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ABSTRACT 20 

 21 
Taxonomy assignment of freshwater microbial communities is limited by the minimally 22 

curated phylogenies used for large taxonomy databases. Here we introduce TaxAss, a 23 

taxonomy assignment workflow that classifies 16S rRNA gene amplicon data using two 24 

taxonomy reference databases: a large comprehensive database and a small 25 

ecosystem-specific database rigorously curated by scientists within a field. We applied 26 

TaxAss to five different freshwater datasets using the comprehensive Silva database 27 

and the freshwater-specific FreshTrain database. TaxAss increased the percent of the 28 

dataset classified compared to using only Silva, especially at fine-resolution family-29 

species taxa levels, while across the freshwater test-datasets classifications increased 30 

by as much as 11-40 percent of total reads. A similar increase in classifications was not 31 

observed in a control mouse gut dataset, which was not expected to contain freshwater 32 

bacteria. TaxAss also maintained taxonomic richness compared to using only the 33 

FreshTrain across all taxa-levels from phylum to species. Without TaxAss, most 34 

organisms not represented in the FreshTrain were unclassified, but at fine taxa levels 35 

incorrect classifications became significant. We validated TaxAss using simulated 36 

amplicon data with known taxonomy and found that 96-99% of test sequences were 37 

correctly classified at fine resolution. TaxAss splits a dataset’s sequences into two 38 

groups based on their percent identity to reference sequences in the ecosystem-specific 39 

database. Sequences with high similarity to sequences in the ecosystem-specific 40 

database are classified using that database, and the others are classified using the 41 

comprehensive database. TaxAss is free and open source, and available at 42 

www.github.com/McMahonLab/TaxAss. 43 
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 44 

IMPORTANCE 45 

 46 
Microbial communities drive ecosystem processes, but microbial community 47 

composition analyses using 16S rRNA gene amplicon datasets are limited by the lack of 48 

fine-resolution taxonomy classifications. Coarse taxonomic groupings at phylum, class, 49 

and order level lump ecologically distinct organisms together. To avoid this, many 50 

researchers define operational taxonomic units (OTUs) based on clustered sequences, 51 

sequence variants, or unique sequences. These fine-resolution groupings are more 52 

ecologically relevant, but OTU definitions are dataset-dependent and cannot be 53 

compared between datasets. Microbial ecologists studying freshwater have curated a 54 

small, ecosystem-specific taxonomy database to provide consistent and up-to-date 55 

terminology. We created TaxAss, a workflow that leverages this database to assign 56 

taxonomy. We found that TaxAss improves fine-resolution taxonomic classifications 57 

(family, genus and species). Fine taxonomic groupings are more ecologically relevant, 58 

so they provide an alternative to OTU-based analyses that is consistent and 59 

comparable between datasets.  60 

 61 

 62 

  63 
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INTRODUCTION 64 

 65 
Microbial communities form the foundations of all ecosystems, yet interpretation of 66 

community data is limited by the difficulty of comparing across datasets. With the rapid 67 

development of massively parallel sequencing technology, scientists are increasingly 68 

able to fingerprint microbial communities using amplicon sequencing of marker genes 69 

such as the 16S rRNA gene. The resulting sequences are typically grouped into 70 

Operational Taxonomic Units (OTUs) defined by sequence identity or sequence 71 

variants. Comparison between amplicon datasets is difficult because OTUs are specific 72 

to each analysis. For clarity, this paper refers to 16S rRNA gene amplicon sequencing 73 

datasets as “datasets” and defines OTUs as a dataset’s sequence unit of measure, 74 

irrespective of whether those units represent clustered sequences, sequence variants, 75 

or unique sequences.  76 

 77 

Taxonomy Allows Cross-Study Analyses 78 

OTUs are widely used to represent ecologically coherent entities (1), however they 79 

represent study-specific phylotypes that cannot be compared between datasets. Many 80 

common OTU definitions including sequence identity-based clustering (2), minimum 81 

entropy decomposition (3), and distribution-based clustering (4) are specific to each 82 

analysis, resulting in arbitrary OTU names. OTU definitions based on exact sequences, 83 

such as DADA2's denoising approach (5) or defining OTUs as unique sequences, are 84 

still specific to the amplicon region and sequencing platform used in each study. For 85 

these reasons, direct comparison of OTUs between multiple datasets is most often 86 

impossible. 87 
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 88 

Taxonomic naming systems allow comparisons between datasets by creating consistent 89 

terminology and consistent phylogeny-determined boundaries between organisms. 90 

However, taxonomic naming is most useful when sequences can be classified to a fine 91 

level (e.g. family, genus, or species). Many abundant taxa have poorly resolved fine-92 

scale phylogenetic structures in reference taxonomy databases (hereafter “databases”), 93 

resulting in only coarse classifications for large proportions of amplicon datasets (e.g. 94 

phylum, class, or order). Coarse taxonomic groupings often include diverse organisms 95 

with differing ecological roles, so analyses at coarse taxa levels miss underlying 96 

ecological dynamics (6). Fine-resolution taxonomic names are required to bridge the 97 

gap between ecologically relevant OTU-based analyses and consistent, comparable 98 

taxonomy-based analyses. 99 

 100 

Ecosystem-Specific Taxonomy Databases 101 

Microbial ecologists from diverse sub-fields have created fine-resolution reference 102 

taxonomies by curating databases specific to their ecosystems. These ecosystem-103 

specific databases are small compared to the large comprehensive databases compiled 104 

by Greengenes (7), Silva (8), and the Ribosomal Database Project (9), but they are 105 

generally well-curated with more finely resolved phylogenies for ecosystem-specific 106 

lineages. Examples of ecosystems with curated databases include the human oral 107 

cavity (10), the cow rumen (11), the honey bee gut (12), the cockroach and termite gut 108 

(13), activated sludge (14), and freshwater lakes (15). Ecosystem-specific databases 109 

are created to establish consistent vocabulary for common uncultured bacteria, create 110 
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monophyletic reference structures, incorporate new reference information, and 111 

understand what the “typical” organisms are in a given ecosystem. Additionally, 112 

ecosystem-specific databases can be used to assign taxonomy to a finer resolution than 113 

can be achieved with a large comprehensive database.  114 

 115 

The FreshTrain 116 

This paper demonstrates TaxAss’s efficacy using a variety of freshwater amplicon 117 

datasets, the comprehensive Silva database (8), and the ecosystem-specific 118 

Freshwater Training Set (FreshTrain) (15). The FreshTrain database was created in 119 

2012 and was originally curated alongside Greengenes. FreshTrain versions match 120 

Greengenes and Silva at the phylum, class, and order levels, but at finer taxonomic 121 

levels the FreshTrain is curated based on additional information such as the 122 

geographical distribution of sequences.  These finer levels are referred to as lineage, 123 

clade, and tribe and approximate the Linnaean family, genus, and species (15). The 124 

FreshTrain is available online at www.github.com/McMahonLab/TaxAss. 125 

 126 

Taxonomy Assignment Algorithm 127 

Classification algorithms assign taxonomic names to OTUs based on their similarity to 128 

reference sequences in a database. The most commonly used classification algorithm 129 

was developed by Wang et. al (16) for the Ribosomal Database Project and is 130 

implemented in both mothur (17) and QIIME (18). This naïve Bayesian classifier 131 

(hereafter “Wang classifier”) assigns taxonomy to OTUs based on 8-mer signatures and 132 

reports a bootstrap confidence estimate for each assignment (16). This bootstrap 133 
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confidence value is based on the repeatability of the OTU’s assignment with 134 

subsampled 8-mers, not on an absolute similarity measure. In a large database an OTU 135 

dissimilar to any reference sequences will not be classified repeatably as any one 136 

taxon, resulting in a low bootstrap confidence.  However, in a small database an OTU 137 

dissimilar to any reference sequences nevertheless can be classified repeatably 138 

because there are fewer references from which to choose. We refer to this pitfall as 139 

"misclassification" when OTUs are classified as unrelated organisms and 140 

“overclassification” when OTUs are classified to a finer taxa level than warranted. 141 

 142 

Introducing TaxAss 143 

We aimed to obtain fine-level taxonomy classifications in freshwater datasets by 144 

leveraging the ecosystem-specific FreshTrain database, while at the same time 145 

maintaining the full biological diversity of each dataset. To this end, we developed an 146 

open source taxonomy assignment workflow (TaxAss) that uses the popular Wang 147 

classifier as implemented in mothur and employs both an ecosystem-specific database 148 

and a comprehensive database.  TaxAss maintains taxonomic richness and accuracy 149 

by only classifying OTUs that share high percent identity with ecosystem-specific 150 

reference sequences using the ecosystem-specific database.  The remaining OTUs are 151 

classified using the comprehensive database. TaxAss scripts and step-by-step 152 

directions are available online at www.github.com/McMahonLab/TaxAss. 153 

 154 
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RESULTS 155 

Methods Summary 156 

TaxAss uses both an ecosystem-specific database and a large comprehensive 157 

database to improve taxonomic assignment resolution while maintaining richness. To 158 

classify the maximum possible number of OTUs and avoid forcing inaccurate 159 

ecosystem-specific classifications onto OTUs, the amplicon dataset is split into two 160 

groups using blastn prior to classification: OTUs with high percent identity to ecosystem-161 

specific reference sequences and OTUs with low percent identity to ecosystem-specific 162 

reference sequences. The two groups are then classified separately using the Wang 163 

classifier and the appropriate database (Figure 1).  164 

 165 

To test TaxAss we used SILVA version 132 and the FreshTrain as the comprehensive 166 

and freshwater-specific databases. We classified six 16S rRNA gene amplicon (tag) 167 

datasets spanning five freshwater ecosystems and a non-freshwater control. 168 

Sequences in these tag datasets are not directly comparable because they cover five 169 

different amplicon regions. We defined OTUs as the unique sequences remaining after 170 

basic quality filtering and chimera checking.  171 

 172 

Assignment Accuracy 173 

To test the accuracy of TaxAss's taxonomy assignments, we compared TaxAss results 174 

to a ground truth determined by manual alignment of full-length 16S rRNA gene 175 

sequences. For this test we used a full-length freshwater clone library dataset from 176 

Marathonas Reservoir, Greece (19), that was not previously incorporated into the 177 
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FreshTrain. We manually aligned these full-length sequences to the FreshTrain, and 178 

then simulated a tag dataset by trimming the full-length sequences to the commonly 179 

used primer regions V4, V4-V5, and V3-V4. We classified this simulated tag dataset 180 

using TaxAss with the FreshTrain and Silva and compared the results to the ground 181 

truth results provided by manual full-length alignments and phylogenetic analysis 182 

(Figure 2).  183 

 184 

We found that the majority (74.7 %) of V4 tag sequences were classified correctly at the 185 

species/tribe taxa level and that 86 % of the incorrect assignments were due to 186 

sequences being classified using Silva when they should have received FreshTrain 187 

nomenclature, which results in correct, though not ecosystem-specific, classifications. 188 

The remaining incorrect assignments stemmed from overclassification errors (1.1 %), 189 

misclassification errors (0.7 %), or incorrect inclusion in the FreshTrain classification set 190 

(1.8 %), which can result in overclassification, misclassification, or underclassification. 191 

(Figure 2a). Examples of each classification category are shown in the table in Figure 192 

2b. We do not consider underclassifications to be an error because underclassifications 193 

are expected due to the lower phylogenetic resolution of short tag sequences compared 194 

to full-length sequences. We found slightly lower error rates for the longer V4-V5 and 195 

V3-V4 amplicon regions (Supplemental Table 1).     196 

 197 

Fine-Resolution Classifications Increased 198 

To test whether TaxAss improved taxonomic classification over solely using a 199 

comprehensive database, we assigned taxonomy to a Lake Mendota amplicon dataset 200 
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first by using Silva alone and then by using TaxAss to leverage both Silva and the 201 

FreshTrain (Figure 3a and Table 1). We compared the percent of reads classified by 202 

both methods and observed a marked improvement in the percent of the dataset 203 

classified to the fine taxa levels of family/lineage, genus/clade, and species/tribe. At 204 

species/tribe level, the percent of reads classified increased from 0% to 41%, at 205 

genus/clade level they increased from 35% to 63%, and at family/lineage level they 206 

increased from 72% to 82%. In addition to these increases in classifications, TaxAss 207 

also improved the quality of classifications because the FreshTrain is curated with 208 

terminology and phylogeny consistent with the freshwater microbial ecology literature. 209 

For example, the abundant and cosmopolitan freshwater tribe acI-A1 is split into hgcl 210 

clade and Candidatus Planktophila in Silva; acI-A4 and -A5 are also grouped with 211 

Silva's hgcl clade, and acI-A3 is grouped with C. Planktophila. At family/lineage level, 212 

Silva alone could classify a majority of the dataset, but 72% of those Silva-classified 213 

reads received more meaningful ecosystem-specific nomenclature when using TaxAss. 214 

 215 

The FreshTrain reference sequences come exclusively from temperate lake epilimnia, 216 

and many of them come from Lake Mendota itself. Lake Mendota is a eutrophic, 217 

temperate lake in Wisconsin, USA, and the Lake Mendota amplicon dataset consists of 218 

95 epilimnetic samples collected by the North Temperate Lakes Microbial Observatory 219 

over 11 years.  To test TaxAss’s efficacy when the ecosystem-specific database is less 220 

representative of the ecosystem under investigation, we classified amplicon datasets 221 

from a range of freshwater ecosystems first by using Silva alone and then by using 222 

TaxAss to leverage Silva and the FreshTrain (Figure 3b). The additional ecosystems we 223 
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chose included the epilimnion of oligotrophic Lake Michigan (20), the eutrophic Danube 224 

River (21), and the epilimnion and hypolimnion of dystrophic Trout Bog (WI, USA) (22). 225 

We also used a mouse gut dataset (23) as a negative control to ensure that TaxAss 226 

would not assign FreshTrain classifications erroneously. All freshwater datasets showed 227 

improvements at all fine taxa levels (Figure 3b and Supplemental Figure 1), with the 228 

amount of improvement reflecting the similarity of each ecosystem to the FreshTrain 229 

reference sequences. For example, the temperate Lake Mendota and Lake Michigan 230 

epilimnia received the most FreshTrain classifications (54 and 52% of total reads at 231 

genus/clade level), while the dystrophic bog hypolimnion benefited least (28% at 232 

genus/clade level). Only 0.1% of the mouse gut control dataset received FreshTrain 233 

classifications at the species, genus, or family levels.  234 

 235 

Richness Maintained  236 

To test whether TaxAss improved taxonomic classification over solely using an 237 

ecosystem-specific database, we assigned taxonomy to the Lake Mendota dataset first 238 

by using the FreshTrain alone and then by using TaxAss to leverage both the 239 

FreshTrain and Silva. TaxAss maintained taxonomic richness at all taxa levels by 240 

classifying OTUs into a larger variety of taxonomic names (Figure 4 and Table 1). At the 241 

same time TaxAss prevented overclassifications and misclassifications at fine-resolution 242 

taxa levels compared to FreshTrain-only classifications (Figure 4b).  243 

 244 

The FreshTrain is a more specific database with less taxonomic richness than Silva, so 245 

a decrease in taxonomic richness in a FreshTrain-only classification was expected. For 246 
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example, the FreshTrain focuses on heterotrophic bacteria and does not include any 247 

Cyanobacteria, which comprised 8.3% of the Lake Mendota dataset. All of Lake 248 

Mendota’s cyanobacterial OTUs were classified as something else (99.9% as 249 

unclassified), which resulted in a loss of phylum-level richness in the FreshTrain-only 250 

classification (Figure 4a). In contrast, TaxAss maintained the taxonomic richness of a 251 

Silva-only classification (Table 1, Supplemental Table 2). 252 

 253 

We also observed that some OTUs that TaxAss classified using Silva were 254 

misclassified or overclassified by the FreshTrain-only approach (Figure 4b). These 255 

incorrect classifications by the small FreshTrain database were less common than 256 

underclassification errors, but had significant effects on taxa relative abundances at 257 

finer-resolution taxa levels. Lake Mendota's 5th most abundant lineage, the 258 

Bacteroidetes bacI, gained 30% more reads in a FreshTrain-only classification 259 

compared to using TaxAss. The classification errors TaxAss prevented were significant 260 

enough to change basic attributes such as rank abundances of top taxa, and had an 261 

even larger impact on the freshwater test-datasets that differed more from the 262 

FreshTrain references (Supplemental Figure 2).  263 

 264 

Percent Identity Cutoff  265 

An OTU is classified taxonomically in the ecosystem-specific database only if it matches 266 

a sequence in that database at a sequence identity above the threshold set by the user.  267 

Therefore, the percent identity cutoff choice for taxonomic classification is central to the 268 

proper functioning of TaxAss because it determines which OTUs are classified in each 269 
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database (ecosystem-specific vs comprehensive). If the percent identity cutoff is set too 270 

high, ecosystem-specific OTUs are passed to the comprehensive database for 271 

classification; while if it is set too low, non-ecosystem-specific OTUs are passed to the 272 

ecosystem-specific database for classification. In both scenarios the majority of 273 

misplaced OTUs will be unclassified at fine taxa levels. TaxAss allows users to compare 274 

the percent of reads classified with different percent identity cutoffs, the idea being that 275 

a percent identity that maximizes reads classified has minimized misplacement errors of 276 

the abundant OTUs (Figure 5).   277 

 278 

We found that a percent identity cutoff of 98-99% was appropriate for the analyzed 279 

freshwater datasets, and we applied a cutoff of 98% when processing all data used in 280 

this paper (Figure 5). TaxAss allows users to choose a cutoff specific to their data by 281 

generating the plots shown in Figure 5, but users who wish to save computational time 282 

can simply choose a percent identity cutoff and only run the classification once.  283 

 284 

BLAST Conversion  285 

The calculation of percent identity for use in database selection is based on the percent 286 

identity returned by The National Center for Biotechnology Information’s Basic Local 287 

Alignment Search Tool (BLAST) (24).  The default megablast settings are appropriate 288 

for our application because they have been highly optimized to find short, highly similar 289 

alignments. However, BLAST finds areas of local similarity and there is no way to 290 

require BLAST to align the entire length of a query OTU’s sequence. 16S rRNA gene 291 

amplicon sequences are highly similar, and differences in taxonomic classification can 292 
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be based on even a single mismatch in the amplified region. Therefore, we recalculated 293 

the percent identities BLAST returned into “full-length” percent identities for the entire 294 

query OTU’s sequence (Supplemental Document 1 and Equation 1).  295 

 296 

We found that recalculating percent identity was necessary to prevent dissimilar OTUs 297 

from inclusion in the ecosystem-specific classification. For example, the FreshTrain 298 

does not include any reference sequences from the major freshwater phylum 299 

Cyanobacteria, so no cyanobacterial OTUs have high true percent identities to any 300 

references in the FreshTrain. We found that the percent identity recalculation was 301 

necessary to prevent some cyanobacterial OTUs from meeting the percent identity 302 

cutoff due to the original BLAST percent identities being based on only a short aligned 303 

section of the OTU sequence (Supplemental Figure 3).  304 

 305 

We also found that it was necessary to recalculate the percent identity from several 306 

BLAST alignments (“hits”) for each OTU because the best BLAST hit did not always 307 

have the highest recalculated percent identity. TaxAss examines the top five BLAST 308 

hits, recalculates the percent identity of each, and then uses the highest recalculated 309 

percent identity to determine if an OTU meets the cutoff. To ensure enough BLAST hits 310 

were examined to consistently arrive at the highest possible recalculated percent 311 

identity, we calculated the proportion of times each BLAST hit number had the highest 312 

recalculated percent identity. In the Lake Mendota amplicon dataset the first BLAST hit 313 

almost always also had the best recalculated score, and the contribution of additional 314 

BLAST hits was very low, especially when only "good" hits above a stringent percent 315 
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identity cutoff were considered (Table 2). In the Lake Mendota dataset at the chosen 98 316 

percent identity cutoff, 99.68% of the best hits found by BLAST were also the best re-317 

calculated hits and only 0.07% of BLAST's 5th hits were used. TaxAss generates a 318 

version of Table 2 for users’ individual datasets, and if they observe more high-number 319 

BLAST hits contributing to the best re-calculated hit they can increase the number of 320 

BLAST results used for the calculation. 321 

 322 

DISCUSSION 323 

Ecosystem-Specific Databases 324 

The need for curated ecosystem-specific databases has been recognized by microbial 325 

ecologists studying many ecosystems. TaxAss was developed specifically to leverage 326 

the Freshwater Training Set (FreshTrain) (15), but it could be applied to custom 327 

databases curated for other ecosystems: the dictyopteran gut microbiota reference 328 

database (DictDb) (13), the rumen and intestinal methanogen database (RIM-DB) (11), 329 

the honey bee database (HBDB) (12), the microbial database for activated sludge 330 

(MiDAS) (14), and the human oral microbiome database (HOMD) (10). These 331 

databases were created by starting with a comprehensive database such as SILVA or 332 

Greengenes and then re-curating the reference sequences from the study ecosystem, 333 

sometimes also incorporating new reference sequences. Often during curation, 334 

phylogenies were collapsed to be monophyletic and incorporate new organisms, and 335 

abundant but unnamed organisms were given placeholder names to allow for consistent 336 

terminology among researchers.  337 

 338 
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DictDB, HBDB, and MiDAS are fully integrated with modified versions of the entire 339 

SILVA database, so a workflow like TaxAss that leverages two databases is not needed 340 

because the single merged database can be used in one step for taxonomy 341 

assignment. However fully integrated databases can be difficult to maintain over time 342 

because new versions of each database will diverge from each other, and TaxAss 343 

provides a means to circumvent this divergence. The FreshTrain is an example of this 344 

divergence in action. The FreshTrain was originally integrated into the Hugenholtz 345 

database that eventually became Greengenes, and Greengenes was last updated in 346 

May 2013. In addition, SILVA now contains more total references and has been 347 

updated as recently as December 2017, so some researchers prefer to use the more 348 

recently updated SILVA as their comprehensive database. Similarly, the FreshTrain has 349 

been updated almost annually since its creation as new full-length 16S rRNA gene 350 

sequences from freshwater ecosystems became available. TaxAss allows microbial 351 

ecologists to use the most up-to-date versions of their preferred databases without 352 

performing or waiting for reconciliation of each release.  353 

 354 

Once an ecosystem-specific database has diverged from the comprehensive database, 355 

as occurred with the FreshTrain, leveraging the ecosystem-specific database for 356 

taxonomy assignment is no longer straightforward. Reintegrating the ecosystem-specific 357 

database into the comprehensive database is more involved than simply concatenating 358 

databases and removing duplicated references because conflicting phylogenetic 359 

structures must be resolved. Analysis of community amplicon data is a fairly routine part 360 

of many studies for which extensive phylogenetic curation would fall outside the scope. 361 
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The FreshTrain has been used in a variety of ways since it diverged from the current 362 

version of Greengenes, and it is often difficult to discern the specifics from cursory 363 

sentences in a paper’s methods section. TaxAss provides a well-documented and 364 

rigorously tested workflow to leverage two conflicting databases without extensive 365 

curation.  366 

 367 

Current FreshTrain Usage 368 

The simplest way the FreshTrain has been used to assign taxonomy to amplicon 369 

datasets is as part of a separate, complementary analysis. For example, in a study of 370 

the River Thames Basin (25), FreshTrain and Greengenes classifications were 371 

displayed side by side and separate metrics such as diversity indices were calculated 372 

for each. However, the bulk of the taxonomic analyses were carried out at the coarse 373 

phylum level despite most abundant OTUs having FreshTrain nomenclature. When the 374 

FreshTrain is used independently, the loss of richness in taxonomic classifications 375 

(Figure 4) makes it difficult to use ecosystem-specific classifications for entire-dataset 376 

analyses. TaxAss provides ecosystem-specific classifications without loss of taxonomic 377 

richness, thus allowing for a single comprehensive analysis.  378 

 379 

Another straightforward approach has been to classify amplicon datasets sequentially, 380 

first using the FreshTrain and then re-classifying the unclassified sequences using a 381 

comprehensive database. For example, in a study of Lake Erken, Sweden (26), OTUs 382 

were first classified with the FreshTrain, and then unclassified OTUs were reclassified 383 

using SILVA. While this approach allows for a single analysis, the initial classification of 384 
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all sequences with the small FreshTrain database can cause overclassification and 385 

misclassification errors (Figure 4b). TaxAss prevents this by splitting the OTUs into two 386 

groups prior to classification.  387 

 388 

These classification errors when using the FreshTrain to classify all OTUs were 389 

observed in a study of cyanobacterial blooms in Yanga Lake, Australia (27), where the 390 

authors observed that cyanobacterial OTUs were forced into heterotrophic 391 

classifications. To prevent this, Greengenes was used for an initial classification, then 392 

only OTUs assigned to phyla included in the FreshTrain were reclassified and renamed 393 

with confidently assigned FreshTrain nomenclature. This approach prevented the 394 

misclassification of Yanga Lake’s abundant cyanobacterial OTUs, but it would not 395 

prevent overclassification of OTUs that belong to phyla included in the FreshTrain 396 

(Verrucomicrobia, Bacteroidetes, Proteobacteria, and Actinobacteria). In freshwater 397 

datasets such as bogs, rivers, and lake hypolimnia many organisms belonging to 398 

FreshTrain phyla differ significantly from the lake epilimnion references included in the 399 

FreshTrain. TaxAss prevents overclassifying and misclassifying OTUs of any phyla.  400 

 401 

Another way to avoid the forcing observed with the Wang classifier is to use BLAST-402 

based taxonomy assignment algorithms that determine assignments based on 403 

sequence similarity. Since the BLAST algorithm calculates an absolute similarity instead 404 

of a relative one, a similarity cutoff prevents classifications to dissimilar sequences. The 405 

BLAST method to assign taxonomy has been used with the FreshTrain to classify 406 

sequences from boreal lakes in Quebec, Canada (28). However, unlike the Wang 407 
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classifier, BLAST only takes into account individual reference sequences and ignores 408 

their encompassing phylogenetic structure. The BLAST-based algorithm from 409 

Classification Resources for Environmental Sequence Tags (CREST) (29) addresses 410 

this by taking a lowest common ancestor approach. Each query OTU is classified to the 411 

finest taxa level that its top BLAST hits share. The CREST algorithm also has been 412 

used to assign taxonomy using the FreshTrain to sequences obtained from the Danube 413 

River in southeastern Europe (21). This approach avoided forcing and incorporated 414 

phylogenetic information in the taxonomy assignments, however it does not maintain 415 

diversity by also leveraging a comprehensive database. Additionally, the Wang classifier 416 

is more robust at coarser taxa levels and for shorter sequences (29), and it is 417 

implemented in common tools like mothur and QIIME. TaxAss allows users to leverage 418 

both ecosystem-specific and comprehensive databases using the highly trusted and 419 

conveniently implemented Wang classifier. 420 

 421 

Future TaxAss Usage 422 

We recommend all microbial ecologists studying freshwater systems use the FreshTrain 423 

and TaxAss to classify their 16S rRNA gene amplicon datasets. This will result in a 424 

consistent, specific, and comparable vocabulary throughout the field, and will improve 425 

classification for analysis of individual datasets. We also recommend that microbial 426 

ecologists with different ecosystem-specific databases consider TaxAss when their 427 

databases diverge from the most up-to-date comprehensive database and phylogenetic 428 

curation is outside the scope of their project.  429 

 430 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2018. ; https://doi.org/10.1101/214288doi: bioRxiv preprint 

https://doi.org/10.1101/214288
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

We recommend microbial ecologists create ecosystem-specific databases if one does 431 

not already exist, since they provide improved analysis and enhanced collaboration for 432 

the entire field. Phylogenies must be created from full-length 16S rRNA gene 433 

sequences, which are currently not collected as routinely as short amplicon sequences. 434 

However, we believe the benefit of these databases as a reference for the field and to 435 

improve taxonomic classification of amplicon sequences justifies the effort to create 436 

them, especially since TaxAss allows their use without constant re-curation. Additional 437 

full-length sequences to flesh-out the existing phylogenetic structure of organisms can 438 

be created with clone libraries, as was done for the FreshTrain. New sequencing 439 

technologies, such as the long reads produced by Nanopore (30) and PacBio (31, 32) 440 

instruments, promise even easier reference sequence generation in the future.  441 

 442 

Practical Guidance for Using TaxAss 443 

TaxAss includes detailed descriptions of its constituent scripts including argument 444 

options and descriptions, so users are able to customize their analyses. The most 445 

important decision users make is the cutoff percent identity that determines which 446 

database is used to classify each OTU. If an OTU is above the cutoff (i.e. has high 447 

percent identity to an ecosystem-specific reference sequence) then it will be classified 448 

with the ecosystem-specific database. When the cutoff is higher, fewer OTUs are 449 

classified with the ecosystem-specific database and users run the risk of leaving some 450 

ecosystem-specific OTUs poorly classified by the comprehensive database. If the cutoff 451 

is lower, more OTUs will be classified with the ecosystem-specific database and users 452 

run the risk of overclassifications and misclassifications, and of losing taxonomic 453 
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richness due to underclassifications. Users can decide on a percent identity cutoff at the 454 

beginning and run only one classification, or they can run TaxAss with several cutoffs 455 

and generate versions of Figure 5 to help guide their choice. 456 

  457 

We found that a percent identity cutoff of 98-99% optimized classifications in our test-458 

datasets. The finding that most OTUs match their ecosystem-specific reference 459 

sequences with such high percent identity suggests that the commonly chosen 97% 460 

sequence identity clustering is too coarse to observe fine taxa level dynamics. This is 461 

supported by previous findings that sequence identity-based OTUs can impose artificial 462 

delineations between organisms that affect results differently depending on the lineage 463 

(33), and that sequence identity-based OTUs can contain temporally discordant 464 

sequences (34). We recommend that users planning a taxonomy-centric analysis 465 

classify unique sequences after quality trimming and use fine-level taxonomic 466 

assignments to group their data instead of sequence-identity cutoffs. The classification 467 

step will take longer with a larger number of unique sequences, but users will likely save 468 

computational time overall by not clustering. For users who also want to emphasize 469 

traditional OTU-based analyses, we recommend choosing a finer sequence identity-470 

based OTU definition such as 98 or 99% to best leverage the fine-level classification 471 

provided by TaxAss and a detailed ecosystem-specific database. When OTUs have 472 

been clustered based on sequence identity, we recommend that users choose the same 473 

or lower percent identity cutoff in TaxAss to prevent OTUs with constituent sequences 474 

falling on either side of the percent identity cutoff. We recommend a percent identity 475 

cutoff using similar metrics to those recommended for unique sequences when users 476 
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define OTUs using other finely resolved techniques such as DADA2 denoising (5) or 477 

minimum entropy decomposition (3).  478 

 479 

TaxAss Informs Ecological Analyses 480 

Taxonomy-based analyses allow researchers to compare results across datasets. 481 

Leveraging an ecosystem-specific database for taxonomy assignment results in a high 482 

proportion of fine resolution classifications, and grouping sequences based on these 483 

classifications is a dataset-independent way to describe community composition. The 484 

resulting taxonomic terminology is consistent and comparable between analyses, and 485 

the finely resolved taxonomic groupings enable ecologically informed analyses. TaxAss 486 

can complement OTU-based analyses independent of users' chosen OTU definitions. 487 

Redefining OTUs to compare across datasets is computationally expensive, and is not 488 

possible for datasets created with differing amplification primers. When researchers use 489 

TaxAss to assign fine-level taxonomy to their datasets, colleagues can compare their 490 

results directly, without re-analysis and regardless of primer set. Additionally, taxonomic 491 

nomenclature can also bridge amplicon-based analyses and genomic analyses.   492 

 493 

Leveraging ecosystem-specific databases for taxonomy assignment also improves 494 

researchers’ interpretations of individual datasets. Ecosystem-specific terminology is 495 

more meaningful because ecosystem-specific databases incorporate additional 496 

reference sequences, finer phylogenetic delineations, consistent nomenclature for 497 

uncultured organisms, and monophyletic structures. For example, the dominant lineage 498 

in freshwater is the FreshTrain’s actinobacterial lineage acI, which in Silva is usually 499 
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classified as family Sporichthyaceae.  Although a classification exists for this organism 500 

in both databases, the Silva family is much broader and also includes the separate 501 

FreshTrain lineages acSTL and acTH1. The FreshTrain's finer-level phylogenetic 502 

information on these abundant freshwater actinobacteria is based on manually curated 503 

alignments and ecological information such as their occurrence in different lakes and is 504 

supported by prior work suggesting the clades and tribes are ecologically and 505 

metabolically differentiated (15, 35, 36). The fine-resolution taxonomy assignments 506 

provided by TaxAss and an ecosystem-specific database allow researchers to link their 507 

amplicon datasets with known ecophysiological traits. 508 

 509 

Ecosystem-specific phylogenies that are not fully incorporated into a comprehensive 510 

database are not straightforward to leverage for taxonomy assignment. The FreshTrain, 511 

for example, has diverged from Greengenes since it was created, and it has been used 512 

for taxonomy assignment with inconsistent and sometimes unreliable methods. TaxAss 513 

is a well-documented, open source, and rigorously tested workflow that avoids the 514 

pitfalls of using a small database: forcing incorrect classifications onto sequences and 515 

losing taxonomic richness by leaving unrepresented organisms unclassified. At the 516 

same time, TaxAss achieves the benefits of an ecosystem-specific database: more 517 

meaningful nomenclature, larger proportions of the dataset classified, and finer-518 

resolution classifications.  519 

 520 
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METHODS  521 

How to Use TaxAss 522 

TaxAss replaces only the taxonomy assignment step of users’ preferred amplicon 523 

dataset processing pipeline such as mothur or qiime. TaxAss consists of a series of 524 

scripts using R, Python, bash, mothur, and BLAST that are run from the terminal 525 

command line singly or as a batch file. The input to TaxAss is a quality controlled fasta 526 

file, and if users opt to run the optional percent identity cutoff metrics a relative 527 

abundance table is also required. The output of TaxAss is the fasta file’s sequence IDs 528 

followed by their 7-level taxonomy assignments. Scripts, step-by-step instructions, and 529 

detailed explanations of script argument options are available online at 530 

https://github.com/McMahonLab/TaxAss.  531 

 532 

Percent Identity Recalculation 533 

The naïve Bayesian algorithm used for taxonomy assignment (the Wang classifier) (16) 534 

can overclassify or misclassify OTUs when a close match does not exist in a small 535 

reference database. TaxAss uses the well-accepted Wang classifier, but avoids 536 

classification errors resulting from the effects of a small database by only classifying 537 

sequences for which a close reference exists. The National Center for Biotechnology 538 

Information’s Basic Local Alignment Search Tool (BLAST) (37) is utilized to split the 539 

amplicon dataset into two groups prior to classification: one is classified with the 540 

ecosystem-specific database, the other with the comprehensive database. 541 

 542 
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Blastn queries each OTU sequence against the ecosystem-specific database using the 543 

default megablast settings, which are optimized to find highly similar matches between 544 

sequences longer than 30 bp (24). However, BLAST returns the percent identity of the 545 

highest scoring pair (the “pident”), which does not necessarily include the full length of 546 

the query OTU sequence. OTU sequences are highly similar; a single mismatch can 547 

change a classification, so mismatches at the ends of OTU sequences (in the 548 

“overhang”) that BLAST leaves out of the alignment must be included in the percent 549 

identity cutoff used for classification.  Therefore, the BLAST pident is recalculated to a 550 

full-length percent identity with the following equation: 551 

 552 

 percent identity =  
pident × length

qlen+(length−(qend−qstart+1) 
    (Equation 1) 553 

 554 

where “pident” is the percent identity returned by BLAST, “length” is the length of the 555 

alignment, “qlen” is the query length, “qend” is the query end, and qstart is the query 556 

start. All of these parameters are returned by BLAST output format 6, and detailed 557 

descriptions of what they are, the equation derivation, and an example alignment and 558 

calculation are included in Supplemental Document 1. 559 

 560 

The recalculation to full-length percent identity is conservative; all query nucleotides not 561 

included in the alignment (nucleotides in the “overhang”) are considered mismatches. 562 

This means that it would be possible to exclude an OTU from the ecosystem-specific 563 

classification when its true percent identity is above the cutoff due to matches in 564 

unaligned overhangs. An example of this situation is illustrated in Supplemental 565 
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Document 1. When the highest scoring BLAST alignments contain matches on the 566 

overhangs, some of the lower-scoring alignments will be longer, and therefore have a 567 

higher recalculated percent identity. To correct for this TaxAss recalculates the percent 568 

identity of the top five blast hits and uses the best one for the cutoff decision. TaxAss 569 

also shows users the distribution of chosen hits, so that settings can be re-evaluated if 570 

BLAST is not primarily returning hits that have the best recalculated percent identities.   571 

 572 

Cutoff Choice  573 

OTUs with percent identities greater than or equal to the users’ specified cutoff are 574 

classified with the ecosystem-specific database using the Wang classifier as 575 

implemented by mothur.  The remaining OTUs are classified with the comprehensive 576 

database, also using the Wang classifier. The choice of a percent identity cutoff is left to 577 

users so that they can balance their choices based on the structures of their datasets 578 

and their plans for analysis. If the percent identity cutoff is too low, dissimilar OTUs will 579 

be classified in the ecosystem-specific database and may be left unclassified or forced 580 

into incorrect classifications, but if the percent identity cutoff is too high, OTUs similar to 581 

the ecosystem-specific database will be classified by the comprehensive database and 582 

may end up poorly classified.  583 

 584 

Users have the option to choose a cutoff percent identity at the start, or they can 585 

classify their datasets with multiple cutoffs and TaxAss will provide metrics to guide their 586 

decisions. These metrics include versions of Figure 5, which shows the cutoff choices 587 

that maximize the proportion of dataset classified at different taxa levels. 588 
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 589 

As an additional optional check, users can also classify their datasets with only the 590 

comprehensive database and then compare the classifications. TaxAss provides 591 

metrics to check for coarse-resolution misclassifications. Phylum- and class-level 592 

classifications are more reliable when assigned by a large comprehensive database that 593 

includes more diversity, so if ecosystem-specific classifications at these coarse taxa 594 

levels disagree with the comprehensive database’s assignments it suggests that the 595 

percent identity cutoff is too low. Only these coarse levels can be used to check for 596 

misclassifications because at finer taxonomic levels too many OTUs end up unclassified 597 

by the comprehensive database to compare assignments. 598 

 599 

Data Availability and Processing 600 

The freshwater tag datasets used in this paper are all publicly available on the National 601 

Center for Biotechnology Information’s (NCBI) Sequence Read Archive (SRA). The 602 

accession numbers are: Lake Mendota (ERP016591) (34), Trout Bog (ERP016854) 603 

(22), Lake Michigan (SRP056973) (20), and Danube River (SRP045083) (21). The Lake 604 

Michigan and bog project accessions include additional sample types, so only the Lake 605 

Michigan and Trout Bog samples were used. The mouse gut dataset is the full version 606 

of the example data used by mothur’s miSeq SOP, and is available on the mothur 607 

website (https://www.mothur.org/wiki/MiSeq_SOP) (23). The Marathonas Reservoir 608 

clone library dataset is available from GenBank under accession numbers GQ340065–609 

GQ340365 (19). The Marathonas Reservoir taxonomy determined by manual alignment 610 

to the FreshTrain is available from www.github.com/McMahonLab/TaxAss. 611 
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 612 

The taxonomy databases used in this paper are also publicly available. The Freshwater 613 

Training Set (FreshTrain) version used was FreshTrain30Apr2018SILVAv132 (15), 614 

which includes 1,318 freshwater heterotrophic bacterial references and is available from 615 

www.github.com/McMahonLab/TaxAss. The Silva database version used was version 616 

SSU 132 NR 99 (www.arb-silva.de) (8), which includes 213,119 bacterial and archaeal 617 

reference sequences clustered to 99 percent identity to avoid repeat references. A 618 

mothur-formatted version of this database obtained from 619 

www.mothur.org/wiki/Silva_reference_files was used for all analyses (accessed January 620 

2018). Further details on download, versions, and formatting can be found in 621 

Supplemental Document 2 and in the detailed directions provided at 622 

www.github.com/McMahonLab/TaxAss.   623 

 624 

Quality control of tag dataset fastq files was performed according to mothur's MiSeq 625 

SOP (23, accessed September 2017) through the chimera checking step with mothur 626 

version 1.39.5 (17). The resulting unique sequences were defined as OTUs for all 627 

further analyses. The single-end sequencing datasets (Lake Mendota and Trout Bog) 628 

were also pre-processed with vsearch version 2.3.4_osx_x86_64 (38) to trim to uniform 629 

lengths and remove low quality sequences with > 0.5 expected errors. During TaxAss, 630 

the percent identity cutoff used for all datasets was 98%, and the Wang classifier’s 631 

bootstrap confidence was set at 80% for all classifications. Batch files that reproduce all 632 

download, quality control, and TaxAss processing for each dataset are available in 633 

Supplemental Document 2.  634 
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 635 

Manual alignment of the full-length Marathonas Reservoir clone library sequences to the 636 

FreshTrain database was performed using the program ARB (39). Chimeras were 637 

manually identified and removed from the analysis, and sequences without FreshTrain 638 

nomenclature were labelled unclassified. Tags were simulated by trimming full-length 639 

sequences to common primer regions with mothur version 1.39.5 (17). The primers 640 

used were V4 (515F: GTGCCAGCMGCCGCGGTAA, 806R: 641 

GGACTACHVGGGTWTCTAAT) (40), V4-V5 (515FB: GTGYCAGCMGCCGCGGTAA, 642 

926R: CCGYCAATTYMTTTRAGTTT) (41), and V3-V4 (341F: 643 

CCTACGGGNGGCWGCAG, 805R: GACTACHVGGGTATCTAATCC) (42). A list of the 644 

processing commands used to trim sequences to the primer regions and classify them 645 

is available in Supplemental Document 3. 646 

 647 
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TABLE CAPTIONS AND FOOTNOTES 806 

 807 

Table 1. Classification of the Lake Mendota dataset* using Silva alone, the 808 

FreshTrain alone, or using TaxAss to leverage both databases. 809 

 810 

aPercent classified = total reads classified / total reads in dataset x 100%  811 

bTaxonomic Richness = total unique classifications  812 

*Versions of this table for each tested dataset can be found as Supplemental Table 2. 813 

 814 

Table 2. Agreement between BLAST and recalculated percent identities. 815 

 816 

aCalculations performed only on sequences above listed recalculated percent identities 817 

be.g. 97.8% of BLAST's first hits also had the highest recalculated percent identity 818 

 819 

FIGURE LEGENDS 820 

 821 

Figure 1. TaxAss Conceptual Diagram 822 

TaxAss separates OTUs into two groups that are classified separately and then 823 

recombined. OTUs similar to any ecosystem-specific reference sequences are 824 

classified using the ecosystem-specific database, otherwise they are classified by the 825 

comprehensive database. BLAST is used to split the OTUs into groups (left arrows), 826 

and the Wang classifier is used to assign taxonomy (right arrows). 827 

 828 
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Figure 2. TaxAss validation with tags simulated from full-length 829 

Marathonas Reservoir clone libraries. 830 

Tags simulated by trimming full-length sequences to the V4 region were classified by 831 

TaxAss, and the resulting classifications were compared to "correct" classifications 832 

determined by manually aligning the full-length sequences to the FreshTrain. A and B: 833 

Correct classifications are in green, lost ecosystem-specific classifications are in yellow, 834 

and incorrect classifications are in red. A: Number of unique sequences in each 835 

classification category at fine-resolution taxa levels. B: Examples of classifications that 836 

fit into each classification category. Tabular results from this and additional amplicon 837 

region simulations are available in Supplemental Table 1.     838 

 839 

Figure 3. TaxAss performance compared to Silva-only performance. 840 

A and B: Left bars represent the Silva-only classification and right bars represent the 841 

TaxAss classification that leveraged both Silva and the FreshTrain. Within the right 842 

bars, red reads were classified by the FreshTrain using TaxAss and were left 843 

unclassified using only Silva; yellow reads were classified by the FreshTrain using 844 

TaxAss but received Silva classifications using only Silva, and grey reads were 845 

classified by Silva when using TaxAss. 846 

A: In the Lake Mendota dataset, TaxAss leveraged the FreshTrain and Silva to achieve 847 

improved fine-resolution classifications. B: TaxAss achieved improvements in a range 848 

of freshwater datasets despite the FreshTrain’s primary focus on temperate lake 849 

epilimnia. Few changes in classification were observed in the mouse gut control. 850 

Versions of this figure across all datasets and taxa levels can be found in Supplemental 851 

Figure 1. 852 
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 853 

Figure 4. TaxAss performance compared to FreshTrain-only performance. 854 

A and B: Lake Mendota reads represented by blue bars were incorrectly classified as 855 

red bars in the FreshTrain-only classification. Rank order of the bars follows the 856 

TaxAss-classification rank abundances. Only taxa with at least 0.5% relative abundance 857 

are included, and at lineage level the number of bars displayed is further truncated to 858 

20. A: TaxAss maintained phylum richness (blue bars) by classifying phyla using Silva 859 

when they are not included in the FreshTrain . B: TaxAss prevented lineage-level 860 

inaccuracies from misclassifications and overclassifications (red bars over known taxa), 861 

and lineage-level underclassifications (red bars over "unclassified" taxa). Versions of 862 

this figure across all test-ecosystems can be found in Supplemental Figure 2. 863 

 864 

Figure 5. Percent identity where classifications are maximized. 865 

The percent of reads classified when using different percent identity cutoffs to separate 866 

out ecosystem-specific OTUs, shown for each freshwater dataset across taxa levels. 867 

Faint vertical lines highlight the 98 percent identity chosen for the analyses in this paper. 868 

OTUs are predominantly unclassified at fine resolution if they are placed in the wrong 869 

classification group, so this visualization is generated by TaxAss to help users choose a 870 

percent identity cutoff appropriate for their dataset.  871 

 872 

LIST OF SUPPLEMENTAL DOCUMENTS 873 

 874 
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Supplemental Table 1. Simulated V4, V4-V5, and V3-V4 tag classification 875 

accuracy as determined by comparison to their full-length alignment-based 876 

taxonomies. 877 

 878 

Supplemental Table 2.  Classification of all tested datasets using Silva 879 

alone, the FreshTrain alone, or using TaxAss to leverage both databases. 880 

(A version of Table 1 for each dataset used in this manuscript.)  881 

aPercent classified = total reads classified / total reads in dataset x 100%  882 

bTaxonomic Richness = total unique classifications  883 

 884 

Supplemental Figure 1a. TaxAss compared to Silva-only performance. (A 885 

version of Figure 3a for each dataset used in this manuscript.) 886 

 887 

Supplemental Figure 1b. TaxAss compared to Silva-only performance. (A 888 

version of Figure 3b for each taxa level.) 889 

 890 

Supplemental Figure 2. TaxAss performance compared to FreshTrain-only 891 

performance. (A version of Figure 4 for each dataset used in this 892 

manuscript.) 893 

Versions of Figure 4 for each test-dataset. 894 

 895 
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Supplemental Figure 3. Importance of percent identity recalculation. 896 

The phylum Cyanobacteria exemplifies why the percent identity recalculation is 897 

necessary. The ecosystem-specific FreshTrain database contains no cyanobacterial 898 

references, so cyanobacterial reads serve as a control for something that should be 899 

classified in the comprehensive Silva classification group. However, BLAST returned 900 

hits with high percent identities for cyanobacterial OTUs due to including short, high 901 

sequence identity partial alignments (red bars). After the TaxAss percent identity 902 

recalculation, the cyanobacterial OTUs had lower percent identities and none were 903 

included in the FreshTrain classification group (grey bars). 904 

 905 

Supplemental Document 1. BLAST percent identity recalculation. 906 

This 3-page document defines the blast terminology, derives the equation to recalculate 907 

percent identity, and provides an example alignment and calculation. 908 

 909 

Supplemental Document 2. Data Processing Batch Files. 910 

Directions for reproducing all data processing in this paper. These commands pair with 911 

a zip file hosted on the TaxAss github repo, which includes the folder structure and 912 

scripts used to download and process all tag datasets used in this manuscript..The 913 

folders include batch scripts that download each dataset, batch scripts that quality 914 

control each dataset, and batch scripts that perform TaxAss on each dataset, along with 915 

the versions of TaxAss scripts used in this paper.  916 

 917 
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Supplemental Document 3. Tag Simulation Processing Commands. 918 

This html file explains in more detail the TaxAss validation using tags simulated from 919 

full-length Marathonas clone library data. It also includes all commands necessary to 920 

reproduce the simulation.  921 
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