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 1 

ABSTRACT 16 

Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. 17 

Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine 18 

learning based classification methods. However, it remains unknown if deep neural network, a class of 19 

increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a 20 

cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+) and 67 negative estrogen receptor 21 

(ER-), to test the accuracies of autoencoder, a deep learning (DL) framework, as well as six widely used 22 

machine learning models, namely Random Forest (RF), Support Vector Machines (SVM), Recursive 23 

Partitioning and Regression Trees (RPART), Linear Discriminant Analysis (LDA), Prediction Analysis for 24 

Microarrays (PAM), and Generalized Boosted Models (GBM). DL framework has the highest area under 25 

the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning 26 

algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly 27 

enriched significant metabolomics pathways (adjusted P-value<0.05) that cannot be discovered by other 28 

machine learning methods. Among them, protein digestion & absorption and ATP-binding cassette (ABC) 29 

transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression 30 

data in these samples. In summary, deep learning method shows advantages for metabolomics based breast 31 

cancer ER status classification, with both the highest prediction accurcy (AUC=0.93) and better revelation 32 

of disease biology. We encourage the adoption of autoencoder based deep learning method in the 33 

metabolomics research community for classification. 34 
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 39 

Introduction 40 

According to Global Health Estimates (WHO 2013), more than half million women died due of breast 41 

cancer worldwide1. Breast cancer is the second leading cause of cancer-related deaths among women in the 42 

United States2. Based on human epidermal growth factor receptor 2 (Her2), progesteron receptor (PR) and 43 

estrogen receptor (ER), breast cancer can be categorized into four molecular subtypes3: Luminal A (ER+, 44 

PR+/- and Her2-), Luminal B (ER+, PR+/- and Her2+/-), Her2-enriched (ER-, PR- and Her2+), and triple 45 

negative (ER-, PR- and Her2)4. The survival outcomes differ significantly among these subtypes. Luminal 46 

A and B subtypes have a relatively good prognosis, however triple negative tumors and Her2 tumors have 47 

very poor prognosis5. Identification of molecular subtypes is crucial in determining cancer prognosis and 48 

therapeutic selection. Recently, many studies used metabolomics data to segregate molecular subtypes, 49 

given that breast cancer is manifested as a metabolic disease6, 7. For example, glutamate-to-glutamine ratio 50 

and aerobic glycolysis were proposed as biomarkers of ER and Her2 status, respectively8, 9.  51 

Metabolomics studies are usually done by three major platforms: gas chromatography-mass spectrometry 52 

(GC-MS), liquid chromatography (LC-MS), and nuclear magnetic resonance (NMR). The parallel use of 53 

these instruments allows detecting more metabolites for the same sample. Coupling with the development 54 

in the instrumentations, state-of-the-art data analysis tools are much needed to handle the large amount of 55 

metabolite data generated. For problems of metabolomics data classification and regression, machine 56 

learning algorithms have been applied10. For example, Random Forest (RF) is a widely used machine 57 

learning algorithm based on decision tree theory. It works with high-dimensional data and can deal with 58 

unbalanced and missing values in the data11. Support Vector Machine (SVM) is another machine learning 59 

algorithm that separates the metabolites data with N data points into (N-1) dimensional hyperplane12. SVM 60 

was used to classify healthy and pneumonia patients based on nuclear magnetic resonance (NMR) 61 

metabolomics data12.   62 
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DL or deep neural network, is a new class of machine learning methods that have been successfully applied 63 

to various areas of genomics research13, 14, including predicting the intrinsic molecular subtypes of breast 64 

cancer15, inferring expression profiles of genes16 and predicting the functional activity of genomic 65 

sequence17. In a recent study, denoising autoencoder (DAs), a type of DL algorithm, was applied to gene 66 

expression data of the breast cancer15. It successfully extracted features that stratify normal/tumor samples, 67 

ER+/ER- status, and intrinsic molecular subtypes. In another study based on gene expression data, DL 68 

outperformed linear regression in inference of the expression of target genes from the expression of 69 

landmark genes16.  Moreover, an open source conventional neural networks  (CNNs) package ”Basset” was 70 

developed to learn the functional activity of 164 cell types DNA sequences from genomics data, and to 71 

annotate the non-coding genome17.  Compared to the flourishing applications of DL in genomics, it remains 72 

unknown if deep neural network is suitable to classify metabolomics data, esp. when the samples are of 73 

medium size (i.e. several hundred). 74 

Here we applied feed-forward networks, a type of DL framework, as an alternative to the machine learning 75 

methods such as those listed earlier, to classify metabolomics data. We examined the predictive accuracy 76 

of the DL and other machine learning algorithms to predict ER status from a public metabolomics dataset18. 77 

We demonstrated this DL method performs better than a wide cluster of machine learning methods, 78 

including Random Forest (RF), Support Vector Machines (SVM), Recursive Partitioning and Regression 79 

Trees (RPART), Linear Discriminant Analysis (LDA), Prediction Analysis for Microarrays (PAM), and 80 

Generalized Boosted Models (GBM). Furthermore, the biological interpretation of the hidden layers reveals 81 

eight breast cancer related pathways such as central carbon metabolism in cancer and glutathione 82 

metabolism. Moreover, we further analyzed the extracted features from our DL model, by mapping the 83 

biosynthetic enzymes involved in the metabolomics pathways. 84 

Materials and Methods 85 

Data set 86 
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The metabolomics data used in this study consists of 271 breast cancer samples (204 ER+ and 67 ER-) 87 

collected from a biobank at the Pathology Department of Charité Hospital, Berlin, Germany18. 88 

Metabolomics profiles of these BC patients can be downloaded from the supporting material of this study19. 89 

A total of 162 metabolites with known chemical structure were measured using gas chromatography 90 

followed by time of flight mass spectroscopy (GC-TOFMS) for all tissues samples. A detailed description 91 

of the protocols and the platforms used in this study were described in 18. For validation, we downloaded 92 

gene expression dataset GSE5919820 from the Gene Expression Omnibus (GEO) database, which is 93 

composed of 154 samples, a subset of the 271 samples. In this data set, the gene expression profiles of BC 94 

tumor tissues (122 ER+ and 32 ER-) were analyzed using the cDNA-mediated Annealing, Selection, 95 

Extension and Ligation (DASL) assay. A total of 15,927 genes were detected (p<0.01) in at least 10% of 96 

the samples after applying spline normalization. Data can be downloaded from GEO repository 97 

http://www.ncbi.nlm.nih.gov/geo. 98 

Data Preprocessing 99 

We used K-Nearest Neighbors (KNN) method to impute missing metabolomics data21. To adjust for the 100 

offset between high and low-intensity features, and to reduce the heteroscedasticity, the logged value of 101 

each metabolite was centered by its mean (𝑥̅) and autoscaled by its standard deviation (s) as described in 102 

Equation 122. We used quantile normalization to reduce sample-to-sample variation23.                                                                                                                                                              103 

      𝑥𝑖𝑗 = ⁡(
𝑙𝑜𝑔2(𝑥𝑖𝑗)⁡−⁡𝑥𝑖̅

s
)                                  (1) 104 

Deep Learning 105 

DL refers to deep neural network framework, which is widely applied in pattern recognition, image 106 

processing, computer vision, and recently in bioinformatics13, 24, 25. Similar to other feed-forward artificial 107 

neural networks (ANNs), DL employs more than one hidden layer (y)  that connects the input (x) and output 108 

layer (z) via a weight (W) matrix as shown in equation (2). Here we use sigmoid function as the transitioning 109 

function.  110 

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥 + 𝑏)                         (2) 111 
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Activation value of the hidden layer (y) can be calculated by sigmoid of the multiplication of the input 112 

sample x with the weight matrix W and bias b. The transpose of the weight matrix W and the bias b can 113 

then be used to construct the output (z) layer, as described in equation (3).  114 

𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊′𝑦 + 𝑏′)                      (3) 115 

The best set of the weight matrix W and bias b are expected to minimize the difference between the input 116 

layer (x) and the output layer (z). The objective function is called cross-entropy in equation (4) below, in 117 

which the optimal parameters are obtained by stochastic gradient descent searching. 118 

𝐿𝐻(𝑥, 𝑧) = −∑ [𝑥𝑘 ⁡𝑙𝑜𝑔𝑧𝑘 + (1 − 𝑥𝑘)log⁡(1 −⁡𝑧𝑘)]
𝑑
𝑘=1                        (4) 119 

To train the model, we first supplied sample input (x) to the first layer and obtained the best parameters (W, 120 

b) and the activation of the first hidden layer (y), and then used y to learn the second layer. We repeated 121 

this process in subsequent layers, updating the weights and bias in each epoch. We then used back-122 

propagation to tune the parameters of all layers.  Finally, we fed the output of the last hidden layer to a 123 

softmax classifier which assigned new labels to the samples26. We used h2o R package to tune the 124 

parameters of the DL model27. 125 

Other machine learning algorithms 126 

We selected a representative set of six machine-learning algorithms that are highly recommended by the 127 

metabolomics community and applied widely in the literature reports: Random Forest (RF), Support Vector 128 

Machines (SVM), Recursive Partitioning and Regression Trees (RPART), Linear Discriminant Analysis 129 

(LDA), Prediction Analysis for Microarrays (PAM), and Generalized Boosted Models (GBM). To get the 130 

optimal predictions, we used the caret R package28 to tune the parameters in the models.  131 

Modeling and evaluation 132 

We randomly split metabolomics samples into 80% training set and 20% testing set. The 80/20 split is a 133 

common practice of splitting ratio for samples of a moderate size in the machine learning applications. We 134 

chose this ratio in order to having enough training samples to build a good model and sufficient testing 135 

samples to evaluate the model. We performed 10-fold cross-validation on the 80% training data during the 136 

model construction process, and tested the model on the hold out 20% of data. We used pROC R package29 137 
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to compute area under the curve (AUC) of a receiver-operating characteristic (ROC) curve to assess the 138 

overall performance of the models. To avoid sampling bias, we repeated the above splitting process ten 139 

times and calculated the average AUC on the hold out 10 test samples. To control overfitting, we used two 140 

regularization parameters: L1, which increases model stability and causes many weights to become 0 and 141 

L2, which prevents weights enlargement. 142 

We tuned DL model and other machine learning algorithms, on the following parameters: DL model: 143 

Epochs (number of passes of the full training set), l1 (penalty to converge many weights to 0) and l2 (penalty 144 

to prevent weights enlargement), and input dropout ratio (ratio of ignored neurons in the input layer during 145 

training), number of hidden layers; RPART model: complexity parameters (cost of adding node to the tree); 146 

GBM model: number of trees and interaction depths; SVM model: cost of classification; RF model: number 147 

of trees to fit; PAM model: threshold amount by for each of the class’s centroid shrinking towards the all 148 

classes’ centroid.  149 

Feature importance 150 

Features importance was estimated based on model based approach28. In other words, a feature is 151 

considered important if it contributes to the model performance30. We used the variable importance 152 

functions varimp in h2o and varImp in caret R packages, to evaluate the top 20 features.  153 

Identifiers standardization and differentially expressed genes 154 

We used the PubChem Identifier exchange service31 to convert metabolites into their corresponding KEGG 155 

compound IDs; we then used KEGG API32 to get the compound pathways and enzyme IDs. We used limma 156 

R package33 to find enzymes with high fold changes as well as significant adjusted p-values between ER+ 157 

and ER- samples.  158 

Metabolomics enzymes network reconstruction and visualization 159 

We used MetaScape34 v3.1.3, a Cytoscape plug-in to generate gene-metabolite network which integrates 160 

reaction and pathway information from KEGG and Edinburgh human metabolic network (EHMN) 161 

databases. To build enzyme-metabolite network, we selected a pathway based network from Metsacpe 162 
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analysis options. The input of this step were two files. The first file included the compound KEGG IDs, p-163 

value and the fold change values of the top 20 metabolites extracted from the DL model.  The second file 164 

included the enzyme KEGG IDs, p-value and the fold change values of the 898 genes whose expression 165 

values were statistically significantly different between ER- and ER+ samples.  166 

Metabolites enzymes correlation 167 

We calculated the correlations between the intensity levels of the metabolites and enzymes using 168 

Spearman’s Correlation Coefficient in R. We plot the Circos plot of the strongest correlation using Circlize 169 

R package v0.4.0.  170 

Joint significant pathway analysis 171 

To perform joint significant pathway analysis on metabolomics and gene expression data from the same 172 

samples, we considered a comprehensive list of pathways from Reactome, EHMN, and KEGG databases, 173 

using online web tool IMPaLA35, and calculated hypergeometric p-values of genes (PG) and metabolites 174 

(PM). The joint P-value (Pj) between metabolites and genes for pathway i was calculated as Pji =PGi PMi
36. 175 

This value was adjusted to control for multiple testing with the False Discovery Rate method. 176 

Code availability 177 

We include all preprocessing and the learning steps of the DL method as an R script in the supplementary 178 

file 1.    179 

Results 180 

Workflow of autoencoder based classification 181 

We aim to assess the predictive ability of the DL framework to separate breast cancer patients based on 182 

their ER status, using metabolomics data.  Towards this goal, we implemented the workflow of DL 183 

framework as in Figure 1. We applied preprocessing steps (log transformation, centering, autoscaling , and 184 

quantile normalization) before constructing the DL model, as recommended by others18, 22. Before training 185 

the model, we pre-trained the model using autoencoder and the whole data without labels. This step 186 

improves the model performance, avoids random initialization of the weights, and selects the best model 187 
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architecture37. Then we trained the DL model using a wide range of parameters and selected the best model 188 

with the minimum mean square error (see Materials and Methods).  189 

Performance of the autoencoder based deep learning classification  190 

We compared DL with six other machine-learning methods commonly used in the community: Random 191 

Forest (RF), Support Vector Machines (SVM), Recursive Partitioning and Regression Trees (RPART), 192 

Linear Discriminant Analysis (LDA), Prediction Analysis for Microarrays (PAM), and Generalized 193 

Boosted Models (GBM).  To assess the predictive power of the models, we partitioned the data into 80% 194 

training and 20% testing subsets. We performed 10-fold cross-validation on the 80% training data, and 195 

tested the model on the hold out 20% of data. To avoid sampling bias, we performed 10 independent 196 

splitting of training and testing subsets. We reported the averaged AUCs calculated on the hold out test 197 

sets. As shown in Figure 2A, the average AUC of DL yields the best AUC of 0.93, compared to other six 198 

classification methods. The superiority of DL accuracy is statistically significant (Wilcoxon signed-rank 199 

test P<0.05) than other methods, except RF and GBM. LDA and RPAT had the worst accuracy, likely due 200 

to their sensitivity to overfitting and unfit to the non-linear problems38.  201 

DL as other machine learning algorithm needs more samples to achieve high accuracy39. To assess the 202 

effect of sample size on various models, we randomly removed ¼, ½, and ¾ of the data sets (Figure S1). 203 

As expected, decreasing in sample size decreases the averaged AUCs of all classification methods in 204 

general except LDA on ¼ samples, due to overfitting. Notably, the reduction of average AUC in DL is most 205 

pronounced among all methods, from the full to ¾ data set (Figure S1). While DL loses the best average 206 

AUC status when the sample size is around 255, GBM, SVM and RF have the highest AUC for small 207 

sample sizes of 203, 136 and 68, respectively. Similarly, we also experimented the effect of metabolite size 208 

on various models (Figure S2). We randomly removed ⅛, ¼, and ½ of the 162 metabolites. Even with 209 

reduced numbers of metabolites, deep learning and the robust machine learning method SVM still have 210 

fairly good predictions, compared to other algorithms tested. This suggests that, due to colinearality, much 211 
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of information still exist in the remaining metabolites. Together, the drop-out experiments (Figures S1 and 212 

S2) demonstrate that DL method is sensitive to sample size, but much less sensitive to metabolite size. 213 

Important features from DL 214 

To relate the importance of metabolites to ER status directly, we ranked the metabolites extracted from DL 215 

model based on their functional contributions to the outputs. In this approach, features that provide unique 216 

information to the trained network are ranked more importantly than those giving redundant information40. 217 

We listed the top 20 metabolites from DL in Table S1, and presented their heatmap and boxplots in Figure 218 

S3. Note the choice of 20 metabolite is guided by the original study, in which 19 out of 162 metabolites 219 

were claimed to change significantly among training and validation samples19. The original author divided 220 

the 271 samples into two parts, the training (2/3) and the validation (1/3) set. Among the training set, 65 221 

metabolites were different in ER- and ER+ and only 19 metabolites were validated in the validation set.   222 

Among the 20 features, the top five features are beta-alanine, xanthine, isoleucine, glutamate, and taurine. 223 

These five metabolites have been either proposed as breast cancer biomarkers or associated with breast 224 

cancers in the original metabolomics report19 and/or other studies6, 8, 41-43. For instance, Budczies et al. 19 225 

found that beta-alanine had the most significant and largest fold changes between ER-(n=67) and ER+ 226 

(n=204) tumor tissues. In another study, Glutamate was suggested as markers to segregate ER- from ER+ 227 

in the training (n=186) as well as validation dataset (n=88)8. Glutamate to glutamine ratio (GGR) was 228 

significantly increased in the ER- tumors as compared to ER+. Overall survival analyses suggested GGR 229 

as a positive prognostic marker for BC8. In another study, Fan et al. classified BC plasma samples into 230 

subtypes i.e. ER+ vs ER- and HER2+ vs HER2-, based on a training set (n=51) and another test set (n=45)6. 231 

They found isoleucine had significant differential level between ER+ (lower) and ER- (higher) samples. 232 

Similarly, a study among female breast cancer patients (n=50) suggested serum taurine as an early marker, 233 

where its level was significantly lower than the normal (n=20) and high risk samples (n=15)42. In a cell line 234 

based study, xanthine was suggested as potential biomarker of breast cancer metastasis43, as it had the 235 
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highest variable influence on projection (VIP) in the three pair-wise comparisons among MCF-7/MCF-236 

10A, MDA-MB-231/MCF-10A and MDA-MB-231/MCF-743. 237 

Further, we compared DL top 20 features with the same number of top features from all other methods in 238 

a bipartite graph (Figure 2B). Twelve metabolites are shared between DL and one or more algorithms. 239 

Among them, 1 (xanthine) is shared by six methods, 2 ( glyceric acid and citrulline) are shared by five 240 

methods, 4 (glutamine, taurine, glutamine acid, and beta-alanine) are shared by four methods, 1 (2-241 

aminoadipic acid) is shared by three methods, 2 (nicotinamide acid and trehalose) are shared by two 242 

methods, and two (linoleic acid and hypoxanthine) are shared by one method  (Table S1). Additionally, DL 243 

has identified 8 unique metabolites: isoleucine, putrescine, glycerol, 5'-deoxy-5'-methylthioadenosine, 244 

ornithine, tocopherol beta, phenylalanine, and arachidonic acid, 245 

The biological relevance of the hidden layers  246 

To understand the high performance of the DL model, we probed into the hidden layer and analyzed the 25 247 

activation nodes from the first hidden layer. Among the top 12 nodes with the variances > 0.1, node 8, 22 248 

and 25 are significantly correlated with the samples’ ER- status (P=1.14e-12), whereas all other top 9 nodes 249 

are associated with the ER+ status (Figure 3A). These results confirm that the nodes in DL have significant 250 

biological meaning. 251 

We identified a total of 129 metabolites which contribute most to the activation values of the top 12 nodes. 252 

Their relationships between the 129 metabolites and 12 nodes are shown in Figure S4. We define that 253 

metabolite x contributes to the activation value (y) of node n, if the aboslute value of the weight connecting 254 

metabolite x and node n is greater that 0.1. Beta-alanine and xanthine are the most common metabolites 255 

from all top 12 nodes. Among nodes 8, 22, and 25 which are highly correlated with ER- (Figure 3A), four 256 

common metabolites are shared: inositol, glutamate, xanthine, and uracil. Xanthine was among the panel 257 

of prognostic markers of breast cancer metastasis based on the metabolic profiling of the three breast cancer 258 

cell lines43. Glutamate have been reported as biomarkers to segregate ER- from ER+ in the training as well 259 
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as validation dataset, as described earlier8.  Inositol phosphate metabolism pathway was previously reported 260 

to be associated with breast cancer, but not between ER+ and ER- cancers44. Uracil is, however, a potencial 261 

new marker for ER- breast cancer that was not reported previously, according to our knowledge.  262 

To link the metabolites in Figure S4 with biological functions, we conducted pathways enrichment analysis 263 

using online web tool IMPALA35. The pathways are taken from Reactome, EHMN, and KEGG databases. 264 

Eight significant breast cancer related pathways (Figure 3B) are enriched in all nodes: protein digestion and 265 

absorption, central carbon metabolism in cancer, neuroactive ligand receptor interaction, ABC transporters, 266 

mineral absorption, inositol phosphate metabolism, glutathione metabolism, and cysteine and methionine 267 

metabolism. Albeit the name of “Neuroactive ligand-receptor interaction”, this pathway is significantly 268 

enriched (q-value=0.001) and it was shown changed in breast cancer cell lines 45 and naked mole rat 46. 269 

Aspartate, glucine, taurine and glutamate are metabolites associated with this pathway in the metabolic 270 

dataset. Another interesting pathway with the name “mineral absorption” also shows significance (q-271 

value=7.51E-06), attributed by five metabolites tryptophan, alanine, glycine, phosphoric acid, glutamine. 272 

All these five metabolites were found related with breast cancer previously47-49 .  273 

Integration of DL metabolites and enzymes  274 

We further aimed to validate the important metabolite features of DL model, by integrating metabolomics 275 

and gene expression data from the same patients. Towards this, we first conducted a joint pathway analysis 276 

between 20 metabolites extracted from DL model and 898 significantly differentiated enzymes between 277 

ER+ and ER- samples, using IMPALA (Figure 4). Most of the top significant pathways are related to 278 

metabolism of amino acids or protein digestion and absorption. Two pathways remain significant in joint 279 

pathway analysis, by comparing to metabolomics based pathway analysis in Figure 3B:  protein digestion 280 

& absorption and ABC transporters, with 6 and 9 metabolites over-represented respectively. Specifically, 281 

urea, inositol allo-, phosphoric acid, glucose, glutamine, Isoleucine , and glutathione are the associated 282 

metabolites in ABC transporters. For protein digestion, glutamine, lysine, isoleucine, and beta-alanine are 283 

associated metabolites. Some literature evidence shows that protein digestion and ABC transporters are 284 
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related to breast cancer. For example, humans have 49 members of the ATP-binding cassette (ABC) 285 

membrane proteins50. Several of them such as ABCB1 and ABCC1 have developed a resistance to drug 286 

“multidrug resistance” (MDR) in breast cancer, when they are over-expressed over a period of time51.  287 

To gain insights at individual metabolite/enzyme level, we then calculated Spearman correlations between 288 

the intensity levels of the top 20 metabolites and enzymes whose gene expression levels are significantly 289 

different between ER+/ER- for the same patients20. The Circos plot in Figure 5 shows the names of 290 

metabolomics and enzymes that have correlations (|r| > 0.35). Impressively, beta-alanine, the top ranked 291 

metabolite in DL, is the single most connected metabolite, correlated to more than 100 significantly 292 

differentially expressed enzymes. Pathway analysis of these enzymes correlated with beta-alanine shows 293 

strikingly significant enrichment (adjusted p-value =3.84e-05) with FOXM1 transcription factor network 294 

pathway. FOXM1 is highly expressed in ER- samples and with a correlation coefficient r=0.5 with beta-295 

alanine.   296 

Complementary to the correlation based analysis, we also used Metscape (Cytoscape plug-in) for gene-297 

metabolite network analysis, by combining the ER+/ER- metabolomics data18 and gene expression (from 298 

GSE59198)20 for the same patients.  ABAT, the enzyme that catalyze beta-alanine to malonate 299 

semialdehyde (Figure 6B), is highly correlated with beta-alanine (r=-0.62, Figure 6A).  To understand better 300 

the connection between beta-alanine and FOX genes family, we performed motif enrichment analysis for 301 

the enzymes interacted with beta-alanine in Figure 6B using PASTAA tool52. Interestingly, FOXO1 was 302 

one of most significant transcription factors (p= 5.89e-04) that targeted the promoters regions of beta-303 

alanine interacted enzymes.  304 

 305 

Discussion 306 

Metabolomics has become a new platform for biomarker discovery. Accompanying this technology, robust 307 

and accurate classification methods to predict sample labels are in critical need. Recently, DL methods have 308 

gained much attention in domains such as genomics and imaging analysis. However, there has not been any 309 
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systematic investigation of DL methods in the metabolomics space. In this report, we aimed to fill this void 310 

and assessed the performance of feed-forward network, a widely used DL framework, on classifying 311 

ER+/ER- breast cancer metabolomics data. 312 

There are many advantages of DL over shallow machine learning algorithms, which are beyond the scope 313 

of this study. The conventional machine learning algorithms require engineering domain knowledge to 314 

create features from raw data, whereas DL automatically extracts simple features from the input data using 315 

general purpose learning procedure. These simple features are mapped into outputs using a complex 316 

architecture composed of a series of non-linear functions “hierarchical representations,” to maximize the 317 

predictive accuracy of the model optimally. By increasing number of layers and neurons per layers, robust 318 

features may be constructed, and error signals can be diminished as they pass through multiple layers13. 319 

Therefore, DL succeeds to construct high-level transformed features from input data, making it more 320 

desirable than shallow machine learning algorithms in this respect14.  321 

We demonstrated that DL has a higher predictive accuracy over the other six popular machine learning 322 

methods, in detecting ER status from metabolomics data. DL exploits the idea that the higher “succeeding” 323 

layer is learned from the lower “preceding” layer and selects the essential metabolites from DL model. 324 

These metabolites are useful for the learning process and explain the high predictability of DL compared 325 

to conventional machine learning algorithms. DL extracted features that could be considered as novel 326 

biomarkers, such as uracil, which were not previously reported as breast cancer. Also, unlike other machine 327 

learning methods, DL method offers additional insights on eight KEGG pathway being significantly 328 

different due to ER status.  All these new observations warrant further investigation.   329 

An interesting new link we discover lies between FOXM1 family and beta-alanine. A recent study showed 330 

FOXM1 to be a major cause for resistance to various chemotherapeutics53, and reduction of FOXM1 levels 331 

induced apoptosis of breast cancer cells54. The motif enrichment analysis of the beta-alanine interacted 332 

enzymes indicates that the transcription factor FOXO1 targeted the promoter regions of these enzymes. 333 

Thus the relationships among beta-alanine, FOXM1 and FOXO1 is worth further investigation. In addition, 334 

we found many interesting involvement of DL unique metabolites in breast cancer diagnosis and treatment. 335 
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For example, phenylalanine is found significantly elevated in the advanced metastatic breast cancer55  and 336 

linoleic acid has been used to lower the risk of breast cancer56. Also, Putrescine has been known to play a 337 

critical role in many metabolomics processes in breast cancer, such as apoptosis, and proliferation57. The 338 

knock-down experiments on ornithine decarboxylase (ODC), an enzyme which converts ornithine to 339 

putrescin, showed the growth inhibition in the ERα+ MCF7 and T47D and ERα- MDA-MB-231 breast 340 

cancer cells58. Arachidonic acid was previously shown to be integral part of the new signaling for the cell 341 

migrations in the MDA-MB-231 breast cancer cells59.  342 

Despite the outstanding performance of DL methods, one should be mindful of several caveats in its 343 

application in metabolomics research. DL is time-consuming computation (Table S2), relative to some other 344 

machine learning methods40. Also, metabolomics data sets are generally small, in comparison to imaging 345 

data. Thus very small data sets may not be suitable for DL. We experimented with the effects of reducing 346 

sample size and metabolite size on the seven methods in comparison, and found that DL is indeed sensitive 347 

to the sample size of the study. On the contrary, due to colinearality among metabolites, autoencoder has 348 

fairly robust predictions even when the number of metabolites are reduced. Another point of consideration 349 

is the reproducibility of the technology itself. A platform with better reproducibility is expected to yield 350 

biomarker models that predict more accurately in validation datasets (less overfitting). We thus speculate 351 

that DL models based on NMR metabolomics data (more metabolites and better reproducibility) will be 352 

more accurate than DL models based on LC-MS data, when other conditions are the same. 353 

Lastly, in this report we compared the ML vs DL under the topic of classification of metabolomics data. 354 

The advantages of DL on other non-classification problems in metabolomics research are yet to be explored.  355 

For example, unsupervised machine learning algorithms such as PCA and hierarchical clustering were 356 

applied to the metabolomics data60, and our group is currently exploring using autoencoders for 357 

unsupervised learning in metabolomics data. As another example, we have also worked on prognosis 358 

prediction using shallow and deep neural network models in the genomics space 61, 62.  We successfully 359 

used autoencoder to integrate multiple omics datasets (RNA-Seq, microRNA-Seq and DNA methylation) 360 
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to predict patient survival robustly, exemplified by liver cancer [2]. Compared to genomics data, 361 

metabolomics data have higher multicolinearity and noise levels. Also the number of identifiable 362 

metabolites are lower than the identifiable genes in genomics assays. These issues pose potential challenges 363 

when extending genomics tools for metabolomics research. Nevertheless, it will be very interesting to test 364 

these DL and neural network models on appropriate metabolomics data sets alone, or in combination with 365 

coupled genomics data.  366 

Conclusions 367 

We show evidence that DL outperforms other machine learning algorithms for ER status classification in 368 

breast cancer metabolomics data. The biological interpretation of the hidden layer of the DL model also 369 

reveals eight significant breast cancer related pathways, which are not able to obtain from the other machine 370 

learning algorithms in comparison. 371 
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Figure Legends 554 

Figure 1: Block diagram of the proposed system. The first step is the preprocessing (log transformation, 555 

centering, autoscaling and quantile normalization). We used Autoencoder pretraining (unsupervised step) 556 
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to initial model weights and select model architecture.  Model used the 80% of data split to train the model 557 

and the remaining 20% to measure model performance. The data was split 10 times to avoid the bias of 558 

data sampling, and the average AUC was calculated on the 10 holds out test samples.  559 

Figure 2: A: The average AUC on 10 hold out test samples of the DL framework against six machine 560 

learning algorithms for prediction of ER status from metabolomics data: Recursive Partitioning and 561 

Regression Trees (RPART) (0.83), Linear Discriminant Analysis (LDA) (0.74), Support Vector Machine 562 

(SVM)(0.89), DeepLearning (DL)(0.93), Random Forest (RF)(0.89), Generalized Boosted Models 563 

(GBM)(0.89), and Prediction Analysis for Microarrays (PAM)(0.88). The above algorithms were run 10 564 

times on different train/test splits. We used pairwise Wilcoxon signed-rank test to estimate the statistical 565 

significance of the difference in performance between DL and other methods (** p<0.01, * p<0.1). B: 566 

Bipartite graph of the top 20 important metabolites extracted from DL model and other machine learning 567 

algorithms. Large nodes represent the models and small nodes are metabolites. A connection between 568 

metabolite and the model means this metabolite is one of the top 20 high importance metabolites extracted 569 

by this model.  570 

Figure 3: Biological relevance of the DL hidden layers. (A) Activation levels of the high variance nodes 571 

extracted from the layer 1 of the DL model. Columns are samples and rows are the top 12 nodes with high 572 

variance > 0.5. (B) Bipartite graph of enriched significant metabolomics pathways and top hidden nodes. 573 

The nodes represent enriched pathways common to all top 12 nodes (green color) in the 1st hidden layer of 574 

DL in KEGG pathway enrichment analysis (FDR< 0.05). 575 

Figure 4: The joint pathway analysis between the top 20 DL metabolites and the high differentiated 576 

enzymes. Only significant pathways with at least 5 overlapping metabolites are shown.  X-axis shows the 577 

number of overlapped metabolites with the number of genes (number in parentheses) involved in the same 578 

pathway, y axis shows the adjusted joint P-value calculated from IMPALA tool42. The size of the nodes 579 

represents the size of metabolomic pathway (number of metabolites involved in that pathway). The color 580 

of the nodes represents the database source of these pathways.  581 
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Figure 5: Circos plot of Spearman correlation values between 20 top DL metabolites and high differentiated 582 

enzymes with cut-off=|0.35|.  583 

Figure 6: Beta-alanine and ABAT interaction network. (A) Metabolite level of beta-alanine and expression 584 

of ABAT. (B) Beta-alanine-ABAT interaction network in ER– breast cancer tissues compared to ER+ 585 

breast cancer tissues.  Metscape, a Cytoscape plug-in, was used to integrate ER+/ER- metabolomics and 586 

gene expression data (GSE59198) of the same patients.  Fold change of metabolites (hexagon nodes) or 587 

enzymes (circle nodes) are represented by the size of the nodes. The input of Metascape are the top 20 588 

metabolites from the DL model and the 898 genes whose expression values are statistically significantly 589 

different between ER- and ER+ samples. Enzymes and metabolites of significant difference are marked by 590 

green line(s) on the shapes.  591 

Supplementary Materials  592 

Figure S1: (A) The effect of sample size on the performance of the DL and other machine learning 593 

algorithms.  594 

Figure S2: The effect of metabolite size on the performance of the DL and other machine learning 595 

algorithms. 596 

Figure S3: DL 20 top important metabolites. A. Heatmap and B. Box plot of the 20 top important 597 

metabolites extracted from the DL model.  598 

Figure S4: Heatmap of the metabolites (columns) which most contribute to the activation value of the top 599 

hidden nodes (rows).  600 

Table S1: The list of the top 20 important features 601 

Table S2: Running time of the seven algorithms on the metabolomics dataset 602 

Supplementary file 1: R code of the preprocessing, models training and testing  603 
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