, V2, V3, V4, 201 
lateral occipital (LO), middle temporal (MT), fusiform face area (FFA), para-hippocampal place 202 
area (PPA) and temporo-parietal junction (TPJ). In each ROI, the correlation coefficient of each 203 

voxel was corrected by noise-ceiling, and then averaged over all voxels and all subjects. The 204 
averaged prediction accuracies of each ROI were compared between VAE and ResNet-18. Second, 205 
for each voxel, the voxel-wise correlation coefficient was transformed to z score through Fisher 206 
transformation for both VAE and ResNet-18. Then the difference between two models were 207 
calculated as subtracting the z score of VAE from z score of ResNet-18, yielding the voxel-wise 208 

difference in prediction accuracy.   209 

The process of calculating noise-ceiling was elaborated in a previous study (Kay et al. 210 
2013). Briefly, for each subject, the noise was assumed to be zero-mean, and the variance of the 211 

noise was estimated as the mean square of standard errors in the testing data across 10 repetitions. 212 
The variance of the response was taken as the difference between the variance of the data and the 213 

variance of the noise. From the estimated signal and noise distributions, the sample of response 214 

and the sample of noise was drawn by Monte Carlo simulation. The simulated 𝑅2 value between 215 
simulated response and noisy data was calculated over 1000 repetitions, yielding the distribution 216 

of noise-ceiling of each voxel. 217 

VAE-based decoding of fMRI for visual reconstruction 218 

We trained and tested the decoding model for reconstructing visual input from distributed 219 
fMRI responses. The model contained two steps: 1) transforming the spatial pattern of fMRI 220 

response to latent variables through a linear regression model, 2) transforming latent variables to 221 
pixel patterns through the VAE’s decoder.  222 

Mathematically, let 𝒀(𝑗) be a column vector representing the measured fMRI map at the 𝑗-223 

th time point, and 𝒛(𝑗) be a column vector representing the latent variables given the unknown 224 

visual input 𝒙(𝑗). As Eq. (6), a multivariate linear regression model was defined to predict 𝒛(𝑗) 225 

given 𝒀(𝑗).  226 

𝒛(𝑗) = 𝐔𝒀(𝑗) + 𝒄 + 𝜺                                                          (6) 227 

where 𝐔 is a weighting matrix representing the regression coefficients to transform the fMRI map 228 

to the latent variables, c is the bias term, and 𝜺 is the error term unexplained by the model. This 229 
model was estimated based on the data during the training movie, by using L1-norm regularization 230 
least-squares estimation, or minimizing the loss function defined as below.  231 

To estimate parameters of the decoding model, we minimized the objective function as Eq. 232 

(7) with L1-regularized least-squares estimation to prevent over-fitting. 233 

                        〈 𝐔̂, 𝒄̂〉 = arg min
𝐔,𝒄

1

𝑁
∑ (𝒛(𝑗) − 𝐔𝒀(𝑗) − 𝒄)

2
+ 𝜆‖𝐔‖1

1𝑁
𝑗=1                               (7) 234 

where N is the number of data samples used for training the model. The regularization parameter, 235 

𝜆, was optimized to minimize the loss in three-fold cross-validation. To solve Eq. (7), we used 236 
stochastic gradient-descent algorithm with a batch size of 100 and a learning rate of 1e-7.  237 
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After the estimation of latent variables, the visual input in the testing movie was 238 
reconstructed by passing the estimated latent variables through the decoder in VAE, as expressed 239 
by Eq. (8) 240 

𝒙̂(𝑗) =  𝛩(𝒛̂(𝑗)) =  𝛩(𝐔̂𝒀(𝑗) + 𝒄̂)                                                   (8) 241 

To evaluate the decoding performance in visual reconstruction, we calculated the Structural 242 
Similarity index (SSIM) (Wang et al. 2004) between every video frame of the testing movie and 243 
the corresponding frame reconstructed on the basis of the decoded fMRI signals. We averaged the 244 

SSIM over all frames in the testing movie (resampled by TR), as a measure of the spatial similarity 245 
between the reconstructed and actual movie stimuli. In addition, we further evaluated the degree 246 
to which color information was preserved in the movie reconstructed from fMRI data. For this 247 
purpose, the color information at each pixel was converted from the RGB values to a single hue 248 

value. The hue maps of the reconstructed movie frames were compared with those of the original 249 
movie frames. Their similarity was evaluated in terms of the circular correlation (Berens 2009, 250 

Jammalamadaka and Sengupta 2001). Hue values in the same frame were flattened into a vector 251 
and the hue vectors of different frames were concatenated sequentially as a monolithic vector 252 
including all testing frames. Then the circular correlation of monolithic hue vectors between 253 

original and reconstructed frames for each subject was calculated. The statistical significance of 254 
the circular correlation between the reconstructed and original color was tested by using the block-255 

permutation test with 24-sec block size and 30,000 times permutation (Adolf et al. 2014). 256 

 

Figure 3 | Prediction accuracy with VAE-based encoding model. The accuracy was measured by the 

average Pearson’s correlation coefficient (r) between the predicted and the observed fMRI responses over 

five testing movies (q<0.05, FDR correction). The result of subject 1 was shown with flat and stereoscopic 

views (top and bottom-left). Results of other subjects were shown with stereoscopic views. 
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We also compared the performance of the VAE-based decoding method with a previously 257 
published decoding method (Cowen, Chun and Kuhl 2014). For this alternative method (Cowen 258 
et al. 2014), we applied PCA to the training movie and obtained its principal components (or eigen-259 
images), which explained 99% of its variance. The partial least square regression (PLSR) 260 

(Tenenhaus et al. 2005) was used to estimate the linear transformation from fMRI maps to eigen-261 
images given the training movie. Using the estimated PLSR model, the fMRI data during the 262 
testing movie was first converted to representations in eigen-images, which in turn were 263 
recombined to reconstruct the visual stimuli (Cowen et al. 2014). As a variation of this PLSR-264 
based model, we also explored the use of L1-norm regularized optimization to estimate the linear 265 

transform from fMRI maps to eigen-images, in a similar way as used for the training of our 266 
decoding model (see Eq. (7)). 267 

We also explored whether the VAE-based decoding models could be generalized across 268 

subjects. For this purpose, we used the decoding model trained from one subject to decode the 269 
fMRI data observed from the other subjects while watching the testing movie. 270 

 271 

Results 272 

VAE provided vector representations of natural images 273 

By design, the VAE aimed to form a compressed and generalized vector representation of 274 

any natural image. In VAE, the encoder converted any natural image into 1,024 independent latent 275 
variables; the decoder reconstructed the image from the latent variables (Fig. 2.A). After training 276 

it with >2 million natural images in a wide range of categories, the VAE could regenerate natural 277 

images without significant loss in image content, structure and color, albeit blurred details (Fig. 278 

2B). Note that the VAE-generated images showed comparable quality for different types of input 279 
images (Fig. 2.B). In this sense, the latent representations in the VAE were generalizable across 280 

various types of visual objects, or their combinations. 281 

 

Figure 4 | Model comparison with group prediction accuracies averaged within different ROIs. Each 

bar represented the mean±SE of the prediction accuracy (noise-corrected Pearson’ s correlation coefficient 

averaged over 5 testing movies) across voxels within a ROI and across subjects. Results from VAE were 

shown with light color, with gradually decreasing accuracies from low level to high level. Results from 

ResNet-18 were shown with dark color, with accuracies in high level ROIs generally higher than those of 

low level ROIs. 
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VAE predicted movie-induced cortical responses of visual cortex 282 

Given natural movies as visual input, we further asked whether and to what extent the 283 
model dynamics in VAE could be used to model and predict the movie-induced cortical responses. 284 
Specifically, a linear regression model was trained separately for each voxel by optimally fitting 285 

the voxel response time series to a training movie as a linear combination of VAE’s unit responses 286 
to the movie. Then, the trained voxel-wise encoding model was tested with a new testing movie 287 
(not used for training) to evaluate its prediction accuracy (i.e. the correlation between the predicted 288 
and measured fMRI responses). We found significantly reliable predictions (q<0.05, FDR 289 
correction) based on VAE-encoding model in a reasonable fraction of cortical areas (Fig. 3). The 290 

primary visual area (V1) showed highest prediction accuracy and intermediate visual areas 291 

(V2/V3/V4) were also predictable but the prediction accuracy was decreasing gradually, either 292 
along ventral or dorsal stream (Fig. 3). The VAE-predictable areas extended to a relatively larger 293 

scope when more data (~12-hour movie) were used for training the encoding models in Subject 1 294 
than Subject 2 & 3 for whom less training data (2.5-hour movie) were available.  295 

 

Figure 5 | Comparing encoding prediction accuracy of VAE and ResNet-18. The voxel-wise correlation 

coefficient was transformed to z-score through Fisher transformation. The z-scores of VAE based encoding 

model (𝑧𝑉𝐴𝐸), ResNet-18 based encoding model (𝑧𝑅𝑒𝑠) and their difference (∆𝑧 =  𝑧𝑅𝑒𝑠 − 𝑧𝑉𝐴𝐸) were 

shown. 
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Comparing prediction accuracies between VAE and ResNet-18 based encoding models 296 

VAE based encoding model explained visual area activities with significant accuracies. 297 

Furthermore, an investigation was given to compare VAE and ResNet-18, addressing their relative 298 
prediction performance. Fig. 4 showed prediction accuracies of different ROIs based on two 299 
models. VAE showed the highest prediction accuracy for V1, and other accuracies gradually 300 
decreased from intermediate visual levels (V2/V3) to higher levels. Differently, ResNet-18 showed 301 
higher accuracies for high level ROIs (LO/MT/FFA/PPA/TPJ) than early visual areas. As for the 302 

accuracy difference, VAE provided similar performance to ResNet-18 in V1, but was gradually 303 
outperformed by ResNet-18 to a significant extent in ROIs of high levels.  304 

We also tested the voxel-wise accuracy difference between two models. In this sense, the 305 

correlation coefficient of each voxel was transformed to z score. Then the differences between 306 

VAE based z scores and ResNet-18 based z scores were calculated. Generally, ResNet-18 gave 307 
better predictions than VAE for most of the voxels. Fig. 5 indicated a gradient of the z score 308 

subtraction: for early visual areas, prediction performance of VAE was similar to or slightly lower 309 
than ResNet-18; for high-level visual areas, stronger performance gap was found, suggesting that 310 
features from an unsupervised model might not be enough to explain voxel dynamics especially 311 
as the cortical level goes higher.   312 

 

Figure 6 | Reconstruction result and evaluation. Reconstruction results of 6 different movie clips were 

shown. In each group, the first line showed original movie frames and the second line showed within-

subject reconstruction.  For cross-subject reconstruction, the decoding model was trained from subject 1 

and results of subject 2 (clips 1, 2 & 3) and 3(clips 4, 5 & 6) were shown on the third line. 
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Direct visual reconstruction through decoding latent representation from the brain 313 

To see how well could the VAE model match to the brain, another way was to evaluate 314 
how well could the latent variables predicted from fMRI signals fit the generative model of VAE 315 
and reconstruct the visual input. We estimated the latent variables on visual stimuli from fMRI 316 

signals and fed the latent representation to VAE decoder. The reconstructed results generally 317 
reflected structure information of original input, including relative position and shape information 318 
of objects in the scene (Fig. 6). During the transition of consecutive movie clips, the reconstructed 319 
frames seemed to be unclear and affected by the content of both nearby clips. Inside the same 320 
continuous clip the result looks more stable and better. For the entire reconstructed movie frames 321 

of all 3 subjects, please see the enclosed video.  322 

 

Figure 7 | Quantitative evaluation of reconstruction. (A) Comparison of structural similarity index 

(SSIM). SSIM scores of VAE-based decoding model and control models were compared for all 3 subjects. 

Each bar represented mean±SE SSIM score over all frames in the testing movie. (B) Color component 

correlation. The circular correlation coefficient between original and reconstructed hue components was 

calculated and the p-value was given through permutation test (*, p<0.001). 

 

We also gave a quantitative measurement and comparison of the model’s performance on 323 
structural similarity. Given the decoding model and two control models, the structural similarity 324 
between reconstructed frames and visual inputs was evaluated using Structure Similarity Index 325 
(SSIM) (Wang et al. 2004). Fig. 7A indicated that the mean SSIM score of the decoding model 326 

was higher than the control models (pair sample t-test, p < 0.001) for each subject, suggesting the 327 
decoding model could get higher group-averaged SSIM score and reconstruct with better structural 328 
similarity. The visualization of reconstruction result intuitively showed the retained color 329 

information of original frames. For example, the reconstructed frame of the jellyfish (clips indexed 330 
4 in Fig. 6) showed the color of orange, blue and cyan corresponding to true frame. To give a 331 
quantitative measurement, we evaluated the circular correlation of hue components with 332 
permutation test (Fig. 7B). For Subject 1, 2 & 3, the correlation coefficient values for all frames 333 

were 0.2657, 0.2544 & 0.2392 respectively (permutation test, p < 0.001 for all three subjects, no 334 
correction), suggesting that color variations within or across reconstructed frames reflected the 335 

color fluctuations shown by the visual stimuli.  336 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2017. ; https://doi.org/10.1101/214247doi: bioRxiv preprint 

https://doi.org/10.1101/214247


 15 

 The decoding model was transferable among subjects. We decoded fMRI signals of Subject 337 
2&3 based on the decoding model trained from Subject 1 (Fig 6). The reconstruction result still 338 
retained information about structural, shape & color variation of objects and scenes in original 339 
frames.  340 

 341 

Discussion 342 

Extending learning rules for modeling visual cortex 343 

Recently a growing body of literatures have used supervised deep-learning approaches to 344 
model and understand cortical representations during natural vision, yielding state-of-art 345 
performance for neural encoding and representational modeling (Yamins and DiCarlo 2016, Guclu 346 

and van Gerven 2015, Eickenberg et al. 2017, Cichy et al. 2016, Wen et al. 2017b, Shi et al. 2017),  347 
experimental paradigm simulation (Wen et al. 2017a, Eickenberg et al. 2017), visualizing single-348 

voxel representation (Wen et al. 2017b) and neural decoding (Horikawa and Kamitani 2017, Wen 349 
et al. 2017b). This study extends previous findings by using an unsupervised inference model to 350 

explain cortical activities, focusing on modeling the unsupervised inference attribute of human 351 
brain.  352 

 In this study, the VAE-predictable voxels cover a large portion of the visual cortex (Fig. 353 

3), suggesting that unsupervised inference is a compelling learning principle to drive brain-354 
explanatory computational models. Beyond that, one interesting finding of this study is the 355 
encoding accuracy contrast between VAE and supervised CNN. While supervised CNN explains 356 

sufficient variance over nearly the entire visual cortex, VAE shows comparable encoding 357 

performance only in primary visual area. This is consistent with a previous finding which indicates 358 

that explaining inferior temporal (IT) cortex requires computational features trained through 359 
supervised learning (Khaligh-Razavi and Kriegeskorte 2014). Our result further suggests that the 360 

unsupervised learning better matches low level visual areas rather than high level visual areas, 361 
while CNN with supervised training matches both well and is more exclusively important for 362 
explaining high level visual areas.  363 

Accumulating evidence for analysis-by-synthesis hypothesis with natural stimuli 364 

 In the hypothesized “analysis by synthesis” theory of visual processing, the top-down 365 
generative component supports the bottom-up processing for inferring the causes of visual input.  366 

(Yuille and Kersten 2006, Friston 2010). Previous experimental studies have been accumulating 367 
evidences for “analysis by synthesis” hypothesis, including single-cell-like receptive fields (Rao 368 

and Ballard 1999), neural suppression due to stimulus predictability (Summerfield et al. 2008, 369 
Alink et al. 2010) and visual mismatch negativity (Wacongne, Changeux and Dehaene 2012, 370 
Garrido et al. 2009). These are all based on artificial visual stimuli instead of natural visual stimuli. 371 
However, it has been suggested that one important aspect of real inference systems is to deal with 372 
the complexities and ambiguities of visual information in natural world (Yuille and Kersten 2006). 373 

Therefore, this study attempts to evaluate the VAE based encoding and decoding models especially 374 
with natural visual stimuli.  375 

 Based on VAE computational model, we evaluate the inference property of natural vision 376 
through two phases: 1) While the model is driven by unsupervised inference, the unit activities of 377 
the whole model can jointly model and predict cortical dynamics, yielding similar or related 378 
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learning rules in the significantly predicted areas; 2) The inference result of the computational 379 
model,  latent variables which represent inferred causes, can be directly extracted from cortical 380 
activities and tested for visual reconstruction. The regression techniques for both 1) and 2) are 381 
chosen to be linear because we want to guarantee that the encoding and decoding performances 382 

are contributed by the similar representations of the model to the brain, instead of the added 383 
regression. The encoding results match well to early visual areas (Fig. 5), suggesting the similar 384 
visual representations shared by the model dynamics and cortical responses. The decoding results 385 
show that the extracted latent representations from brain can support visual reconstruction (Fig. 386 
6), with the performance better than linear reconstruction methods (Fig. 7A), and can likely retain 387 

color information of the original visual input (Fig. 7B). One surprising finding is that the decoding 388 
model keeps comparable performance after transferred across subjects, suggesting that different 389 
individuals organize cortical representations of visual cause information in a similar way. This 390 

similarity is likely to result from unsupervised inference representations because different 391 
individuals have different supervised learning experience and supervision knowledge, but the 392 
factors generating the visual world might be similar over diverse circumstances. 393 

Towards generalizable visual stimuli reconstruction 394 

 For decoding cortical activities, the built-in decoder of VAE enables a clear, independent 395 

and generalizable way to reconstruct visual input. Previous brain decoding studies mostly generate 396 
reconstruction in certain domain rather than diverse natural input, including edge orientation 397 

(Kamitani and Tong 2005), faces (Cowen et al. 2014, Nestor, Plaut and Behrmann 2016, Güçlütürk 398 
et al. 2017), contrast patterns (Miyawaki et al. 2008), digits (van Gerven, de Lange and Heskes 399 
2010b, Du et al. 2017) and words (Schoenmakers et al. 2013). As for natural visual reconstruction, 400 

Bayesian method has been used to combine the structure encoding model, the semantic encoding 401 

model and image prior information together to have accurate reconstruction result on natural 402 
images (Naselaris et al. 2009). The Bayesian model is further extended with motion-energy filter 403 
to reconstruct natural movies (Nishimoto et al. 2011). However, using image prior information 404 

requires sampling from a large dataset of natural images and the reconstruction is likely to 405 
correspond to an image that is already in the dataset. Therefore, the method potential is limited if 406 

the purview of the content of the reconstruction bank is unknown. VAE-based decoding method 407 
do not rely on prior samples because the nonlinear mapping from latent variables to the input is 408 
provided by the VAE decoder generalized from millions of training samples, without requiring 409 

best-matching image or other kinds of prior information.  410 

Some recent studies have proposed generative methods for visual reconstruction. Deep 411 

belief network has been used to model hierarchical binary latent causes (van Gerven et al. 2010a). 412 
Then the decoding process is consisting of a conditional sampling step to estimate the top-level 413 

associative states from cortical activities, and an unconditional sampling step to propagate 414 
expectations back to input layer. One study uses deep generative multi-view model to analyze 415 
brain response and visual stimulus together. In this regard, visual reconstruction becomes Bayesian 416 
inference of missing view in a multi-view latent variable model (Du et al. 2017). Besides, another 417 
study introduces perceptual similarity metrics to face reconstruction (Güçlütürk et al. 2017), 418 

proposing adversarial training for neural decoding. Our study is complementary to previous 419 
generative reconstruction methods for both the application scenario and the model principle. From 420 
the application phase, we showed the feasibility of using generative model to reconstruct dynamic 421 
natural movies, which is also promising for natural image reconstruction; From the theoretical 422 
modeling phase, VAE framework can extend to a wide range of model architectures and is easier 423 
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to maintain tractability, compared with deep belief networks (Goodfellow, Bengio and Courville 424 
2016). Generally, VAE shows a light and generalizable framework for reconstructing diverse 425 
natural movies, and could potentially be extended with other deep learning frameworks. We 426 
hypothesize that the integration of multiple generative techniques (especially the techniques 427 

mentioned above including adversarial training and extended Bayesian inference methods) would 428 
integrate the merits of different models and open a new avenue towards generalizable 429 
reconstruction on diverse natural sensations. 430 

Future work 431 

This work extends computational modeling for movie-induced cortical responses from 432 
supervised CNNs to an unsupervised inference model, and reconstructs dynamic natural vision 433 

with a generalizable framework. As for model architecture, biological inference systems are likely 434 

to have hierarchically organized sensory causes (Friston 2010) and updating schemes with 435 
temporal information (Friston and Kiebel 2009, Huang and Rao 2011). VAE processes static 436 

images and can only serve as a spatial-temporally flattened inference system with end-to-end 437 
model architecture (Kingma and Welling 2013). Therefore, an improved inference model with 438 
spatial and temporal hierarchy would be needed towards more inference-theory-plausible neural 439 
coding. As for visual reconstruction, previous studies have suggested that feature maps of 440 

supervised CNN can be predicted from brain activities (Horikawa and Kamitani 2017, Wen et al. 441 
2017b). Since latent variables and feature maps both retain information of visual input, it would 442 

be interesting to integrate feature estimation methods with generative models to augment visual 443 
reconstruction, and even enable the model to decode mental states, imagery or dreams. Besides, 444 
another property of variational autoencoder is feature disentangling (Kingma and Welling 2013, 445 

Higgins et al. 2016). However, to our knowledge, in current AI literatures there is no report on 446 

disentangling the factors of natural images by using VAE. A technical improvement on this would 447 
provide potential avenues to analyze the feature disentangling property inside human brain 448 
(DiCarlo, Zoccolan and Rust 2012).  449 

 450 
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