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Abstract 

 
Emotions involve many cortical and subcortical regions, prominently including the amygdala.  It 

remains unknown how these multiple network components interact, and it remains unknown how they cause 
the behavioral, autonomic, and experiential effects of emotions.  Here we describe a framework for combining 
a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, 
inferring causal structure from fMRI data (causal discovery).  We outline a research program for investigating 
human emotion with these new tools, and provide initial findings from two large resting-state datasets as well 
as case studies in neurosurgical patients with electrical stimulation of the amygdala.  The overarching goal is 
to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, 
and then to further constrain these models with direct stimulation of specific brain regions and concurrent 
fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical 
hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain 
stimulation, and could be extended to animal studies that use combined optogenetic fMRI. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2017. ; https://doi.org/10.1101/214486doi: bioRxiv preprint 

https://doi.org/10.1101/214486


3 
 

 
Introduction 

 
How do networks of brain structures generate human emotions?  Affective neuroscience has 

documented a wealth of data, primarily from activations observed in neuroimaging studies in response to 
emotional stimuli.  This has provided us with an inventory of brain structures that participate in emotions, but 
little knowledge of their precise causal role. Studies in humans with direct electrical stimulation of structures 
such as the amygdala have shown causal links between brain regions and emotional responses, but these 
additional findings still leave us with scant knowledge of how emotions are implemented at the network level 
in the brain. The question is pressing for translational reasons as well.  Deep-brain stimulation is being 
explored for a large number of neurological and psychiatric diseases, but with quite variable success.  There 
are clear case studies of remarkable amelioration of depression, for instance—but only in some cases, 
limiting the generalizability of the results (Kennedy and al, 2011; Mayberg et al., 2005). 

We think of emotions as functional, central brain states defined by their cause-and-effect relationships 
with other brain processes, and with stimuli and behaviors.  Which stimuli reliably cause emotions?  How do 
emotions in turn cause behavioral responses?  And -- the topic of this paper -- how do different brain regions 
causally interact with one another during emotion processing?  The basic problem can be sketched in relation 
to the amygdala as schematized in FIGURE 1.  The amygdala is activated by threat-related stimuli, lesions of 
the amygdala impair threat-related responses and (in humans) aspects of the experience of fear, and 
stimulation of the amygdala produces defensive behaviors (very roughly).  Yet we do not understand the 
causal mechanisms that are responsible for these observations.  Clearly, it is meaningless to say that “fear is 
in the amygdala”.  The amygdala helps to orchestrate the many different causal effects of a fear state.  But to 
understand these effects we need to map the causal relations between the amygdala and other brain regions, 
through which such effects are mediated.  We know almost nothing about these causal relations in the 
human brain. 

 
Figure 1. Amygdala connectivity with other structures. Schematized here as a very simplified causal 

graph are some of the main known interactions between the amygdala and cortical (prefrontal and temporal 
cortex) as well as subcortical (periaqueductal gray) structures, each of which in turn cause different 
components of an emotion that we can measure (which are hypotheses in this figure, just to make the 
conceptual point).  Note that in the present paper we are omitting the periaqueductal gray for methodological 
reasons (insufficient spatial resolution in the parcellation scheme used for analysis of our MRI datasets), and 
we are focusing just on the brain networks, and not yet on the emotion measures (see FIGURE 4). 

 
Studies in animals have begun to dissect the circuits responsible for processing emotion, and of 

course offer methodological tools that are unavailable in humans.  For instance, experimental manipulation of 
brain activity in rodents and monkeys has provided insights into the causal roles of particular circuits, such as 
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the extended amygdala (Amaral and Adolphs, 2016; Shackman and Fox, 2016) and the hypothalamus (Lin et 
al., 2011).  Electrophysiological measures permit single-neuron resolution in the recordings as well.  And 
behavioral dependent measures, while they need to be interpreted carefully, have given us strong evidence 
for how these specific neuronal populations can cause specific emotional behaviors related to fear and 
aggression. One main limitation with these animal studies has been achieving a whole-brain field-of-view.  
Although specific circuits can be manipulated, e.g. through optogenetic or chemogenetic activation, the 
downstream effects are typically measured in only a very small subset of brain regions.  One exciting future 
combination of methods is concurrent optogenetic stimulation with whole-brain fMRI (Lee et al., 2010; Liang 
et al., 2015), or with ultrasound imaging. This source of results will be a critical complement to the human 
studies in the future (see DISCUSSION). However, the homology to human emotions remains another main 
limitation (Adolphs and Anderson, 2018). 

Elucidating the causal networks that underlie emotion processing is one of the most important but also 
most difficult challenges faced by affective neuroscience.  It is important because only an account at the level 
of causal mechanisms can really explain brain processing, and because only such an account can yield 
insights that allow us to manipulate brain function (for instance, with interventions aimed to treat mood 
disorders).  Yet it is difficult because almost all data from the human brain are correlational in nature, making 
it unclear how to infer causality from typical neuroimaging and electrophysiological studies.  Here we 
demonstrate the promise of a new technique – concurrent electrical stimulation and fMRI – and a new 
method in causal discovery – the fast greedy equivalence search – to obtain large-scale causal models that 
describe how different brain regions interact.  We begin by briefly reviewing some of the findings from 
affective neuroscience, with an emphasis on the amygdala, and then outline the logic of causal discovery, 
before presenting our approach and pilot data to support it. 

Emotion and the amygdala 
Data from lesion studies and fMRI in humans, and from a range of approaches in animals, 

consistently implicate the amygdala (FIGURE 2), the medial prefrontal cortex, the insula, the hypothalamus, 
and the periaqueductal gray in emotions. These structures function as components of considerably more 
distributed systems, and attempts to localize particular emotions (fear, sadness, etc.) to any one of these 
structures have been largely unsuccessful (Lindquist et al., 2012), even though specific emotions can be 
classified from distributed activation patterns in neuroimaging studies (Kragel and LaBar, 2015; Nummenmaa 
and Saarimäki, 2017; Saarimäki et al., 2015; Wager et al., 2015). While debates about how to interpret the 
data thus far remain (Adolphs, 2017a, b; Barrett, 2017a, b), neuroimaging and electrophysiological findings 
have supported a picture of emotion states implemented by distributed cortical and subcortical circuits. A 
large open question is thus how to understand the functional role played by specific brain structures: what 
exactly does a structure such as the amygdala contribute to processing fear (or any other emotion) and at 
what point in the distributed processing of that emotion does it exert meaningful causal effects on the other 
components of the network?  

  The amygdala together with the bed nucleus of the stria terminalis (Fox and Shackman, 2017) 
appears to serve a role as an organizing center in these circuits, coordinating the multiple cognitive, 
autonomic, and behavioral effects of an emotion (Davis, 1992; Whalen and Phelps, 2009). Both the known 
structural connectivity of the amygdala (in monkeys and rodents) and structure-function relationships in 
particular tasks, such as Pavlovian fear conditioning, strongly support this view (FIGURE 3). Yet the direct 
evidence for causal relationships is nearly nonexistent in humans, and remains very sparse even in animals.  
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While lesion studies argue for the necessary role of a brain structure, they do not elucidate the neural 
mechanisms through which the lesioned tissue contributes to normal function. Lesions of the amygdala, in 
animals as well as humans (Amaral and Adolphs, 2016) result in impairments in fear processing.  In humans, 
these can include strikingly selective deficits in the recognition of fear from facial expressions (Adolphs et al., 
1994) and in the conscious experience of fear to exteroceptive threats (Feinstein et al., 2011) but not to 
certain interoceptive stimuli (Feinstein et al., 2013).  However, studies in monkeys have shown that the 
causal consequence of an amygdala lesion on the brain is extremely complex, including widespread network 
changes in many other regions (Grayson et al., 2016).  So although amygdala lesions have some effect on 
emotional behaviors and conscious experience, understanding the causal mechanisms explaining this effect 
requires additional measures.  Indeed, some current theories of the conscious experience of emotion argue 
that the amygdala’s role in feelings and emotions is mediated entirely through cortical structures (LeDoux and 
Brown, 2017). Similarly, lesions of the ventromedial prefrontal cortex (vmPFC) can lead to alterations in 
emotional behavior, such as impaired autonomic responses (Bechara et al., 1996), dysregulation of anger 
(Koenigs and Tranel, 2007), and atypical moral judgment (Koenigs et al., 2007).  Once again, it is difficult 
from this to infer the causal mechanisms, which may involve additional brain regions with which the vmPFC is 
connected.  For instance, lesions of the vmPFC result in abnormal activation of the amygdala when lesion 
patients undergo fMRI (Motzkin et al., 2015).. 

Thus almost all of the evidence for the causal mechanisms behind emotions is very indirect and 
tenuous.  It derives from a combination of structural connectivity studies in animals (the basis for most of 
FIGURE 3), piecemeal assembly of evidence across very different studies in the literature (much of the basis 
of FIGURE 2), or flawed inference of causation from correlation (nearly everything based on neuroimaging 
alone, or electrophysiology alone).  While this problem is well known, it is also well ignored, in the hope that 
sheer accumulation of correlative data of various kinds could in and of itself provide us with an understanding 
of the causal mechanisms. 

 

 
 
Figure 2. Meta-analytic mapping of brain activations for emotion.  Neurosynth maps for the keyword 
“emotion” yielded results from 790 fMRI studies (www.neurosynth.org).  In the top panels (in blue) are the 
“forward inference” maps (all activations above a statistical threshold having to do with “emotion”).  However, 
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most or all of these regions are also activated in many other studies that do not have anything to do with 
emotion.  A more specific analysis would ask which regions were activated only by those studies containing 
the keyword “emotion”, and not in studies that did not contain the word “emotion”.  This “reverse-inference” 
map is shown in the bottom panels (in red).  Both analyses highlight the prevalence of reporting the 
amygdala, and to some extent the prefrontal cortex.  This large bias in the literature has resulted in a strong 
belief that the amygdala is causally involved in emotion, a conclusion that is not yet warranted from the extant 
data. 

 
Here we describe a research program that could take us from these heterogeneous beginnings to a 

principled approach for investigating causal architecture for emotions.  Which brain regions are involved, how 
are they causally related to one another, and how do they in turn cause particular components of emotions? 
We suggest (and will show below) that parts of this broad and ambitious aim can in fact already be addressed 
with human neuroimaging data alone, using a novel causal discovery approach which we detail here. Parts of 
the aim also require new methods that make possible direct causal perturbation in the human brain, which we 
have recently developed (Oya et al., 2017). We provide initial results and a workflow for generating causal 
models from both of these types of data. 

 

 
 
Figure 3. Connectivity of the central nucleus of the amygdala.  The illustration summarizes the function of 
this amygdala nucleus in coordinating emotion components through its multiple causal effects on other brain 
regions. Note that the picture is in fact considerably more complicated, since the central amygdala also 
closely interacts with the adjacent bed nucleus of the stria terminalis in triggering the target effects shown 
here (Shackman and Fox, 2016).  Reproduced from (Davis, 1992). 

Causal Discovery 
The range of methods for analyzing brain function at the network level vary from essentially 

descriptive (such as looking at correlations between regions, i.e., standard functional connectivity 
approaches) to methods for inferring parameters of pre-specified models (such as dynamic causal modeling 
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(DCM) (Friston, 2011; Friston et al., 2013)). All of these have tradeoffs: standard “functional connectivity” 
from correlations does not provide a causal model; DCM is limited by our knowledge of the physiological 
basis of the BOLD response, the lack of a search algorithm over models, and poor scalability. In its classical 
implementation, for instance, DCM can only test very simple models (10 – 20 nodes) that are too restrictive 
for understanding realistic whole-brain networks (Smith, 2012; Smith et al., 2011). It should be noted that 
there are continuous improvements, such as the novel regression-DCM approach, which has been scaled to 
66 regions with 300 free parameters (Frässle and al, 2015; Frässle and al., 2017).  But the primary challenge 
for DCM remains unsolved:  how does one constrain reverse inference and search efficiently over candidate 
models given measured data? The number of candidate DCM models is enormous even for a small number 
of nodes, and there exists no efficient algorithm to search over all of them. The sweet spot, we believe, lies in 
the middle between standard functional connectivity approaches and physiologically-based models like DCM: 
causal modeling that takes advantage of the strengths of current BOLD-fMRI, and that enables the 
integration of experimental and observational data.  

Causal models can be thought of as generative models that make predictions about what we might 
observe and about how we might achieve certain effects through experimental manipulation (e.g., brain 
stimulation to treat a mood disorder) (Pearl, 2009; Spirtes et al., 2000b). The usual way to depict the causal 
relationships between variables (causes from one brain region to others, in our case) is with a drawing called 
a causal graph.  FIGURE 3 above could be interpreted this way: the amygdala causes effects in the brainstem 
and hypothalamus which in turn cause effects in brain and behavior that are our dependent measures. Direct 
causal connections are taken to be relative to the set of variables depicted, thus a chain of three variables 
ABC without a direct arrow from A to C would indicate that B causally screens off A from C, that is, B 
completely mediates the causal effect of A on C.  In terms of brain structures, we would think of this as region 
A providing inputs to B which in turn provides inputs to C, but without any direct connections from A to C. 

Temporal order is often taken to be fundamental to causality, but for causal discovery it can be 
misleading. Intuitively, we would expect the cause A to precede its effect B, but if both A and B are effects of 
a common cause C, then B may well take longer to manifest itself than A, giving the impression as if A 
caused B. For causal discovery from fMRI data, actual temporal order of action potential events cannot be 
resolved, since these operate at a millisecond range that exceeds the temporal resolution of hemodynamic 
measures.  Moreover, if one considered temporal order (which some analyses of BOLD-fMRI indeed attempt; 
(Friston et al., 2013)), one must take into account the interactions between the sampling rate and the rate at 
which the true underlying process operates, as well as regional differences in hemodynamic coupling. 
Appropriate temporal resolution and the absence of unmeasured common causes are the key assumptions 
underlying a valid inference to causal relations using Granger Causality (Granger, 1969). Concerns about 
these, among others, suggest that – though it has been used with fMRI data – Granger Causality is not well-
suited for the causal analysis of fMRI (Smith 2011)(Stokes and Purdon, 2017).  

Instead, modern causal discovery algorithms disregard temporal order and use the independence 
structure observed in the data in order to infer the underlying causal structure (see (Eberhardt, 2017) for an 
accessible brief review). The general idea of using the independence structure for causal inference goes 
back to the Principle of Common Cause (Reichenbach, 1956): if two variables are dependent, then either one 
causes the other, or vice versa, or there is a common cause of the two variables. Conversely, if two variables 
are independent, then they cannot (in general) be causes of one another or effects of a common cause. The 
independence and dependence structure found in data can thus be used to constrain candidate causal 
models that would explain the observed data.  
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The simplest case in which a fully oriented causal structure can be uniquely determined from 
observational data is when there are three variables A, B and C, and A and C are probabilistically 
independent, but A and B, and C and B are dependent. If there are no unmeasured confounders, then this 
independence structure provides a signature that uniquely identifies ABC as the causal graph connecting 
the variables. More generally, it is well understood how to use the observed independence structure over the 
variables to constrain the underlying causal structure. Even if the causal structure cannot be uniquely 
identified, the set of equivalent causal structures can be identified (the equivalence class consists of all 
causal structures consistent with the observed data). Our results below demonstrate the power of this 
approach, using a new variant of a causal discovery algorithm (Ramsey et al., 2016) that scales to large sets 
of resting-state fMRI data (here, the Human Connectome Project dataset and the MyConnectome Project 
dataset).  Our variables (the nodes of the causal graph; A,B,C etc.) will be the brain regions into which a 
whole brain is parcellated, and whose causal relations are the question of interest. 

It is worth contrasting the results of the causal inference algorithm with purely correlation-based 
techniques commonly applied to resting-state fMRI data. If the true causal structure has the form ABC, 
then the Pearson correlation matrix will have all non-zero entries except for the correlation of A and C. 
However, the inverse correlation matrix will have no non-zero entries, since all partial correlations conditional 
on all remaining variables are non-zero; in particular A is not independent of C given B. However, if the true 
causal structure is ABC, then all Pearson-correlations will be non-zero, but the partial correlation of A 
and C given B is zero. As the two simple examples above indicate, an adjacency structure based on either 
the Pearson correlation matrix, or on the inverse correlation matrix (partial correlation), is not a representation 
of the causal structure. Causal inference algorithms disentangle exactly what inferences can be drawn about 
the presence and absence of causal connections from the independence structure (see also FIGURE 7). 

Another way of inferring causal models is through experimental intervention.  Whereas the approach 
above relies on conditional probabilities that are merely observed, such as analysis of resting-state fMRI 
data, experimental intervention corresponds to the conditional probabilities produced through what Judea 
Pearl coined as the “do” operator (Pearl, 2009).  This is the type of data often sought in animal studies of 
emotion, for instance through optogenetic manipulation of the activity of a node (brain region) with full or 
partial experimental control.  This concept also underlies the essence of randomized controlled trials: by 
randomizing subject assignment to treatment group, one is experimentally intervening and (in the large 
sample limit) breaking all confounding causes (Fisher, 1990).  Once again, we can think of wanting to infer 
AB in a brain (with A and B as distinct regions of interest) where there are many other possible causes at 
work.  This time we experimentally activate A to see if we observe a change in B.  To the extent that the 
activation fully controls A, this experimental manipulation amounts to breaking all the causal effects that could 
act on A (all the arrows going into A), in particular those that might act as confounders in an observational 
setting.  As we will show in our RESULTS below, in humans this can now be accomplished through the rare 
opportunity of electrically stimulating the amygdala while measuring whole-brain fMRI. While the electrical 
stimulation will not fully control the pattern of activation, it can still help us to infer causal relationships with 
respect to the amygdala: It can help confirm that the relations detected in the observational dataset (such as 
resting-state fMRI) are not spurious, and possibly even help to orient causal arrows that could not be oriented 
from merely observational data. 

In sum, the particular causal discovery algorithm that we used takes the observational (e.g., resting-
state fMRI) data and tries to identify a sparse graph structure that accounts for all of the dependencies (the 
standard Pearson correlation matrix of the data). Our subsequent direct electrical stimulation experiments 
provide a completely different, interventional, set of data for comparison, validation, and possible further 
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inference and refinement of the causal graph.  The final result leverages at least three applications.  First, it 
can be used to generate hypotheses, and interpret data, from many fMRI studies: studies that use emotional 
stimuli to produce brain activations, for example, could now be interpreted in terms of a causal mechanism 
implemented among the brain regions that instantiates an emotion state.  Second, the results could be used 
to make neuroanatomical predictions: in their strongest interpretation they imply actual anatomical 
connectivity corresponding to the edges in the graph.  And third, they make predictions about the effects of 
interventions through deep brain stimulation—predictions that could be used for strategically guided 
treatment of mood disorders.  All of these are future goals of the framework we present here.  The METHODS 
below outline our overall approach, the RESULTS provide preliminary findings, and the DISCUSSION notes the 
limitations and hurdles still remaining to be solved (cf. FIGURE 4). 

 
Methods 

Our approach is roughly hierarchical in nature (FIGURE 4) and consists of three main steps.  These 
three steps are based on the analysis of existing resting-state data from large databases, comparison to 
resting-state data from individual neurosurgical patients, and comparison with the patient’s graph using direct 
electrical stimulation-fMRI data from that patient.  Future extensions beyond the scope of the present paper 
include (in red): formally integrating information from the large datasets as prior constraints for analysis of 
each patient’s data; comparing, and combining, results across multiple patients; and leveraging the results 
into hypotheses that could be tested with additional experiments and additional methods—hypotheses about 
anatomical connectivity, about individual differences, and about clinical intervention efficacy. 

Step 1: Causal inference from observational resting-state fMRI data with a large number of 
samples  

We first searched for causal graphs using observational data alone, taking advantage of large publicly 
available, high quality datasets.  

Datasets. We used data from two public repositories, the 1200 subjects release of the Human 
Connectome Project (HCP) (Van Essen et al., 2013) and the MyConnectome Project (MCP) (Laumann, 2015; 
Poldrack, 2015).  Both of these feature resting-state fMRI data with a large number of samples. They yield 
largely complementary information: the HCP provides data from almost 1200 subjects, which we can 
combine to de-emphasize individual-subject idiosyncrasies and thus extract a network structure with the 
highest level of generalizability; by contrast, the MCP data comes from a single subject scanned almost 100 
times over the course of one year and allows us to derive a very reliable causal graph at the single subject 
level, with inevitable idiosyncrasies compared to the group-level graph derived from the HCP data. 

Acquisition parameters and preprocessing of the resting-state fMRI data in both projects are 
described in their respective original publications (HCP, (Glasser et al., 2013); MCP, (Poldrack, 2015)). 
Briefly, in the HCP dataset, each subject underwent two sessions of resting-state fMRI on separate days, 
each session with two separate 15 minute acquisitions generating 1200 volumes (customized Siemens Skyra 
3 Tesla MRI scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel size = 2 mm isotropic, 72 slices, 
matrix = 104 x 90, FOV = 208 mm x 180 mm, multiband acceleration factor = 8). The two runs acquired on 
the same day differed in the phase encoding direction (left-right and right-left), which leads to differential 
signal intensity especially in ventral temporal and frontal structures. We used only the right-left phase 
encoding dataset, since this optimized signal in the right medial hemisphere, enabling the best comparisons 
to the electrical stimulation of the right amygdala in the neurosurgical patient #384 we describe further below. 
For the MCP dataset, a single subject underwent one 10 minute resting-state run, generating 518 volumes in  
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Figure 4. Proposed framework for causal analysis of emotion networks.  In black, analyses presented in this 
manuscript; in red, future extensions outside the scope of the present paper. Abbreviations:  HCP: Human 
Connectome Project dataset.  MCP: MyConnectome Project dataset.  rs-fMRI: resting-state fMRI. es-fMRI: 
concurrent electrical stimulation with fMRI. 

 
each of 89 “production” sessions acquired on separate days (Siemens Skyra 3-Tesla MRI scanner, TR = 
1,160 ms, TE = 30 ms, flip angle = 63°, voxel size = 2.4 mm x 2.4 mm x 2.0 mm, 68 slices, inter-slice 
distance factor = 20%, axial-coronal tilt 30 degrees above AC/PC line, matrix = 96 x 96, FOV = 230 mm FOV, 
multiband acceleration factor = 4). The HCP data was downloaded in its minimally preprocessed form, i.e. 
after motion correction, B0 distortion correction, coregistration to T1-weighted images and normalization to 
MNI space; while the MCP data was downloaded in its fully processed form (in native space), including 
minimal preprocessing and followed by resting-state specific denoising as described in (Laumann, 2015): 
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censoring of frames with framewise displacement > 0.25 mm; regression of signals from whole brain, white 
matter and ventricles and their derivatives; regression of 24 movement parameters derived by Volterra 
expansion; and bandpass filtering 0.009 < f < 0.08 Hz. For consistency with MCP data, we replicated the 
same denoising pipeline (minus frame censoring) in Python (v2.7) and applied it to the minimally 
preprocessed data from the HCP. 

Brain parcellation. The first step in a network analysis of the brain is the definition of its nodes 
(Sporns, 2013). There are two main approaches to defining network nodes in the brain: nodes may be a set 
of overlapping, weighted masks, e.g. obtained using independent component analysis (ICA) of BOLD fMRI 
data (Smith et al., 2013); or a set of discrete, non-overlapping binary masks, also known as a hard 
parcellation. Hard parcellations come in many flavors, in terms of what data they are based on (anatomical 
data only, functional data only, or multi-modal), and whether they are group-based or individually-derived. 
Parcellating the brain is an area of intense investigation, and significant progress has been made in recent 
years (Glasser et al., 2016; Gordon et al., 2014).  We eventually aim to utilize the most recent developments 
in surface-based analysis and multi-modal surface matching (MSM) (Robinson et al., 2014), which divides the 
brain into about 400 regions. (Indeed, a future aim would be to use voxelwise data for the analyses we 
describe below, and to use causal discovery results to aggregate these into larger parcels based on their 
causal connectivity). However, applying these methods to patient data with implanted electrodes is difficult 
because MSM requires several types of data (such as high-resolution anatomical scans for precise surface 
reconstruction, field maps for precise co-registration of functional and anatomical data, and companion task 
and rest scans), which are not always available due to clinical constraints. Here, in this proof-of-concept 
paper, we used a more common volumetric parcellation in MNI space that divides the brain into 110 regions, 
based on the classical Harvard-Oxford anatomical atlas (http://www.cma.mgh.harvard.edu/fsl_atlas.html). 
Specifically, we derived maximum probability labels from the probabilistic Harvard-Oxford cortical and 
subcortical atlases distributed with FSL, using a 25% probability threshold for label assignment. We omitted 
one parcel from the Harvard-Oxford atlas, the brainstem, since this treats the entire region as a single 
functional object, a parcellation that we felt was too coarse for our purposes.  See SUPPLEMENTARY TABLE 1 
for the complete list of parcels we used. 

Timeseries Extraction and Data Selection. HCP data was already transformed to MNI space (the 
same space as the Harvard-Oxford parcellation that we used) by the minimal preprocessing pipeline (Glasser 
et al., 2013). We derived a gray matter mask for each subject using information in ribbon.nii.gz and 
wmparc.nii.gz (from the individual HCP MNINonLinear directories), and restricted Harvard-Oxford parcels to 
gray matter voxels for each subject. For MCP data, MNI-space Harvard-Oxford labels were warped to the 
individual space via the MNI152 T1w template and the coregistered average of all 15 MCP T1w anatomical 
scans (Freesurfer 5.3.0 recon-all pipeline), using a diffeomorphic symmetric normalization (SyN) warp as 
implemented in ANTs 1.2.0 (antsRegistrationSyN.sh script). Similarly, the warp from the MCP T1w average 
to a mean MCP EPI template was estimated and applied to the Harvard-Oxford labels using ANTs (the N-
back EPIs were used to construct the mean EPI template, in place of the rsBOLD EPIs, because the latter 
were global mean-subtracted and therefore unusable for registration; this is possible because all MCP EPIs 
are transformed to the same space in the downloaded data). The gray matter mask output from the 
Freesurfer pipeline was used in combination with the individual-space Harvard-Oxford atlas labels to restrict 
ROIs to gray matter voxels. Timeseries for all Harvard-Oxford parcels were extracted using the 3dROIstats 
function provided by AFNI 17.2.04 (Cox, 2012).  

We generated three datasets from the HCP and MCP data:  
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 Dataset #1: HCP sparsely sampled (HCPs). For this dataset we chose samples sparsely from 
two resting-state fMRI runs with right-left phase encoding (rfMRI_REST1_RL and rfMRI_REST2_RL) from 
each of 880 unique subjects (with complete datasets and relative movement root-mean-square less than 
0.15mm for both runs; see subject list in SUPPLEMENTARY TABLE 2a), taking one volume every 35th TR (i.e. 
every 25.2s). This resulted in 68 samples per subject, for a total of 59,840 samples. We split this dataset into 
11 completely non-overlapping subsets (80 subjects each) for “horizontal” reliability analysis, yielding 5,440 
samples per subset. This provides the most general dataset with a large number of samples, pooling over a 
large number of subjects for representativeness, and sampling sparsely to eliminate autocorrelation and thus 
maximize statistical independence between samples. Representativeness across subjects here trades off 
with the possibility of introducing additional dependencies in the data due to the pooling of data from multiple 
subjects. The next dataset therefore focuses on data from a single individual. 

 Dataset #2:  MCP sparsely sampled (MCPs). This dataset chose samples sparsely from 80 
sessions of the MCP (see session list in SUPPLEMENTARY TABLE 2b), taking one volume every 22nd TR (i.e. 
every 25.5s). This resulted in 23 samples per session, for a total of 1,840 samples. We generated 20 non-
overlapping datasets for reliability analysis, by shifting the starting volume (note that these datasets are not 
completely independent from one another due to autocorrelation of the fMRI BOLD signal).  

 Dataset #3:  MCP densely sampled (MCPd). This dataset chose all volumes from 80 sessions 
in the MCP yielding a total of 41,440 samples. We split this dataset into 8 non-overlapping subsets (10 
sessions each) for horizontal reliability analysis, yielding 5,180 samples per subset. 

Causal discovery algorithm. We used a version of the Fast Greedy Equivalence Search (FGES) 
algorithm for causal discovery (Ramsey et al., 2016), a variant of the better known Greedy Equivalence 
Search (Chickering, 2002) that was optimized to large numbers of variables.  The algorithm takes as input 
measurements over a set of variables that one can think of as nodes in the causal graph, in this case the 
mean BOLD signal obtained for each region of interest in a parcellated human brain (the 110 parcels 
provided by the Harvard-Oxford atlas).  FGES produces as output causal graphs that describe inferred direct 
causal connections between any pair of brain regions (the adjacency matrix), and, where possible, the 
orientations of these causal effects, i.e. whether brain region A causes BOLD response in brain region B, or 
vice versa. For any specific output causal graph, one can also estimate the strength of each causal 
connection (the effect size of each edge) using a linear Gaussian model.  We next describe the algorithm in 
more detail. 

The algorithm is a greedy optimization algorithm that operates in two phases, a forward phase in 
which edges are added to the graph, and a backward phase in which edges are removed. Under the 
assumption that the true causal model is causally sufficient (there are no unmeasured common causes), 
acyclic (there are no feedback cycles) and that the data is independent and identically distributed and not 
subject to sample selection bias, the FGES algorithm returns in the infinite sample limit the Markov 
equivalence class of the true causal structure with probability 1. That is, as sample size increases, the output 
of FGES converges towards (a representation of) a set of causal structures that are not distinguishable from 
the true causal structure on the basis of their probabilistic independences. For example, the three causal 
graphs ABC, ABC and ABC together form a Markov equivalence class under the given 
assumptions, since in all three structures A is independent of C given B, but no other (conditional) 
independences hold among the variables. Without experimental interventions or further assumptions (e.g. 
concerning time order or the parametric form) these three causal structures cannot be distinguished. In 
contrast, (as noted earlier in this paper) the causal structure ABC has a unique independence structure -- 
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it only satisfies that A and C are marginally independent, but no conditional independence -- and therefore 
forms a singleton Markov equivalence class.  

The central idea underlying the FGES algorithm is the insight that one can construct a score tracking 
the posterior probability of a causal graph given a dataset such that the score is (i) decomposable into local 
scores for each edge, and (ii) gives the same value for graphs that are Markov equivalent. This insight 
provides the basis for a greedy search method that starts with an empty graph over the set of variables and 
then at each stage determines locally whether an edge addition improves the global score over the current 
causal graph. The edge that maximally increases the score is then added (in the forward phase of the 
algorithm, or removed, in the backward phase). The Bayes Information Criterion (BIC) is a score that 
decomposes in exactly this way. For a graph G over a set of variables V and data set D over V, BIC is 
defined as BIC(G|D) = k ln(n) – 2 ln(L), where L is the maximum likelihood estimate of the data given the 
graph, k are the free parameters of the causal model and n is the number of samples. Essentially, the 
likelihood is penalized by a model complexity parameter k ln(n), since a complete graph (an edge between 
each pair of nodes) will always fit the data perfectly. For directed acyclic graphs the joint distribution P(V) 
over the variables V can be factorized into 𝑃𝑃(𝑉𝑉)  =  ∏𝑋𝑋𝑖𝑖  𝑖𝑖𝑖𝑖 𝑉𝑉  𝑃𝑃(𝑋𝑋𝑖𝑖  | 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)), where 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖) are the parents of 
variable 𝑋𝑋𝑖𝑖 in G. As a result, BIC is decomposable into a sum of local scores of each variable given its 
parents: BIC(G|D) = ∑𝑋𝑋𝑖𝑖 𝑖𝑖𝑖𝑖 𝑉𝑉  𝐹𝐹(𝑋𝑋𝑖𝑖  | 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)) where 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖) are the parents of variable 𝑋𝑋𝑖𝑖 in G and F is the 
local scoring function. If each variable is a linear function of its parents plus independent Gaussian noise, 
then each 𝑃𝑃(𝑋𝑋𝑖𝑖  | 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)) is a Gaussian and the local BIC score becomes 𝐹𝐹(𝑋𝑋𝑖𝑖 | 𝑝𝑝𝑎𝑎(𝑋𝑋𝑖𝑖)) = 𝑛𝑛 ln (𝜎𝜎𝑒𝑒𝚤𝚤

2�) + 𝑘𝑘𝑖𝑖 ln (𝑛𝑛)  

where 𝜎𝜎𝑒𝑒𝚤𝚤
2�  is the estimated error variance of 𝑋𝑋𝑖𝑖, n is the sample size and 𝑘𝑘𝑖𝑖 is the number of regressors, 

including the intercept. Since an added (or removed) edge changes the parent set, these local scores enable 
at each stage of the algorithm the efficient determination of the edge that maximally increases the global 
score given a current causal graph.  

The fact that BIC also gives the same score to Markov equivalent graphs, and that both an edge-
adding (forward) and an edge-removal (backward) phase are necessary for consistency of the FGES 
algorithm is not obvious, but we refer the reader to the excellent paper describing GES (Chickering, 2002) for 
details. 

In our implementation we used the FGES algorithm published through the Tetrad code package 
(http://www.phil.cmu.edu/tetrad/) version 6.1.0. We did not force the faithfulness assumption and searched to 
the maximal node degree using the implemented SEMBIC score. The implementation has one free 
parameter s that functions as a sparsity parameter by multiplying the complexity term k ln(n) of the BIC score, 
higher values forcing sparser structures.  We considered values of s from 20 down to 1, in steps of 2 for the 
HCP and MCP datasets, and starting from 10 down to 1 in single steps, for the smaller patient fMRI datasets.  

Although the FGES algorithm does return orientation information for the causal edges in the graph, 
when those orientations are shared across all structures in the equivalence class, we focus in this paper 
principally on the adjacency structure (the causal “skeleton”). There are several reasons for this decision: (i) 
While (Ramsey et al., 2016) report very high accuracy (precision and recall) for the recovery of adjacency 
and orientation information in simulations using FGES, we show in our simulations (see SUPPLEMENTARY 
MATERIAL, “FGES Simulation”) that such results obtain only for the setting in Ramsey et al. (2016) using 
extremely sparse graphs (number of edges equal to the number of variables). We found that precision and 
recall measures were lower for both adjacencies and orientations, in simulations that matched the somewhat 
denser graphs we find here (with ~10% of possible edges present, i.e. ~500 rather than ~100 edges). See 
SUPPLEMENTARY FIGURE 1 for the details of these simulation results.  In particular the recall for edge 
orientations dropped significantly relative to the set of orientations that could theoretically be determined 
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when switching from the extremely sparse graphs to the graph density we found here: many fewer edges that 
could be oriented were oriented. (ii) When we explored small subsets of real data using a (less-scalable) 
SAT-based causal discovery algorithm (Hyttinen et al., 2014) (see SUPPLEMENTARY MATERIAL, “SAT-based 
causal discovery algorithm”), we found that while the adjacency information was largely shared between 
FGES and the SAT-based algorithm when applied to the same dataset, the orientation information varied 
widely. See SUPPLEMENTARY FIGURE 2. (iii) Finally, the overall aim of the research plan we are outlining here 
is to use the electrical stimulation to provide a ground truth for orienting some of the causal adjacencies we 
find. In future work we hope to triangulate on the determination of causal orientation from a variety of angles.  
For all these reasons, we omit analyses of edge orientation in the results presented below. The entire 
analysis will be made available publicly, including the full FGES output. 

Strategy for the discovery of reliable causal graphs. Setting a low sparsity parameter s in the 
FGES algorithm produces graphs with a larger number of edges, as one would expect, and consumes more 
computational time (a highly nonlinear effect).  Conversely, setting a high s eliminates many edges but 
produces a graph whose edges are based on stronger evidence (vertical reliability).  In essence, this is a 
tradeoff between sensitivity and specificity. For the HCPs dataset, we settled on a sparsity parameter s=8, for 
which ~80% of the causal graph edges were reproducible across 11 independent HCPs datasets (horizontal 
reliability, see below); this sparsity setting for the HCPs dataset yielded 10% of the edges of the complete 
graph. We also find that s=8 provides a good trade-off in the accuracy measures in our simulations on 
synthetic data (see SUPPLEMENTARY MATERIAL). For the MCP and patient datasets, we subsequently set 
sparsity settings to also produce 10% of the edges of the respective complete graphs (which corresponded to 
similar sparsity values for the MCP dataset, but a much lower sparsity setting for the patient dataset); see 
FIGURE 6. 

We defined horizontal reliability (in the HCPs dataset) as follows: We ran FGES on each of the 11 
independent HCPs datasets for each value of the sparsity parameter.  For a given sparsity value we then 
counted the number of times each adjacency appeared across the 11 resulting graphs, yielding for each 
adjacency a value from 0 to 11. We then simulated 1000 sets of 11 random graphs with the same adjacency 
density as the 11 real graphs of a fixed sparsity had (on average), so as to estimate how often each co-
occurrence score (from 0 to 11) would occur by chance. Horizontal reliability of an adjacency A was finally 
defined as the proportion of adjacencies that have a lower (or equal) co-occurrence count if 11 graphs (of 
fixed density) were generated by chance than the co-occurrence count observed for A. See SUPPLEMENTARY 
FIGURE 3 for plots of the null-distribution for different graph densities, and for the co-occurrence count that 
corresponds to the 95% reliability cut-off that we use in the subsequent analysis. This definition allows us to 
compare graphs of different sparsities more fairly, since denser graphs will necessarily present more co-
occurrences by chance than sparser graphs, which is adjusted for by our estimate of the empirical chance 
distribution.  Of course there are many ways one could define horizontal reliability measures and our 
measure breaks down for very dense graphs. Moreover, this measure does not capture the reliability of 
absences of adjacencies. Nevertheless, we found it to be a useful first pass to make adjacency reliability 
comparable across different graph densities for relatively sparse graphs. 

Graphs with weighted edges and reconstruction of the Pearson correlation matrix.  In addition 
to obtaining binarized adjacency matrices—graphs that either had an edge or no edge between nodes – we 
derived graphs that had edges with parametric weights—strong or weak causal connections corresponding to 
varying effect sizes.  From such graphs with edge coefficients one can reconstruct the Pearson correlation 
matrix of the original data.  The FGES algorithm returns the Markov equivalence class of causal structures, 
i.e. structures that all share the same (conditional) independences and dependences. Following the standard 
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implementation in the Tetrad code package, we extracted one directed acyclic graph (DAG) from this 
equivalence class and then fit a maximum likelihood linear Gaussian structural equation model to the DAG 
using the dataset that was fed to FGES in the first place. That is, we fit a model of the form 𝒗𝒗 = B𝒗𝒗+ 𝒆𝒆 to the 
data, where v is a vector of variables representing the 110 parcels, B is a lower triangular matrix (with a zero 
diagonal; cf. FIGURE 7), whose non-zero entries correspond to the edges in the DAG (note that all DAGs in 
the equivalence class share the same adjacencies), and 𝒆𝒆 is a vector of independent Gaussian errors, one 
for each node, with 𝒆𝒆 ~ 𝑁𝑁(0,𝑺𝑺𝒆𝒆), where 𝑺𝑺𝒆𝒆 is a diagonal covariance matrix. Essentially, the model is fit by 
iteratively regressing each node on the set of its parents as defined by the DAG extracted from the 
equivalence class.  

We used the fully parameterized linear Gaussian structural equation model (defined by B and 𝑺𝑺𝒆𝒆) to 
reconstruct the data covariance matrix 𝑪𝑪𝒗𝒗, which is given by 𝑪𝑪𝒗𝒗 = 𝐸𝐸(𝒗𝒗𝒗𝒗 𝑡𝑡)  =  (𝑰𝑰 − 𝑩𝑩)−1 𝐸𝐸(𝒆𝒆𝒆𝒆𝑡𝑡 )(𝑰𝑰 − 𝑩𝑩)−𝑡𝑡   =
 (𝑰𝑰 − 𝑩𝑩)−1𝑺𝑺𝒆𝒆 (𝑰𝑰 − 𝑩𝑩)−𝑡𝑡 where I is the identity matrix. After standardization 𝑪𝑪𝒗𝒗 can be compared to the 
observed Pearson Correlation matrix using the coefficient of determination 𝑅𝑅2 to indicate the amount of 
variance explained (𝑅𝑅2 is shown at the top of the matrices in FIGURE 7). 

Comparisons and validations.  We began by making comparisons that quantify the reliability and 
generalizability of the methods.     

 (a) Reliability of group-level whole-brain causal discovery graphs across groups of subjects in the 
HCPs data. We performed causal discovery separately for the 11 subsets of the HCPs dataset (each derived 
by sparsely sampling a new group of 80 HCP subjects) and compared their graphs for different sparsity 
settings, as described above (FIGURE 6).  

(b) Comparison of the rs-fMRI Pearson correlation matrix to the causal graph. The whole-brain causal 
graphs we produced with our criteria are relatively sparse (10% complete), and the question arises whether 
they indeed capture much of the structure in the Pearson correlation matrix. To address this point, we 
reconstructed the Pearson correlation matrix from a causal graph with weighted edges.  These comparisons 
are shown in FIGURE 7.   

(c) HCPs causal graph vs. MCPs causal graph. We wanted to see whether the graph derived from a 
single subject is similar to the graph derived across many subjects. We did this by comparing one sparsely 
sampled HCP dataset (subset #1), which comes from many (80) subjects, to an equally sparsely sampled 
MCP dataset (subset #1), which comes from a single subject with many (80) sessions. We kept only the 
horizontally reliable edges (r≥0.95) for this comparison. If the results were similar, this would confirm that the 
MCP dataset (from Russ Poldrack’s brain) is representative (and so can be reasonably compared to the 
patient’s dataset in step 2 below). This comparison is also shown in FIGURE 7. 

 (d) MCPs causal graph vs. MCPd causal graph.  We also compared results in the sparsely sampled 
MCP dataset to the densely sampled MCP dataset (dense sampling being the only option with the patient’s 
dataset for whom much less data is available, see steps 2 & 3). This comparison addresses the question of 
whether autocorrelation in the data might be a problem for causal discovery, which assumes independence 
between samples.  This comparison is also shown in FIGURE 7. 

Step 2: Causal inference from observational resting-state fMRI data in single neurosurgical 
patients 

In this step we conducted the same analyses as in Step 1 in a new dataset: that obtained from 
resting-state fMRI in neurosurgical patients who required chronic invasive intracranial monitoring as part of 
their treatment for medically intractable epilepsy. This step was carried out in each patient who was 
scheduled to undergo es-fMRI (see Step 3), before electrode implantation.  The motivation for this Step 2 is 
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twofold.  First, given that the patients who participate in the es-fMRI experiment are all epilepsy patients with 
longstanding seizures, their brain connectivity may be atypical.  The rs-fMRI graph obtained from the patients 
can thus be used either to exclude those patients who show abnormal connectivity (or have otherwise 
unusual fMRI data), or as the basis for refining the graphs from Step 1 (which are all from healthy individuals 
without epilepsy) to better match the patients’ brain architecture.  Second, the rs-fMRI data provide an 
independent, baseline dataset in the patients to which the es-fMRI data can be compared.  An additional 
benefit is that the rs-fMRI data are obtained prior to electrode implantation, thus yielding signal in all parcels 
with a whole-brain field-of-view; by contrast, in the es-fMRI data there is typically substantial signal dropout in 
parcels where there are metallic contacts from depth electrodes or electrocorticography grids (including at the 
site of the electrical stimulation, of course). 

Patients. We tested four neurosurgical patients who each had bilateral electrodes implanted in the 
amygdala. An electrocorticography (ECoG) monitoring plan was generated by the University of Iowa 
comprehensive epilepsy program after considering each patient’s clinical requirements. All experimental 
procedures were approved by the University of Iowa Institutional Review Board, who had available our gel 
phantom safety experiments for their evaluation prior to any human experiments (Oya et al., 2017).  Written 
informed consent was obtained from all subjects.  Patient #384 was a fully right-handed 37-year-old male; 
#307 a fully right-handed 29-year-old male; #303 a fully right-handed 34-year-old female; and #294 a fully 
right-handed 34-year-old male (see SUPPLEMENTARY TABLE 3).  We present analysis of rs-fMRI data only 
from patient #384, who had the most es-fMRI runs (see below) and for whom we performed causal discovery 
in the es-fMRI data.  We present standard GLM results of the activation evoked by es-fMRI in all four patients 
(Step 3; FIGURE 10). 

Data acquisition. Resting-state fMRI runs for patient #384 were acquired on a 3 Tesla MRI scanner 
(Discovery 750w, GE Healthcare, Chicago, IL) with a 32 channel receive-only head coil. Each resting-state 
run consisted of 130 T2*-weighted EPI volumes (eyes open, central cross-hair fixated) acquired with the 
following parameters: TR = 2260 ms, TE = 30 ms, flip angle = 80 degrees, voxel size = 3.4 mm x 3.4 mm x 
4.0 mm, 30 slices, matrix = 64 x 64, FOV = 220 mm. We obtained 5 such runs for #384. A field map (dual-
echo GRE, TR = 500 ms, flip angle = 60 degrees, voxel size = 4.4 mm x 4.4 mm x 4.0 mm ), high resolution 
T1-weighted (IR-FSPGR, TI = 450 ms, flip angle = 12 degrees, voxel size = 1.0 mm x 1.0 mm x 0.8 mm) and 
T2-weighted scans (CUBE TSE TR = 3200 ms, TE = maximum, echo train length = 140, voxel size = 1.0 mm 
isotropic) were acquired in the same session.   

Data preprocessing and denoising. All data were minimally preprocessed using the HCP 
fmriVolume pipeline (v3.5.0). In summary, after rigid-body motion correction, B0 distortion correction was 
performed using the field map, and the mean EPI image was registered to the T1w image using boundary-
based registration. All steps, including a final MNI space transformation, were concatenated and applied to 
the original fMRI time series in a single 3D spline interpolation step. Finally, this MNI-space time series was 
masked and intensity-normalized to a 4D global mean of 10000. Following this minimal preprocessing, we 
further applied the same denoising procedure described in Step 1 above (regression of nuisance signals and 
motion, bandpass filtering).  

Causal discovery. The same analyses as in Step 1 were conducted. The major difference with Step 
1 is, of course, the amount of observational data available for a single neurosurgical patient. While the HCP 
dataset had a large number of datapoints collected over a large number of subjects, and the MCP had a large 
number of datapoints collected over the course of over one year for a single subject, in the clinical setting we 
typically only obtained three to five 5 minute rs-fMRI runs with 130 volumes each, i.e. between 400 and 800 
observations. The autocorrelation of the fMRI signal, and other factors such as high motion, further reduce 
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the effective number of independent observations available for causal discovery. Note that we have to 
determine the presence or absence of 5995 (110 choose 2) adjacencies, and the edge coefficients for those 
that are present, and another 110 parameters for the error variances -- the problem is thus underconstrained 
with this dataset and yields less reliable estimates (hence our proposed use of graphs derived from more 
data as priors, cf. FIGURE 4). 

Comparisons and validations. Once again, we carried out a set of comparisons similar to those 
listed above under Step 1, but this time using the patient’s rs-fMRI dataset.  We also wanted to establish that 
the patient has largely normal resting-state connectivity, and thus made the following comparison: 

Comparison (e): HCP and MCP causal graphs vs. patient causal graph.  This comparison is shown in 
FIGURE 7. 

Step 3:  Causal inference from interventional fMRI data: es-fMRI in the amygdala 
 While Steps 1 and 2 relied exclusively on observational data, in Step 3 we intervene on one 

node of the causal network, the amygdala, using the es-fMRI technique that we recently developed.  All 
further technical details are described in (Oya et al., 2017), and we only summarize them briefly here. 

Patients. The same four neurosurgical patients described in Step 2.  We conducted a standard 
whole-brain voxelwise GLM analysis of the data on all four patients (cf. below). We only carried out a 
(parcellated) causal graph discovery in the patient who had the most es-fMRI runs (patient #384). 

Safety of es-fMRI. The safety of concurrent electrical stimulation and fMRI was previously 
established (Oya et al., 2017) through measures in a gel phantom, followed by carrying out the procedure in 
several patients.  This demonstrated that induced currents, mechanical deflections of electrodes, and 
electrode or tissue heating were well controlled and all within acceptable safety levels. The electrical 
stimulation-fMRI experiments were performed after the final surgical treatment plan was agreed upon 
between the clinical team and the patient, and it was justified to move the patient to the MRI scanner (within 
16 hours prior to the electrode removal surgery).  

Intracranial electrodes and localization. The four patients were implanted with a combination of 
subdural surface strip and grid electrodes and penetrating depth electrodes; we stimulated only through the 
macro contacts on the depth electrodes located within the amygdala.  Localization of the electrodes was 
done as follows. We routinely obtain two baseline (pre-implantation) structural MRI volumes, two post-
electrode implantation structural MRI volumes right after implantation, another two structural MRI volumes at 
the time of the es-fMRI session, and a volumetric thin-sliced CT scan (1 mm slice thickness). Electrode 
contacts are identified on the post-implantation MRI/CT volumes and transferred onto the pre-implantation 
baseline MRI volumes. Great attention is paid to possible post-surgical brain shift, which is corrected with a 
3D thin-plate spline warping procedure (Oya et al., 2009).  For the delineation of the sub-nuclei of the 
amygdala, we utilized a non-linear warping applied to an atlas of the human brain (Mai et al., 1997) to draw 
borders of the sub-nuclei of the amygdala on the subject’s brain. 

Electrical stimulation.  Bipolar electrical stimulation was delivered through the intracranial electrodes 
using a battery-driven isolated constant current stimulator (IZ-2H stimulator, Tucker-Davis technology's, 
Alachua, FL, USA, and Model 2200 isolator, A-M systems, WA, U.S.A.).  We used biphasic charge-balanced 
constant current stimulus waveforms of +9/-3 or +12/-4 mA, delivered at 100 Hz (5 to 9 pulses; see FIGURE 5, 
and SUPPLEMENTARY TABLE 3). Mean in-situ electrode impedance measured at the time of the experiments 
was 4.08 (sd = 1.65) kΩ for 100 Hz stimulation.   

Experimental Design and data acquisition.  We used a simple block design with 30s (stimulation-) 
ON blocks alternating with 33s (stimulation-) OFF blocks. For ON blocks, electrical stimulation was applied 
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during a 100 ms gap between consecutive EPI volumes, when all gradients were effectively switched off; this 
served to minimize stimulation-induced artifacts in the fMRI data and reduce the possibility of interactions 
between the external electrical stimulations and RF or gradient switching-induced potentials in the electrodes. 
There were 10 ON blocks per run, for a total run duration of approximately 11 minutes. All scans were 
performed in a 3 Tesla MRI scanner using the quadrature single channel T/R head coil (patient #294: 
Siemens Trio; other patients: Siemens Skyra; TR = 2900 ms, TR delay = 100 ms, TE = 30 ms, flip angle = 
90°, voxel size = 3.2 mm x 3.2 mm x 3.0mm, 44 slices, matrix = 68 x 68, FOV = 220 mm). During the 
scanning session, we carried out between one and four es-fMRI runs (#384: 4 runs; all other patients, 1 run). 
A T1w structural image was also acquired in the same experimental session (MP-RAGE, TR = 2530 ms, TE 
= 3.52 ms, TI = 100ms, flip angle = 10°, 1 mm isotropic resolution). 

Whole-brain, voxelwise GLM analysis.  We ran a standard whole-brain voxelwise GLM analysis, 
contrasting blocks ON and blocks OFF. Preprocessing was as described in our previous work (Oya et al., 
2017). Briefly, the first two EPI volumes were discarded; slice-timing differences were compensated; motion 
correction was performed; retrospective denoising was applied using FIACH (Tierney et al., 2016); principal 
component noise regressors (n=6) were calculated and used for regressing out the effect of noise; the 
patient’s T1w structural volume was co-registered to that patient’s mean EPI volume; spatial smoothing with a 
Gaussian kernel of FWHM (full-width at half-maximum) = 8 mm was applied; EPI time series were detrended 
by least squares fit of Legendre polynomials of order 5; frame censoring was applied for TRs with framewise 
displacement >0.5 mm (Siegel et al., 2014). The hemodynamic response was modeled using a boxcar 
function of duration 50–90 ms (depending on the actual duration of the stimulus) convolved with a single 
parameter gamma function (peak at 5 s, the amplitude of the basis function was normalized to peak values of 
1). These analyses were performed in subject space, with subsequent warping of the results to MNI space. 
Statistical parametric maps were thresholded at p<0.001(uncorrected); only clusters spanning more than 20 
voxels were reported. This analysis was used in 4 patients to generate standard whole-brain, voxelwise 
analyses of activations evoked by amygdala stimulation (FIGURE 10 below).  The activation produced by the 
electrical stimulation showed good temporal stability across different runs within the same subject (see 
SUPPLEMENTARY FIGURE 4). 

Parcellated analyses: causal discovery, and simple ON-OFF contrast. All es-fMRI data from 
patient #384 was minimally preprocessed and denoised as described in Step 1, for parcellated analyses (to 
match the preprocessing and denoising of the MCP dataset). BOLD signal was averaged within gray matter-
masked Harvard-Oxford parcels to create parcel timeseries, and concatenated across runs. We used all 
collected volumes from all es-fMRI runs as samples for causal discovery analysis (cf. Step 2). We also 
performed a simple t-test between samples ON and samples OFF in the parcellated concatenated data, 
accounting for a 5s hemodynamic delay. We corrected the resulting p-values for multiple comparisons across 
110 parcels using the Benjamini-Hochberg false discovery rate (FDR-corrected), and used Cohen’s d as a 
measure of effect size (shown in FIGURE 9). 

Comparisons and validations. As for the comparisons we made in the preceding Step 1 and Step 2, 
we wanted to obtain convergent evidence, and we wanted to use the es-fMRI data to augment the causal 
graphs we had obtained from the prior steps.  We thus compared Pearson correlation matrices as well as 
causal graphs at the whole-brain level to those derived from the other datasets, and we specifically examined 
the edges that were connected with the right amygdala across datasets. We carried out the following 
comparisons: 

Comparison (f): All resting-state causal graphs (HCP, MCP, patient) compared with the es-fMRI 
causal graph.  This comparison is shown in FIGURE 7. 
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Comparison (g):  The subgraphs comprising edges connected to the right amygdala, constituting 
direct causal connections with other brain structures (compared across all the datasets).  This is shown in 
FIGURE 8.  These subgraphs to the amygdala do not use weighted edges and only depict whether there is an 
edge there or not (binary). 

Comparison (h): GLM analyses of the es-fMRI compared to the causal subgraphs of edges connected 
to the amygdala.  The GLM analyses are shown in FIGURE 9 (plotted as Cohen’s d). 

  
 

 
 

Figure 5. Electrical stimulation with concurrent fMRI.  Reproduced from (Oya et al., 2017).  es-fMRI protocol 
used.  Each gray block is one whole-brain fMRI volume, red is the electrical stimulation shown at increasing 
magnification from top to bottom.  Electrical stimuli were delivered to the subjects between EPI volume 
acquisition, during a 100 ms blank period, ensuring no temporal overlap with RF transmission nor with 
gradient switching. Modified charge-balanced constant-current bi-phasic pulses were used. 

 
 

Results 

Parameter setting for causal discovery and reproducibility across datasets 
We first determined the reproducibility of our causal discovery analysis by deriving causal graphs from 

high-quality, large-sample size, statistically independent datasets. We began by using the HCPs dataset, 
which maximizes sample size, cross-subject generalizability, and statistical independence of the datasets.  
Comparing across 11 independent datasets from the HCPs, we obtained graphs at 10 different sparsity 
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settings (FIGURE 6).  As expected, increasing the sparsity parameter resulted in graphs with fewer numbers 
of edges (moving from left to right on the x-axis of FIGURE 6a and d).  As well, low sparsity resulted in graphs 
that were less reproducible across datasets (larger error bars at low numbers on the x-axis, FIGURE 6a and 
d), corresponding to increased agreement (reliability) with higher sparsity settings (FIGURE 6b).  Based on 
these initial results, we chose to use a sparsity setting of 8 (green curve in FIGURE 6c, green marker on 
FIGURE 6b; see color legend inset in Figure 6c) for the HCPs dataset, which yielded 10% of the edges of the 
complete graph (a graph with an edge between every possible pair of nodes) (dashed line in FIGURE 6a).  
This 10% complete graph nonetheless was able to reproduce the original Pearson correlation matrix of the 
dataset very well, accounting for 91.6% of the variance (FIGURE 7a).  We then set the sparsity parameter in 
the other datasets (MCPs, MCPd, and patient; see color legend inset in Figure 6a) to a value that produced 
graphs with approximately this same total number of edges (10% of the complete graph, FIGURE 6a).  
FIGURE 6 thus justifies our choice of the sparsity parameters used for the causal graphs derived from our 
different datasets, on which subsequent comparisons were based. 

 

 
Figure 6.  Causal graph sparsity and reliability.  These panels justify how we chose the particular sparsity 
settings for all subsequent causal discovery analyses.   a:  Number of edges produced (as proportion of the 
complete graph) as a function of different sparsity parameters across our five datasets. As an example, the 
densest graph in the HCPs dataset is obtained with the lowest sparsity value we tested (a sparsity of 2) and 
produces graphs that are about 25% complete. For our analyses in this paper, we chose a criterion of 
producing about 10% of the complete graph (dashed line) across all datasets as a reasonable value that 
permitted comparisons in all subsequent analyses. b: Fraction of edges in the HCPs graph with horizontal 
reliability ≥0.95 (see METHODS for a description of our horizontal reliability measure).  As sparsity increases 
(blue dots towards the right) so does the fraction of reliable edges.  c:  The number of edges in the HCPs 
graph (as a proportion of the maximal number of edges that would be present in the complete graph) seen 
above a given horizontal reliability.  Sparsity is encoded as line color. The leftmost point of each curve 
corresponds to observing a given edge only in 1 of the 11 datasets. Observing an edge in a sparse graph 
(large sparsity parameter s) is more surprising than observing an edge in a dense graph (small s), which our 
statistic for horizontal reliability captures (see METHODS, and SUPPLEMENTARY FIGURE 3): hence the leftmost 
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point of each curve shifts to the right for a higher sparsity parameter s. The second leftmost point 
corresponds to observing one repeat, i.e. to an edge repeating across 2 out of 11 datasets. Very high sparsity 
parameters (a sparsity of 20, blue curve) produce very reliable graphs.  d:  Same as a, except showing 
number of edges to the right amygdala (parcel #109), which is the node that we electrically stimulated in the 
neurosurgical patient. The dashed line corresponds to the number of edges to #109 obtained on average in 
the HCPs datasets with s=8 (as in a). Equating the number of edges to #109 is another way to set the sparsity 
parameters across datasets, which we also explored (see FIGURE 8).  

Comparing causal graphs with Pearson correlation matrices 
Before comparing causal graphs, we first compared the standard Pearson correlation (functional 

connectivity) matrices derived from our datasets: These comparisons are shown in FIGURE 7, as the top 
triangle in each of the plots.  As can be seen visually in the figure’s top panel (FIGURE 7a,b and c), Pearson 
correlation matrices (top triangle in each plot) from our 3 large-sample resting-state datasets were very 
similar – we quantified this similarity using Pearson correlation as shown in the inset table (FIGURE 7f).    For 
the patient (bottom row, top triangle in each plot), the data were considerably noisier, as expected given the 
much smaller number of samples, higher motion, and clinical setting. Interestingly, the patient’s rs-fMRI 
Pearson correlation matrix was more similar to the group-level HCPs dataset (r = 0.46) than to the subject-
level MCPs data (r = 0.24). This was also the case for the patient’s es-fMRI whole-brain Pearson correlation 
matrix (r = 0.45 versus r = 0.26, see further below). We suspect that this may result from the HCPs dataset 
smoothing out individual differences, while the MCPs dataset will retain many idiosyncratic features of the one 
subject in that dataset (Russ Poldrack).  

We next turned to the causal graphs derived by FGES for each of our datasets (bottom triangle 
matrices in the plots). Comparing causal graphs (bottom triangles) to Pearson correlation matrices (top 
triangles), visual inspection of FIGURE 7 shows that the causal graph reproduces much of the structure of the 
correlation matrix, but is considerably sparser.  Most notable at the whole-brain level are the homotopic 
connections, between corresponding parcels in the left and in the right hemisphere.  These can be seen as 
the diagonal line visible in both the Pearson correlation matrix (upper triangle in each plot) and in the causal 
graph (lower triangle in each plot).  The patient’s rs-fMRI is noisier, but again one sees this basic structure 
and can make out the homotopic connections. Using the Dice coefficient to quantify overlap between 
adjacency matrices, we found that 30% of the edges in the patient’s causal graph were also reproduced in 
the HCPs dataset causal graph (FIGURE 7f).   

Connectivity of the amygdala 
In order to provide comparisons with the electrical stimulation results, we then focused on the direct 

connections to the right amygdala (parcel #109) discovered by the FGES algorithm. To visualize edges 
connected to the right amygdala, we mapped these roughly onto a top view of the brain in FIGURE 8. Across 
datasets (HCPs, MCPs/MCPd, and patient #384 rs-fMRI and es-fMRI) the right amygdala was reliably found 
to be directly connected to the ipsilateral temporal pole and hippocampus, and the contralateral amygdala, 
direct connections that are supported by tracer studies in monkeys (Freese and Amaral, 2009).  However, 
there were also numerous differences in the results from the different datasets, which will require future 
exploration to fully understand.  One future approach we intend to incorporate is to use the causal graph 
inferred from one dataset (e.g., the HCP, as it may be the most reliable due to the largest number of samples 
provided) as a prior to help constrain the graphs obtained from other datasets (see FIGURE 4). 
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Figure 7. Connectivity between brain regions. a-e: Pearson correlation matrices (top triangle) and causal 
graphs (bottom triangle; direct connections as discovered by FGES, with weights estimated as described in 
the METHODS section) for all five datasets.  HCPs: subset #1 of the sparsely sampled HCP dataset.  MCPs: 
subset #1 of the sparsely sampled MCP dataset.  MCPd: subset #1 of the densely sampled MCP dataset.  
384rs: patient #384 rs-fMRI dataset.  384es:  patient #384 electrical stimulation dataset.  The 𝑹𝑹𝟐𝟐 value at the 
top of each plot indicates the proportion of variance accounted for by the graph when used to reconstruct the 
Pearson correlation matrix (see METHODS for details). f: similarities between these 5 plots (Pearson’s r 
between the Fisher z-transformed correlation matrices, top triangle; proportion of edges shared in the causal 
graphs, bottom triangle).  To calculate the proportion of shared edges in the causal graphs, we first binarized 
the weighted causal graphs, yielding simple adjacency matrices; for HCP and MCP datasets, we kept only 
reliable edges with r≥0.95 to compute overlap. We then computed the overlap across datasets using the 
Sorensen-Dice coefficient (𝟐𝟐 ∑(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ≠ 𝟎𝟎 ∩ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ≠ 𝟎𝟎)/∑(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ≠ 𝟎𝟎 ∪ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ≠ 𝟎𝟎)). 
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Figure 8. Causal discovery of direct connectivity with the right amygdala across all datasets.  The two panels 
of this composite figure represent the causal graph solutions obtained over our 5 datasets (5 colors, see 
legend at top left), showing direct edges to the right amygdala (parcel #109, circle in yellow; the same 
location electrically stimulated in patient #384).  Left: results obtained when choosing the sparsity parameter 
so as to generate approximately 10% of the full graph (cf. FIGURE 6a).  Right:  result obtained when setting 
the sparsity parameter so as to generate approximately 7 direct edges to the amygdala (cf. FIGURE 6d).  
Sparsity settings are indicated at the top of the columns, which identify the parcels that had direct edges to 
the amygdala in each of the five datasets (colored entries next to the numerical and anatomical labels for all 
the parcels).  For HCP and MCP datasets, we kept only horizontally reliable edges (r≥0.95). For the 384es 
dataset, we treated all brain volumes equivalently; unlike a standard contrast analysis, the causal discovery 
algorithm was not informed about ON and OFF states. 

 
Finally, we examined the results of our es-fMRI experiment (FIGURE 5). Using the same parcellated 

data used for causal discovery (concatenated data of 4 sessions of es-fMRI in patient #384), we simply 
contrasted ON and OFF volumes, as typically done in a standard GLM analysis, to produce a set of node 
activations and deactivations. We compare these to the direct neighbors of the right amygdala found by the 
FGES algorithm in FIGURE 9.  The results show a striking difference between the ON-OFF contrast and 
FGES analysis: there is no overlap at all in the sets of parcels judged by the ON-OFF contrast to be activated 
by the stimulation, and those judged to be causal neighbors of the stimulated amygdala by FGES. This 
surprising finding raises methodological questions to which we do not know the full answers yet; we discuss it 
further in the DISCUSSION section.   

To provide a more general comparison, we also show in FIGURE 10 a voxelwise, whole-brain GLM 
analysis contrasting electrical stimulation-ON versus electrical stimulation-OFF blocks in all four 
neurosurgical subjects in whom we stimulated particular nuclei of the amygdala (for equivalency across 
patients who have differing numbers of sessions, only the first es-fMRI session was used in each patient for 
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this FIGURE 10).  Blockwise activation timecourses extracted from significantly activated ROIs showed 
absolute BOLD signal changes around 1% during the electrical stimulation and good reliability across runs 
(SUPPLEMENTARY FIGURE 4, and Oya et al. (2017)). 

Across our four patients, the results were more heterogeneous, as FIGURE 10 shows.  Much of this 
heterogeneity likely arises from differences in the specific amygdala nuclei that were stimulated.  We 
therefore mapped the likely location of our bipolar stimulation with respect to structural MRIs of each patient’s 
amygdala, referenced to the Mai histological atlas (Mai et al., 1997); see METHODS for details.  These are 
shown in the insets in FIGURE 10. 

 

 
Figure 9. Comparison of contrast-based and causal discovery-based results for the es-fMRI data in patient 
#384.  This view down onto a brain depicts the statistically thresholded activation produced by right amygdala 
stimulation (parcel #109, circled in yellow).  Color of each significantly modulated node encodes the effect 
size of the ON-OFF contrast produced in that parcel (Cohen’s d). Nodes which are found to be directly 
connected to the right amygdala using the FGES algorithm are circled in pink. Unlike for the ON-OFF contrast 
analysis, the location and timing of the experimental manipulation (electrical stimulation of the right 
amygdala) did not form an explicit part of the input to the FGES algorithm as we ran it for this analysis. 
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Figure 10. Results of concurrent electrical stimulation of amygdala nuclei and fMRI in four neurosurgical 
patients.  Shown are GLM results from one session of es-fMRI in the four patients, as standard voxelwise, 
whole-brain results (mapped onto the surface).  For patient #384 (top), who had four runs, we only used the 
first run to generate this figure. Stimulated contacts are shown as small red dots on the structural MRIs and 
are also shown in the leftmost panels with respect to amygdala nuclei based on a non-linear warping to a 
histological atlas of the human brain (Mai et al., 1997). La = lateral nucleus, BM = basomedial nucleus, BL = 
basolateral nucleus, Ce = central nucleus, Hp = hippocampus. Cluster-forming threshold p < 0.001 
(uncorrected) with a minimum cluster size of 20 voxels. See SUPPLEMENTARY TABLE 4 for the list of clusters 
for each patient. 
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Discussion 

Summary of findings 
We outlined a workflow for discovering causal connections in the human brain, and provided initial 

validation, measures of reliability, and comparisons across datasets.  We then demonstrated the application 
of this workflow to the connectivity of the amygdala, as a case study for the investigation of causal networks 
that subserve emotion processing.  However, our approach is quite general and we intend it to be applicable 
to the investigation of any brain structure, not just the amygdala (and indeed not only to BOLD-fMRI data, or 
data from humans). 

Our approach features two quite novel components, and suggests several further ones that were 
beyond the scope of the present study (cf. FIGURE 4). One novel component that can readily be applied by 
other researchers to sufficiently large resting-state fMRI datasets uses a causal discovery algorithm.  We 
used a version of the fast greedy equivalence search (FGES) algorithm on rs-fMRI data parcellated into the 
110 nodes obtained with the Harvard-Oxford parcellation scheme.  We demonstrated excellent reliability 
across independent samples in two large datasets, the Human Connectome Project (HCP) dataset, and the 
MyConnectome dataset (MCP), and we obtained faithful reconstruction of standard Pearson correlation 
matrices from our sparse causal graphs (FIGURE 7). 

The second component, one of the most novel aspects of our study, is the application of a new 
technique in human neurosurgical patients: concurrent electrical stimulation and fMRI (es-fMRI). We focused 
on emotion networks by investigating connectivity of the amygdala, the target of electrical stimulation. Several 
broad conclusions could be drawn.  First, in each patient individually, there was strong consistency in the 
pattern of evoked BOLD activation due to amygdala stimulation: there was good session-to-session 
reproducibility, both in the pattern of evoked BOLD activations, and in the magnitude of the response (see 
SUPPLEMENTARY FIGURE 4, and Oya et al. (2017)). Second, there were specific differences in the statistical 
maps resulting from electrical stimulation across each of the four patients, as shown in FIGURE 10.  This likely 
reflects the fact that different amygdala nuclei were stimulated in each patient (see insets in FIGURE 10), and 
indeed on different sides of the brain (patient #307 had left amygdala stimulation, the other three had right 
amygdala stimulation).  However, it is also possible that there are individual differences in amygdala 
connectivity in the patients, a possibility especially pertinent (and clinically relevant) given that all patients had 
long-standing epilepsy. Studies in additional patients will be required to further understand these differences 
and to determine to what extent the activations seen here can be reproduced reliably across different patients 
in whom exactly the same amygdala nuclei are stimulated.  The accrual of larger sample sizes will be 
required to address this issue. 

The causal discovery analyses, both from resting-state data across three different datasets (HCP, 
MCP, and the patient #384’s pre-operative rs-fMRI), and from the rare electrical stimulation with concurrent 
fMRI in the four epilepsy patients, all provided novel findings about the connectivity of the amygdala.  Many 
direct connections that would be predicted based on the known connectivity of the primate amygdala (Freese 
and Amaral, 2009) were also found here.  For instance, there were prominent connections with temporal 
cortex, prefrontal cortex, and cingulate cortex.  Some of the most reliable direct connections found across 
datasets were with the temporal pole, hippocampus, and contralateral amygdala.  It is also notable that the 
es-fMRI results tended to produce strong activations in temporal and prefrontal cortices, but strong de-
activations in posterior cingulate/retrosplenial cortices (FIGURE 10). 

Perhaps most important at a global level is the finding that most of the correlations seen in standard 
analyses of functional connectivity (the Pearson correlation matrices shown in the top triangle plots of FIGURE 
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7) are due to indirect effects rather than direct causal effects of one brain region on another (cf. the much 
sparser causal adjacency matrix shown in the lower triangle plots in FIGURE 7).  This is expected, since it is 
well known that not every brain region is connected to every other brain region, but that connectivity is much 
sparser than that.   

Much more surprising was the finding that, in the es-fMRI dataset, most or all of the activations 
observed with standard GLM methods appear to arise from indirect causal effects, since we did not find them 
as direct edges in our causal discovery results (FIGURE 9, FIGURE 10).  Further analyses that visualize edges 
that are 2- or even 3-removed from the amygdala could help to understand how the activations that we found 
due to electrical stimulation (FIGURE 10) arise at a network-level.  It is worth noting that cortical projections 
from the amygdala are generally thought to be modulatory in nature: connections with temporal visual 
cortices terminate in superficial cortical layers (Freese and Amaral, 2006), and projections to prefrontal cortex 
may exert effects via the dorsomedial thalamus rather than directly (Miyashita et al., 2007).  A full 
understanding of how network-level effects of the amygdala arise will require not only further electrical 
stimulation-fMRI studies, but will also require the application of other causal discovery algorithms that can 
incorporate feedback (see further below, and SUPPLEMENTARY MATERIAL).   

Taken together, the results highlight the promise, challenge, and next steps of this novel framework.  
We demonstrated that causal discovery analyses can produce graphs that are reliable and that capture the 
correlation structure of the observational data.  We also demonstrated that es-fMRI in the amygdala produces 
robust activations in distal brain structures. Many of the results fit with what one would expect given current 
knowledge of the connectivity of the amygdala: there is activation in medial prefrontal and cingulate cortices, 
in insula, and in temporal cortex, amongst other regions. Yet the notable differences across individual 
subjects also highlight the difficulty in obtaining reproducible stimulation results across patients, and in 
obtaining a sufficiently large number of samples for reliable causal discovery. These issues can probably be 
resolved partly through the accrual of more data.  Other next steps consist in investigating other nodes in 
emotion networks, and including results from experiments in animals.  We briefly comment on next steps and 
extensions below. 

Investigating emotions and feelings 
While the present paper focuses its scope on an analysis just of data from the brain, such data will 

eventually need to be linked to their causal effects on the dependent measures that are typically used to infer 
emotions—autonomic responses, changes in facial expression, verbal reports of emotional experience, and a 
variety of effects on task performance (FIGURE 11).  Investigating causal connections related to emotions in 
the brain at rest, as we did here, is clearly suboptimal, because the different nodes of the network are unlikely 
to be as interactive during rest as they are during emotion processing. We would thus want to apply the 
causal discovery methods that we document here to fMRI data that reflects brain states of putative emotions 
— either induced through sensory stimuli (e.g., watching emotionally laden film clips (Gross and Levenson, 
1995)), volitional instruction (e.g., asking people to remember emotional autobiographical events (Damasio et 
al., 2000)) or through direct electrical stimulation of structures such as the amygdala (Bijanki et al., 2014; 
Dlouhy et al., 2015; Gloor et al., 1982; Halgren et al., 1978; Willie et al., 2016).  The latter is a particularly 
intriguing aspect: as we demonstrated here it is in fact possible to combine electrical stimulation with 
concurrent fMRI measures, and it would offer the most direct test of the putative causal roles of brain 
structures in emotion.   

This issue would be of very high relevance to the strategic planning of deep-brain stimulation to treat 
mood disorders, or indeed more broadly to treat any number of severe disorders that are medically refractory 
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and that are candidates for treatment through deep-brain stimulation.  Alterations in brain connectivity are 
now thought to underlie much of psychopathology (Fox et al., 2014; Greicius, 2008; Greicius and Kimmel, 
2012; Zhang and Raichle, 2010).  Both invasive (Lozano and Lipsman, 2013) and noninvasive (Dayan and al, 
2013) neurostimulation are regularly used, and gaining popularity, to treat a number of neurological and 
psychiatric diseases, including Parkinson’s and Alzheimer’s disease, depression (Fox et al., 2014; Mayberg 
et al., 2005; O'Reardon and al, 2007) and memory disorders (Hamani et al., 2008; Suthana et al., 2012).  All 
of these avenues for treatment show a frustrating combination of features: they can be extremely effective for 
certain patients, yielding dramatic improvements in quality of life; but they don’t work for others, and we do 
not understand why.  The current inadequacy in strategic planning of deep brain stimulation for treating mood 
disorders, and in predicting personalized outcome, stems from our ignorance of what deep brain stimulation 
actually does to the brain.  The framework we presented here seeks to address this important outstanding 
question. 

The approach we presented here would also help to resolve several ongoing scientific debates. For 
instance, the amygdala has long been thought to be necessary for fear, in humans and in animals (Amaral 
and Adolphs, 2016).  But the evidence from lesion studies in humans does not show that the amygdala 
causes fear (only that absence of the amygdala interferes with it), as we noted in the INTRODUCTION.  
Electrical stimulation of the amygdala, which could show that the amygdala causes fear, has been thought to 
act through other indirect mechanisms, for instance via stimulating white matter pathways that instead 
activate regions of cortex, which in turn cause the conscious experience of fear (LeDoux, 2015; LeDoux and 
Brown, 2017). Our es-fMRI paradigm, coupled with a causal discovery analysis, as outlined in this paper, 
could resolve this issue and ultimately yield an understanding of the proximal causal substrates for all the 
different aspects of an emotion, including its conscious experience. 

Our long-term goal is to use causal discovery and es-fMRI to investigate the neural mechanisms that 
underlie different components of emotion.  It is notable that all of the es-fMRI experiments we presented here 
were performed at a level of stimulation at which the patients were at chance in discriminating whether they 
had been stimulated or not, and no observable measures of emotion were produced (other than brain 
activations measured with fMRI).  An experiment we plan to do next is to parametrically increase the 
amplitude and/or duration of the electrical stimulation.  As one gradually stimulates the amygdala more and 
more, measurable components of emotion should be induced: there might be changes in autonomic 
responses such as skin-conductance response (Willie et al., 2016), changes in cognitive bias such as 
judgments of facial expressions (Bijanki et al., 2014), or changes in reported conscious experience (Halgren 
et al., 1978).  What changes in the causal graph that describes the brain networks as these emotion 
components are induced?  What accounts for the difference between stimulation trials in which the patient 
reports feeling nothing, and in trials in which the patient reports feeling an emotion?  These are major 
unsolved questions in affective neuroscience that the framework we outline could begin to address.  

Limitations and assumptions 
Many of the assumptions we have made in our causal analysis are unrealistic for fMRI data. The brain 

is known to contain many connections with feedback; it is likely that there are unmeasured confounders; it is 
not plausible that the actual causal connections in the brain are linear Gaussian in form; despite our 
comparison between sparsely sampled and densely sampled data (MCP) one may remain concerned about 
the i.i.d. assumption of the data. By such a standard, the present analysis can only be taken to show that 
rather sparse causal structures can give rise to the correlations observed resting-state fMRI data.  
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Figure 11. Extending the present results to a more comprehensive investigation of emotion.  As also 
suggested in Figure 4, we would eventually want to extend the present findings to actual induction of emotion 
(either through direct stimulation, or suitable stimuli/tasks), and to the inclusion of other dependent measures, 
such as psychophysiological responses (skin-conductance response, heart-rate changes, pupillometry, etc.) 
and even verbal reports of the conscious experience of an emotion. 

 
In the SUPPLEMENTARY MATERIAL we do explore what happens when some of these assumptions 

are dropped, in particular the assumption of no feedback (acyclicity) and no unmeasured confounding (causal 
sufficiency). We have applied a SAT-based causal discovery algorithm (Hyttinen et al., 2014) that does not 
make these assumptions to a small subset of three of the datasets considered in this paper (since the 
algorithm in its current form does not scale to large numbers of variables) and we compared the results to 
those from the FGES algorithm. We found that causal adjacencies are remarkably reliable when the two 
methods (FGES and SAT) were applied to the same dataset, but that orientations of edges in the causal 
graphs differed. While promising, these results also indicate that significantly more effort is needed to scale 
the methods with weaker background assumptions (SAT) to be applicable to datasets with many variables 
(such as a whole brain parcellated into ca. 100 nodes). We are actively engaged in developing more scalable 
versions of the SAT-based method and in the development of a fast non-parametric independence test, 
which would also allow us to drop the parametric assumption of linear Gaussianity. Such a test could also be 
used in other causal discovery algorithms that use weaker assumptions, such as the various versions of the 
FCI-algorithm (Spirtes et al., 2000a).  These future developments will require close collaboration with experts 
on causal algorithm development. 

There are also important limitations to note at the stimulation end.  Our electrical stimulation is quite 
imprecise compared to alternative approaches that are possible in animal models, such as optogenetics.  
Although we used bipolar stimulation to constrain current spread, and although the region of activation near 
the site of stimulation is fairly focal, this is still a large volume of neural tissue (several cubic millimeters).  Not 
only will this introduce imprecision in the anatomical localization of the stimulation, but it will also subsume 
different anatomical subdivisions and cell populations, and even fibers of passage.  This issue is especially 
problematic in the amygdala, and may be less acute for some surface cortical sites (we are also able to 
stimulate through grids that are on the surface of cortex).  Depending on where one is stimulating, many 
different circuits can be activated; or inhibitory interneurons as well as excitatory neurons can be activated; or 
nearby white matter can be stimulated. 

Our future plans for addressing these limitations are to try to triangulate on the results with as many 
methods as possible.  In humans, we illustrated two in the present paper.  Causal discovery algorithms 
applied to resting-state data will still have the limitations of fMRI, but do not have the just mentioned problems 
associated with electrical stimulation.  As such, they may be able to provide priors that can help constrain the 
results from electrical stimulation (cf. FIGURE 4).  We are also actively exploring animal models, which will 
ultimately be essential to obtain sufficient resolution and control. Convergent evidence from such studies can 
further help with the interpretation of the results from humans.  Although there are of course difficult questions 
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about homology, it is already the case that a number of studies in nonhuman primates has given us very 
detailed insight into circuits related to fear and anxiety, and allowed a considerably finer fractionation both of 
the circuits and of the behaviors than is currently possible in humans (see (Fox and Shackman, 2017; 
Shackman and Fox, 2016) for an overview).  The overall research program should thus incorporate results 
from rodents, monkeys, and humans.  Each of these has somewhat complementary strengths and limitations.  
The rodents currently offer the most precise manipulation of circuits through optogenetics, but better methods 
for whole-brain imaging of activations are still needed (such as imaging using ultrasound, rather than BOLD-
fMRI, for example).  The monkeys are beginning also to offer optogenetic and chemogenetic approaches, 
although this is still more limited in application than is the case in rodents.  However, monkeys are of course 
a better animal model for human emotions than are rodents.  Finally, human studies will always be limited in 
the precision with which we can experimentally investigate and manipulate circuits, but offer large datasets 
based on fMRI and provide subjective reports of experiences—the dependent measure that also determines 
disorders of emotions we wish to treat. 

Finally, there is no shortage of conceptual and programmatic challenges that of course need to be 
addressed.  Transparency (ideally, pre-registration of experiments) and data sharing are two important 
programmatic aspects that apply to affective neuroscience as they do to all other scientific subdisciplines, 
and a host of challenges needs to be addressed in order to leverage fMRI results to reliable conclusions 
about the brains of individual people (Dubois and Adolphs, 2016).  Relatedly, there is the need for more 
precision in the methods, the neuroanatomy, and the cognitive, behavioral, and experiential variables that 
can be measured.  This is a very large task, but recent prescriptions in the case of the amygdala and fear 
give us examples of what needs to be done (Shackman and Fox, 2016). 

Comparing causal discovery with standard GLM results 
One of the most striking, and unexpected, findings from our study were those shown in FIGURE 9.  We 

found that the brain regions activated by electrical stimulation of the right amygdala in the es-fMRI dataset (as 
analyzed with standard GLM analysis, contrasting ON-OFF electrical stimulation) were completely 
nonoverlapping with the brain regions found to have direct edges (direct causal connections) with the right 
amygdala from FGES.  Although we do not have a full explanation of this finding, it seems striking enough to 
warrant further investigations.  We make the following remarks. 

(i) The direct GLM contrast between the ON and OFF blocks depends on knowledge about which data 
are ON and which data are OFF, as specified by the experimenter, but is independent of the measured actual 
activation of the right amygdala.  By contrast, FGES operates on the complement of this set of information: 
FGES, as we ran it, is not informed about the stimulation at all, but instead uses the measured activation of 
the amygdala and attempts to determine its direct causal neighbors. This is a big difference that will need to 
be probed further in future studies.  In preliminary explorations we did run FGES with the values of the right 
amygdala replaced by 1/0 for ON/OFF, corresponding to the stimulation blocks (i.e. the same information 
available to the GLM), and we found that the right amygdala was causally disconnected from all other nodes.  
It is unclear what explains this result, but it is likely that the number of independent ON/OFF samples is 
inadequate in a blocked design (since adjacent trails are strongly depend on one another).  Sparse event-
related designs may circumvent some of these problems in future es-fMRI studies.  

(ii) There is some overlap when FGES is run on patient #384’s es-fmri data and when it is run on the 
other datasets, as shown in FIGURE 8.  In particular, the ipsilateral temporal pole and hippocampus are found 
to be connected to the amygdala across the board, a finding that is also quite consistent with what one would 
expect from prior studies of amygdala connectivity, including direct tracer studies in monkeys.  Oddly, these 
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two regions do not show up as significantly activated by the stimulation according to the ON-OFF GLM 
contrast analysis, as can be seen in FIGURE 9.  Differences in equating the statistical thresholding for the 
GLM and the sparsity settings in our FGES analyses may also partly explain these discrepancies.  Future 
studies should undertake a more comprehensive analysis over a larger range of thresholding and sparsity 
settings.  As well, one could undertake a more detailed investigation that specifically probes nodes found to 
be directly connected in the causal analyses, and uses them as ROIs for a GLM analysis (cf. also FIGURE 4).  
More broadly, there are still many more comparisons required between the different sets of results, in order to 
gain a better understanding of which are reliable findings obtainable with all approaches, which are reliable 
findings but can be discovered most sensitively only with a subset of the approaches, and which are 
unreliable findings that show up as false positives with some approaches. 

(iii) As we already noted, it is of course quite possible that many of the effects revealed with standard 
GLM contrasts are in fact not due to direct causal effects, but reflect indirect and possibly quite complex 
network-level effects. FIGURE 9 shows only the direct causal neighbors of the right amygdala from the FGES 
analysis.  Future studies could easily extend the analysis to examine nodes that are causally connected to 
the amygdala by one intervening node, two intervening nodes, and so forth.  Of course, the larger the 
degrees of separation (the larger the number of intervening nodes), the larger will be the total set of nodes 
connected to the amygdala.  In fact, it would be of interest to explore this parametrically and visualize how 
many degrees of separation are required before a given proportion of the complete set of nodes are 
connected with the amygdala (or any other structure of interest).  Most broadly, such an analysis could reveal 
general principles of brain network architecture: what is the average degree of separation between any two 
places in the brain, and how are degrees of separation distributed (do they differ for cortical vs. subcortical 
structures)? 

(iv) It would be informative to investigate directionality and reciprocity in the connections between 
brain regions.  We largely omitted this important issue, for two reasons already noted: (1) directionality of 
causal effects appears much less reliable than the presence of (undirected) edges and so we omitted it for 
this reason, and (2) reciprocity of connections (feedback) was explicitly assumed to be absent in FGES, since 
that is a background assumption required by this efficient causal discovery algorithm.  We relaxed both of 
these constraints in an exploratory analysis using a different causal discovery algorithm (SAT) in our 
SUPPLEMENTARY MATERIAL.  However, the SAT algorithm currently does not scale to more than about 7 
nodes, making it too limited for present purposes.  Future development of causal discovery algorithms that 
are both efficient in how they scale to large numbers of variables, and that can relax background 
assumptions, will be essential to drive this field forward.  However, even without such new algorithm 
development, one could extend the current studies by focusing future work on nodes revealed in the present 
analysis.  For instance, if es-fMRI of the amygdala activates the hippocampus, then we could electrically 
stimulate the hippocampus to ask if we can produce a symmetrical activation in the amygdala.  Such studies 
are certainly possible, and limited only by the density and extent of electrode coverage in the patients. 

Future Extensions 
As we already noted, immediate next experiments could be analyses carried out on already collected 

data.  The HCP and the MCP datasets can be queried in much more detail.  One could investigate 
connectivity of other specific nodes of putative emotion networks, including not only the amygdala, but also 
ventromedial prefrontal cortex, insula, and other regions.  One could investigate individual differences across 
individuals, or groups of individuals, where independent behavioral or questionnaire-based measures related 
to emotion processing are available (some candidates from the HCP would be the Penn emotion recognition 
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test, and the positive affect test, which are available for this dataset).  And of course one could investigate 
differences between neurotypical and clinical populations (e.g., HCP versus ABIDE data to compare typical 
healthy brain networks to those from people with autism, respectively). 

A major challenge will be how to improve the reliability of causal graphs obtained from single subjects, 
especially patients in whom there are often a number of additional constraints.  The graphs obtained from 
large-sample datasets such as the HCP could be used as priors to constrain the causal discovery in smaller, 
noisier datasets from single patients (cf. FIGURE 4). While es-fMRI will always be limited to relatively short 
sessions and thus small numbers of samples, one could obtain denser rs-fMRI data in the same subjects 
before the implantation of the electrodes, providing additional, subject-specific prior information.  

It is possible to parcellate the fMRI data into a larger number of parcels (e.g., the scheme by Glasser 
et al. (2016) rather than the Harvard-Oxford atlas we used, an alternative and more detailed parcellation we 
have already explored and which is entirely feasible in large sample-size datasets). This could provide new 
findings that the present parcellation scheme obscured through aggregation of functionally disparate brain 
areas.  The causal discovery algorithm we used scales relatively efficiently with sample size.  It would be 
interesting to compare several different parcellation schemes, and to test whether more fine-grained ones 
essentially reproduce the coarser ones or reveal different conclusions.  Ultimately, it would be extremely 
interesting to run FGES voxelwise over the entire brain, as also suggested in section 7 of Ramsey et al. 
(2016).  Not only would this be informative in whether or not it reproduces results from more aggregated 
parcellation schemes, but it could actually be a novel source of deriving parcellations in the first place. 

Finally, it is possible to stimulate not only multiple brain regions in separate sessions, but to stimulate 
them concurrently in a single session (or even in a specific temporal pattern).  Theoretically, a relatively 
modest number of stimulations can very efficiently permit estimation of the causal graph (Eberhardt et al., 
2005).  One would like to be able to causally intervene on specific brain structures, while collecting data with 
the whole-brain field-of-view of fMRI (or other emerging technologies, such as ultrasound imaging), with 
complete freedom in the choice of brain structures. This, of course, will never be possible in human subjects, 
but requires the application of our approach to animal studies.  The most powerful future combination will 
incorporate conclusions from causal discovery studies in humans with data obtained from optogenetic-fMRI in 
rodents (Lee et al., 2010; Liang et al., 2015).  Those optogenetic-fMRI studies would also have a further large 
advantage over human es-fMRI, namely, the ability to stimulate genetically identified neuronal populations.  
Such studies could in fact explain much of the heterogeneity seen in human experiments, since these are 
likely to conflate many different circuits due to their anatomical and cell-type imprecision, and would 
substantially help us to refine emotion circuits in the brain.  The complementary strengths and limitations of 
human and animal approaches will ultimately be required to fully map out the causal connections that 
underlie emotion (Adolphs and Anderson, 2018; Shackman et al., 2018). 
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Supplementary Material 

FGES Simulation 
To illustrate the reliability of the FGES algorithm and to inform the choice of sparsity parameter we 

used in our analyses, we performed a simulation study on synthetic data that satisfied all the assumptions 
made by FGES. We chose variable numbers, edge densities and sample sizes to match our setting here and 
provide a comparison to the simulation study of (Ramsey et al., 2016). Specifically, we ran the following 
simulation: 

• Number of variables: 110 (since that is how many ROIs we had in our parcellation) 
• Number of edges per graph: {100, 200, 500} (100 edges matched the simulation of Ramsey et al 

2016 where the number of edges was linear in the number of variables, 500 edges matches the 
graphs we found for our data, i.e. ~10% of possible edges) 

• All graphs were parameterized using a linear Gaussian parameterization. We used the default 
settings provided for simulations in the Tetrad code package, which samples edge coefficients 
uniformly in (-1.5, -0.5) u (0.5, 1.5), i.e. bounded away from zero, and error variances uniformly in 
(1,3).  

• Sample sizes: {500, 1000, 2000, 5000} (500 matches roughly the sample sizes we have for the 
neurosurgical patients, 2000 roughly matches the sample sizes of the MCP datasets and 5000 
matches roughly the sample sizes of the HCP datasets) 

• FGES sparsity parameters: {4,6,8,10,20,50} (4 matches what Ramsey et al. (2016) used, 8 is what 
we used here; in the plots we omit 20 and 50 for readability) 

 
For each number of edges we sampled 10 acyclic graphs (using the Tetrad random graph generator), 

parameterized them, and simulated data for each sample size 5 times from each graph. We ran FGES on 
each dataset with each sparsity parameter. In total we thus had 3600 causal discovery runs (= 3 numEdges x 
10 graphs x 4 sampleSize x 5 runs x 6 sparsityParams). In each case, FGES outputs a Markov equivalence 
class (MEC) of causal graphs. For each MEC, we computed  

• True positive adjacencies 
• False positive adjacencies 
• True positive orientations (number of oriented edges FGES returns that are similarly oriented edges in 

the true causal graph) 
• False positive orientations (number of oriented edges FGES returns for which the same to variables 

are not adjacent in the true graph or they are adjacent, but the edge is oriented in the other direction) 
• Orientable: We determined how many of the edges in the true graph are in theory orientable using 

only the independence structure implied by the graph (i.e. how many edges would be orientable with 
infinitely many samples). 
 
We computed adjacency precision, adjacency recall/sensitivity and adjacency specificity, as well as 

orientation precision and orientation recall in the way described in the inset of SUPPLEMENTARY FIGURE 1. 
We omit orientation specificity because true negative orientations have an ambiguous value. We averaged 
these values for runs that had the same number of edges in the true graph and the same sample size (i.e. 
over 50 runs).   

SUPPLEMENTARY FIGURE 1 shows the results. We have the following remarks:  
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• For the extremely sparse setting (100 edges) we recover the accuracy results of Ramsey et al. 
(2016), but those results do not hold up for denser models.  

• Orientation recall is plotted on a scale where 1 means that all edges are oriented. Of course, not all 
edges can be oriented even in theory. So the dashed lines indicate for the corresponding edge 
density, how many edges could in principle have been oriented. We see that for 100 and 200 edges, 
FGES attains the maximum bound, but for 500 edges it falls quite short of orienting all edges that 
could be oriented. Note that for 100 and 200 edges the orientation recall sometimes exceeds the 
maximum of the corresponding dashed line. This is due to the fact that FGES can sometimes recover 
from so-called violations of faithfulness.  

• Sparsity parameter of s=8, which we used for our analysis of the fMRI data in the main paper, strikes 
us as a good compromise given these results. 

• While we provide the error bars over the 50 runs for each datapoint, it should be noted that these 
error bars conflate variation due to (i) independently sampling multiple datasets from the same causal 
model, and (ii) different causal models that have the same number of edges. 
 

 
 
Supplementary Figure 1. Results of our FGES simulation. We ran the FGES algorithm with sparsity 
parameter s=4, 6, 8 or 10, to discover a 110-node graph with 100, 200, or 500 edges. The top row shows 
precision, recall, and specificity (cf. inset at bottom right for a graphical reminder of what these terms mean) 
for adjacencies; the bottom row shows precision and recall for orientations (specificity is poorly defined for 
orientations). For orientation recall, the dashed lines indicate the theoretical maximum fraction of orientable 
edges. Error bars denote standard error of the mean (s.e.m.). See text for details. 
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SAT-based causal discovery algorithm 
(Hyttinen et al., 2014) developed a causal discovery algorithm based on a Boolean SAT(isfiability)-

solver. Unlike FGES, it does not require the assumptions that the causal structure is acyclic (no feedback) or 
that it is causally sufficient (no unmeasured common causes). Moreover, it could be made completely non-
parametric by using non-parametric conditional independence tests. This weakening of background 
assumptions comes at the cost of a significant reduction in scalability. The SAT-based method takes as input 
conditional independence constraints obtained from the data and translates them into Boolean constraints on 
the underlying graph structure. For example, a discovered independence between two variables X and Y will 
be translated into a constraint disallowing certain causal pathways between X and Y, while a dependence will 
be translated into a requirement of at least some causal connection. In general, the discovered 
(in)dependences may conflict due to statistical errors, so a Boolean optimization is performed to minimize the 
sum of (weighted) constraints not satisfied in the output causal structures. The output is a set of causal 
graphs, which now may also represent feedback relations and confounded variables, that are deemed an 
optimal fit with the data. We used the published version of the code with the most general search space 
(allowing for cycles and confounding), took as input all (conditional) independence tests up to conditioning set 
size 3, and applied a constant weight to each constraint. For the simulation here we used the implemented 
“classic” correlation test to determine independence. 

Since the method is not scalable, we restricted ourselves to 6 ROIs that we had found to have some 
connection to the right amygdala (that was stimulated in patient 384), either due to the correlational analysis  

(from the Pearson correlation matrices), the causal analysis (from FGES runs) or due to expert 
opinion (connections mentioned in the literature). Needless to say, there are more ROIs to consider, but we 
needed to select a manageable number. 

 
• 109 RightAmygdala (stimulation site)  
• 82 R_ParahippocampalGyrusAnterior (often correlated or causally connected)  
• 56 R_TemporalPole (often correlated or causally connected)  
• 108 RightHippocampus (often correlated or causally connected)  
• 59 R_MiddleTemporalGyrusAnterior (often correlated or causally connected)  
• 110 RightAccumbens (expert judgment) 
• 81 R_FrontalOrbitalCortex (expert judgment) 

  
For one of the HCPs datasets, for the resting state fMRI and the electrical stimulation fMRI dataset of 

patient 384 we ran FGES with sparsity 4 and 8, and we ran the SAT-based causal discovery algorithm 
allowing for the possibility of cycles and unmeasured confounding. In the case of the es-fMRI dataset we here 
do NOT provide the algorithms with background knowledge that variable 109 was subject to stimulation 
because we are not confident that the stimulation can be modeled as a surgical intervention as it is often 
understood in the causal modeling literature. SUPPLEMENTARY FIGURE 2 shows the results, datasets in the 
rows, algorithms in the columns.  

In the case of FGES the output Markov equivalence class is shown from the run when sparsity s=4. 
The fat edges indicate edges that were also found when s=8. Recall that all causal graphs in the same 
Markov equivalence class share the same adjacencies. Note that while FGES is able to orient quite a few 
edges in the case of the HCP dataset, it can only orient very few in the data from the surgical patient when 
stimulated (hence the unoriented edges). 
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In the case of the SAT-based algorithm, one optimal causal graph is shown, and the fat edges 
indicate those edges that are shared across all optimal graphs that the solver found. Orange bi-directed 
edges indicate the presence of an unmeasured confounder, i.e. X↔Y means that the algorithm has 
concluded that there is in fact some unmeasured common cause L, such that XLY. Unlike in the search 
space that FGES considers, causal structures that are deemed equally optimal by the SAT-algorithm need 
not share the same adjacencies. So we also list the non-adjacencies shared by all optimal solutions, as well 
as the total number of optimal solutions. 

We note that when comparing the two columns, there is a significant number of adjacencies that are 
shared, but that the SAT-algorithm resolves several of those adjacencies as due to unmeasured confounding. 
Note that the graphs shown for FGES result from runs only on these 7 parcels and are not the subgraphs 
over these 7 variables from the graph over 110 variables. So it is possible that in the graph over 110 
variables, FGES would also resolve some of these adjacencies as due to common causes not included in this 
small subset. Of course, even a graph over 110 variables most likely does not contain all unmeasured 
confounders either. 

Though perhaps less obvious by visual inspection, there are also a significant number of shared non-
adjacencies between FGES and SAT. Importantly, these non-adjacencies imply that not only are the 
variables not direct causes of each other, but they are also not subject to unmeasured confounding.  

Overall, we think these results vindicate our focus on the adjacency structure that FGES supplies, but 
we are also excited by the possibilities that lie ahead in more thoroughly exploring the data we have with 
more general causal discovery algorithms. 

 

 
 
Supplementary Figure 2. Comparison of FGES and SAT-based causal discovery algorithms, using a small 
set of parcels including the right amygdala (109), which was stimulated in patient #384. See text for details. 
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Horizontal reliability metric 
We defined horizontal reliability (in the HCPs dataset) as follows: We ran FGES on each of the 11 

independent HCPs  datasets for each value of the sparsity parameter.  For a given sparsity value we then 
counted the number of times each adjacency appeared across the 11 resulting graphs, yielding for each 
adjacency a value from 0 to 11. We then simulated 1000 sets of 11 random graphs with the same adjacency 
density as the 11 real graphs of a fixed sparsity had (on average), so as to estimate how often each co-
occurrence score (from 0 to 11) would occur by chance (blue histograms, SUPPLEMENTARY FIGURE 3). 
Horizontal reliability of an adjacency A was finally defined as the proportion of adjacencies that have a lower 
(or equal) co-occurrence count if 11 graphs (of fixed density) were generated by chance than the co-
occurrence count observed for A (orange curves, SUPPLEMENTARY FIGURE 3). This definition allows us to 
compare graphs of different sparsities more fairly, since denser graphs will necessarily present more co-
occurrences by chance than sparser graphs, which is adjusted for by our estimate of the empirical chance 
distribution (see examples of a 5%, 10%, and 30% complete graph in SUPPLEMENTARY FIGURE 3).  Of 
course there are many ways one could define horizontal reliability measures and this measure breaks down 
for very dense graphs. Moreover, this measure does not capture the reliability of absences of adjacencies. 
Nevertheless, we found it to be a useful first pass to make adjacency reliability comparable across different 
graph densities for relatively sparse graphs. 

 

 
 

Supplementary Figure 3. A horizontal reliability metric that can be compared across graphs of different 
densities. We simulated 1000 sets of 11 random graphs with three adjacency densities: 5%, 10% and 30%, 
from left to right. The blue histogram shows the distribution of co-occurrence scores (how many times an 
adjacency is repeated in the 11 subsets, from 0 to 11) that would occur by chance. The histograms differ for 
graphs of different densities (e.g., compare leftmost and rightmost plots). To account for this, we defined 
“horizontal reliability” of an adjacency A as the proportion of adjacencies that have a lower (or equal) co-
occurrence count if 11 graphs (of fixed density) were generated by chance than the co-occurrence count 
observed for A (orange curves). Reliable edges are defined as edges with a horizontal reliability of .95 or 
higher (horizontal dashed lines), which corresponds to a different actual count of repeats for each graph 
density (vertical dashed lines). 
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Reliability of es-fMRI results 
We examined the reliability of the es-fMRI results within each patient across runs, in order to estimate 

the temporal stability of our results.  At least within the timeframe of the experiment, we obtained good 
reliability, suggesting that the results obtained are not unstable.  Future work will be required to extend this 
question to longer time periods, and to explore how activation maps, and connectivity, might change as a 
function of states such as attention and emotion. 

 

 
Supplementary Figure 4. Reliability of es-fMRI results across runs.  Shown are the evoked mean percent 
signal change observed across four runs in patient #384, at two brain locations.  a:  Reliability at a voxel near 
the stimulation site.  b: Reliability at a voxel at a distal location activated by electrical stimulation.  
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Supplementary Table 1. List of parcels used in this paper (from Harvard-Oxford anatomical parcellation). 
Volume is in cubic centimeters. 
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b 

 
 
Supplementary Table 2. Detailed identifiers for large resting-state datasets used.  a: List of 880 HCP 
subjects used for Dataset #1 (HCPs), broken down by the 11 subsets we used for our “horizontal” reliability 
analysis. For each subject, rfMRI_REST1_RL and rfMRI_REST2_RL runs were used, volumes [35:35:1190] 
b: List of 80 sessions from the MyConnectome project that we used for Datasets #2 and #3 (MCPs and 
MCPd). 

 
 
 

 
 
Supplementary Table 3. Demographics and stimulation parameters for patients included in es-fMRI study. 
All patients were stimulated in the amygdala. 
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Supplementary Table 4. List of clusters activated by electrical stimulation (see FIGURE 10 in main text). 
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