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Breast cancer is the most common type of cancer among women worldwide. The standard 

histopathology of breast tissue, the primary means of disease diagnosis, involves manual 

microscopic examination of stained tissue by a pathologist. Because this method relies on 

qualitative information, it can result in inter-observer variation. Furthermore, for difficult cases 

the pathologist often needs additional markers of malignancy to help in making a diagnosis. We 

present a quantitative method for label-free tissue screening using Spatial Light Interference 

Microscopy (SLIM). By extracting tissue markers of malignancy based on the nanostructure 

revealed by the optical path-length, our method provides an objective and potentially 

automatable method for rapidly flagging suspicious tissue. We demonstrated our method by 
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imaging a tissue microarray comprising 68 different subjects - 34 with malignant and 34 with 

benign tissues. Three-fold cross validation results showed a sensitivity of 94% and specificity of 

85% for detecting cancer. The quantitative biomarkers we extract provide a repeatable and 

objective basis for determining malignancy. Thus, these disease signatures can be automatically 

classified through machine learning packages, since our images do not vary from scan to scan or 

instrument to instrument, i.e., they represent intrinsic physical attributes of the sample, 

independent of staining quality.   

Introduction: 

 The latest World Health Organization (WHO) figures have reported breast cancer as the 

second most common form of cancer worldwide with 522,000 deaths in 2012 1. Within the US 

over 200,000 new cases of the disease are expected for women in 2017 according to the 

American Cancer Society 2. Effective treatment strategies require timely and accurate diagnosis 

of the disease. It has been reported that, in the US, the 5-year average survival rates for patients 

with invasive breast cancers increase from 90% to 99% when the disease is detected at a 

localized (non-metastatic) stage 3.   

 The standard tissue evaluation method for diagnosing breast cancers involves 

microscopic examination of a hematoxylin and eosin (H&E) counter-stained tissue biopsy. The 

biopsy specimen is obtained from the patient when suspicion of disease is noted during a 

screening procedure such as X-ray mammography. Since cells and histological tissue sections 

are transparent, the H&E stain provides the necessary contrast for assessing tissue morphology 

using a conventional bright field microscope. This standard histopathology process has two 

important short-comings: reliance on qualitative markers leads to intra- and inter-observer 

variation while manual examination can lower the throughput of the evaluation. Quantitative 
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microscopy could help pathologists by offering an objective assessment of the tissue physical 

properties. Furthermore, quantitative markers can be interpreted by machine learning classifiers 

for rapid analysis and automated detection 4. 

 In this work, we present a method for extracting quantitative markers of malignancy in 

breast tissue biopsies using Spatial Light Interference Microscopy (SLIM) 5. SLIM is a 

quantitative phase imaging (QPI) 6 modality that generates contrast by measuring the variation of 

optical path-length difference (OPD) across the tissue specimen. OPD reports on the product of 

the refractive index and thickness of tissue at each pixel. Malignant transformation involves 

physical changes in epithelial cell size and density as well as the tissue organization – both of 

which affect OPD maps of tissue. These maps have, therefore, been used in the past for several 

clinical investigations 7. This includes applications in histopathology and cytopathology 

including diagnosis of prostate 8 and colorectal cancers 9,10, prediction of recurrence in prostate 

cancer 11, analysis of Gleason grade 12, assessment of metastatic pancreatic cells 13 as well as 

detection of pre-malignancy in colorectal tissue 14. Furthermore, using QPI human blood cells 

have also been investigated for morphological 15,16, chemical 16-18 and mechanical markers of 

disease 19,20. 

 To date, a majority of quantitative image analysis on breast tissue biopsies has relied on 

color images of stained tissue. Image classification in these cases has involved computing a wide 

range of histological features including geometric features 21,22, texture-related features 23,24 and 

radiometric features 23 25,26 [see 27 for a review of methods]. However, the feature extraction 

process relies heavily on tissue staining which can vary from sample to sample and instrument to 

instrument, affecting the robustness of the classifier 28. The label-free approach we propose 

makes classification through machine learning easier since the instrument does not require 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2017. ; https://doi.org/10.1101/214502doi: bioRxiv preprint 

https://doi.org/10.1101/214502


calibration for inconsistency in pixel values due to variations in staining, tissue changes caused 

by harsh solvents etc.  Other label-free quantitative methods for tissue image classification have 

been proposed in the literature, including Fourier transform infrared spectroscopy (FTIR) 29-31, 

Raman spectroscopy 32-34, optical coherence tomography (OCT) 35,36 and second-harmonic 

generation  (SHG) imaging 37,38. However, these techniques differ from our QPI-based method in 

terms of speed, resolution, and compatibility with the current diagnostic pipeline.  

 We demonstrated in our previous work 39 that SLIM captures sufficient tissue 

morphology to separate benign from malignant tissue via visual investigation by trained 

pathologists.  In this work, we demonstrate the quantitative analysis capabilities of our tissue 

screening system by imaging a tissue microarray (TMA) comprising 68 different cases (34 

benign and 34 malignant). For each epithelial region within a tissue core, we extracted scattering, 

geometric, and texture-related markers of tissue malignancy from the SLIM maps (see Materials 

and Methods). A linear-discriminant analysis (LDA) classifier was trained to separate benign 

cases from malignant cases and three-fold cross validation was performed to measure the 

classification accuracy of the learned model 40,41. Using validation by the Receiver Operating 

Characteristic (ROC) curve analysis, our results revealed a sensitivity of 94% and specificity of 

85%.        

Materials and Methods 

a. SLIM Optical Setup 

 Figure 1 illustrates the SLIM optical setup which has been discussed in detail in 

previous publications 5,42. The setup comprises of a module (CellVista SLIM Pro, Phi Optics, 

Inc.) coupled to the output port of a commercial phase contrast microscope (Carl Zeiss, Axio 

Observer Z1). This compatibility with existing microscopes promises to reduce barriers to 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 5, 2017. ; https://doi.org/10.1101/214502doi: bioRxiv preprint 

https://doi.org/10.1101/214502


clinical adoption since optical microscopes are commonly available in pathology labs. In the 

SLIM module, the conjugate image plane outside the microscope is relayed onto a CCD camera 

(Andor, Zyla) using a 4f system comprising lenses L1 and L2. At the Fourier plane of L1, a 

spatial light modulator (Boulder Nonlinear Systems) is used to modulate the phase difference 

between the scattered and unscattered components of light in increments of π/2. Four different 

modulations are applied [Fig. 1 (b)] and the resulting phase image is reconstructed using a 

previously published algorithm 5. Using a software platform developed in-house, the SLIM 

module has been upgraded with full-slide scanning capabilities 9,39. The acquisition speed is in 

the range of the existing commercial tissue scanners, which, in turn, only perform bright field 

imaging 39. Throughout our experiments, a 40x/0.75 NA phase contrast objective was used for 

imaging. 
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Figure 1. (a) The SLIM module added on to a commercial phase contrast microscope. (b) Four 
frames are acquired to compute one phase image by modulating the phase difference between 
scattered and incident light using a spatial light modulator (SLM). (c) An image of the whole 

slide scanned using SLIM. (d) Example of a TMA core SLIM image. (e) Bright field image of 
the same core after H&E staining. BS, beam splitter; L1-L2, lenses; IP, image plane. 
 

b. Tissue microarray  

 The TMA used for our study was purchased from US Biomax Inc. (Serial # BR-1002)

with diagnosis for each case provided by the manufacturer. The TMA was obtained with all

human subject information de-identified. Neither the authors of this work nor their institutions

were involved in the collection of tissue. The TMA comprised of cores 1 mm diameter and a

section thickness of 5 µm. Standard formalin fixation and paraffin embedding (FFPE)

histological preparation was used for each tissue block before extraction of cores. A xylene

based mounting medium was used during cover-slipping. 
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 The TMA consisted of 36 cases of infiltrating ductal carcinoma (IDC) and 36 cases of 

tumor adjacent normal tissue (one core per case – a total of 72 cores). Three of the tumor 

adjacent normal cores were obtained from the IDC cohort. In addition, 10 normal cases were 

included (single core each) from autopsy procedures. For final analysis we selected 34 cores 

diagnosed as malignant and 34 cores diagnosed as normal (either tumor adjacent normal or 

normal). The selection criteria were based on whether the core was intact and whether any 

epithelial tissue was present in the core (cores containing only stromal tissue were excluded). A 

SLIM image of the whole TMA slide is illustrated in Fig 1 (c) while Figs. 1 (d) and (e) show, 

respectively, phase map and H&E stained tissue bright field image (henceforth referred to as 

‘H&E image’) of one core. For obtaining a mosaic of the TMA, we used a C++ based stitching 

code, developed in-house 9. After staining the same tissue slide using standard protocols 43, H&E 

images of the TMA were acquired using a bright-field microscope (Carl Zeiss, Axio Observer 

Z1) outfitted with a color camera (Carl Zeiss, Axiocam MRC). The H&E images were used to 

assist with annotation of epithelial regions in tissue, discussed below.  

c. Annotation of epithelial regions in tissue images 

 Glands or continuous epithelial regions within each core were manually annotated using 

the region of interest (ROI) tool of ImageJ to allow feature extraction for each gland. A 

consistent criterion for annotation was used where groups of epithelial cells bounded by stroma 

on all sides where considered a single gland. Other tissue components within epithelium (such as 

lumen etc.) were considered part of the gland if bounded on all sides by epithelial cells. Glands 

from cores in the IDC cohort were labelled as malignant while those from cores in the tumor 

adjacent normal cohort were labelled as benign. 
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d. Extraction of geometric and scattering features 

 Malignant transformation in breast tissue affects the size, shape and density of epithelial 

cells as well as the shape and organization of epithelial tissue. As a result, both the geometry and 

scattering properties of the gland are affected. We used gland perimeter curvature C , as well as 

the mean scattering length sl  as part of the feature set used for separating benign and malignant 

tissue. The parameter extraction process is illustrated in Fig. 2 and a detailed description for each 

is provided below. 

 The extrinsic curvature C  of a two-dimensional plane curve ( , )P x y , that is parametrized 

by Cartesian coordinates ( )x t  and ( )y t  with parameter t , is given by the expression 44 

 

( )
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where the 'x , 'y  and ''x , ''y  refer to the first and second derivatives in t , respectively. In the 

above parametrization, t  refers to each pixel comprising the curve ( , )P x y , having coordinates 

( )x t  and ( )y t . This curvature can be interpreted as the magnitude of the rate of change of a 

vector tangent to ( , )P x y . We computed C  for the perimeter ( , )P x y  of each annotated gland by 

using an open source MATLAB code 45. The code approximates ( , )P x y  as a polygon before 

computing C  for each point defining the gland perimeter, as described in Eq. (1). To speed up 

computation, the image of each core was first down-sampled from the raw image size of 8000 x 

8000 to 2048 x 2048 pixels. The perimeter ( , )P x y was then further down-sampled by a factor 20 

before computing C  in order to remove any pixel level errors due to manual annotation. The 

median gland curvature C  was then used as a feature for separating benign and malignant 

cases. Figs. 2 (c) and (d) illustrate C  for representative benign and malignant glands.  
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 The mean scattering length sl  is a bulk scattering parameter that defines the length scale 

over which a single scattering event occurs on average. Assuming that the tissue slice captures 

the refractive index spatial fluctuation statistics, i.e., assuming statistical homogeneity, sl can be 

computed through the scattering-phase theorem using the expression 46 

 
var[ ( , )]s

L
l

x yφ
= ,  (2) 

where ( , )x yφ  is the SLIM phase image, L  is the tissue section thickness and the operator [ ]var .  

computes the spatial variance over a region. The sl  parameter has been used in the past for 

discriminating between benign and malignant prostate tissue 8. We first computed the image 

( , )sl x y  using a variance filter kernel size of 149 x 149 pixels, which equals the approximate 

diameter of 3 epithelial cells. The feature sl  was then computed by calculating the median of 

( , )sl x y  over the gland area. This computation is illustrated in Figs. 2 (e) and (f). 
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Figure 2. Computing the geometric feature C  and scattering feature sl over each annotated 
gland. (a) and (b) H&E images of benign and malignant glands, respectively. (c) and (d) SLIM 
images of the same benign and malignant glands, respectively, illustrating gland curvature C . 

The median over gland C is used as the geometric feature for classification. (e) and (f) ( , )sl x y

for benign and malignant glands, respectively. The median over gland sl is used as the 

scattering feature for classification. 

e. Extraction of texture-related features 

 Benign and malignant epithelial tissues differ not only in cell morphology but also in the

organization of their components, leading to different textures. Texture-related features have

been used in the past for solving different classification problems in histopathology of cancers

12,27. Our feature extraction follows the work done by Varma et al. 47 for classifying different

materials based on their texture. The approach is illustrated in Fig. 3. A TMA core phase image

[Fig. 3 (a)] is first filtered through a convolution with the Leung-Malik (LM) filter bank [Fig. 3

(b)]. This filter bank consists of gradient filters (both odd and even) at different orientations and

spatial scales 48 . In total, 58 different filters were used, generating a 58-dimensional response

vector for each pixel in the core phase image [Fig. 3 (c)]. K-means clustering was then
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performed on the response vectors (number of clusters, K = 50) generated from all cores within

the training set and the computed cluster centroids were referred to as ‘textons’ 47,48. Since each

pixel in the core belongs to a texton, for each pixel the histogram of textons was generated for its

vicinity (window size 60 x 60 pixels) and was used to characterize the local texture in that

neighborhood. This way, a 50 dimensional feature vector T  was generated to characterize

texture in a pixel’s neighborhood. An open source MATLAB code was used for generating the

LM filter bank for this work 49.  

Figure 3. Algorithm for computing the texture in a pixel’s neighborhood. (a)-(c) Generating the 
response of each pixel to a Leung-Malik filter bank. (d) K-means clustering of response vectors, 

generated from all cores in the training set, in order to find 50 cluster centroids or textons. (e) 
Histogram of textons, within a pixel’s neighborhood, comprise the texture-related feature vector 

T for each pixel. 
 

f. Classifier training and validation 

 Since our work involves classifying each gland within a tissue core as benign or

malignant, a feature vector for each gland was next generated by concatenating geometric,
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scattering and texture-related features. This procedure is illustrated in Fig. 4. After pixel-wise 

computation of gland curvature C , scattering length sl  and texture vector T , the median of each 

feature was computed over each gland in a core and a combined 52 dimension feature vector was 

generated for training. For each gland, this feature vector was then used as a predictor for 

training a linear-discriminant analysis (LDA) classifier [Fig. 4(a)]. Class labels, either benign or 

malignant, were used as the ground-truth for each gland during the training process. 

 The feature extraction for validation purposes, illustrated in Fig. 4 (b), followed a nearly 

identical procedure to that used during training. The only difference was that, instead of finding 

new textons (cluster centroids) for validation data, the texture feature vector T was computed by 

using the same textons as determined during training. As in training, a 52 dimensional feature 

vector was input to the LDA classifier which then used the model learned during training to 

generate a likelihood score for a gland being benign or malignant. Finally, the mean of the 

likelihood scores of all glands within a core was computed and used as the likelihood score of a 

core being benign or malignant. These scores were then used to generate a receiver operative 

characteristic (ROC) to select an operating point for separating benign and malignant cases (see 

Results and Discussion). 
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Figure 4. (a) Training and (b) Validation procedure for classifying glands as benign or 

malignant. 
 

Results and Discussion 
 
 The classification results of our analysis are summarized in Fig. 5. In order to  evaluate

the accuracy of our method, we performed three-fold cross-validation 50 as illustrated in Fig. 5

(a). The total number of cases were divided into three (nearly) equal groups. In each trial, two

groups were used for training while the remaining one was used for validation. Thus, three

validation trials were performed, each time selecting a different validation/training set

combination.  

 Figure 5 (b) illustrates the separation between benign and malignant gland feature vectors

in one training set. In order to illustrate the data separation in 3 dimensions, we use principal

component analysis (PCA) and represent the 50-dimensional feature vector T  through its first

principal component PC1 T . The training space shows that scattering feature sl  has on

average higher values for malignant glands than for benign glands. This finding is compatible

with typical gland morphology in breast tissue since benign glands are well differentiated,
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consisting of a number of different structures including epithelial cells, lumen and myoepithelial 

cells 51. This heterogeneity of structure results in short mean scattering lengths as explained by a 

large variance in Eq. (2). Malignant glands on the other hand consist of a monoclonal 

proliferation of cells, sometimes even showing sheets of poorly differentiated epithelial cells, 

resulting in smaller variance and larger sl  values 51.  These phenomena can also be observed in 

the examples given in Figs. 2 (e) and (f). In previous investigations on prostate cancer, it was 

shown that sl  has a lower value in malignant tissue than in benign tissue 8. That analysis, 

however, was carried out on larger areas of tissue where cellular organization can be different 

from the epithelial only regions we are studying in this work 8.  

 The median gland curvature C , on the other hand, generally has higher values for 

benign glands than for malignant glands. This is a result of the fact that the edge of a benign 

gland is constrained to follow a round or elliptical shape due to tubule formation [Figs. 2 (a) and 

(c)] 51. When malignant transformation occurs, this constraint is broken and the gland edge is 

more irregular. At the spatial scale of investigation we have used here (approx. 13 mμ ), the 

perimeter of the malignant gland is less rapidly varying, on average, than that of a benign gland. 

This geometric feature is similar to the previous measurement of the gland perimeter fractal 

dimension that has been used for histopathology 21,27.  

 Fig. 5 (c) shows the separation between benign and malignant glands in the validation 

feature space, where, qualitatively, the same separation trend is seen as in training. We show the 

results of only one of the three validation trials that were carried out. As described in Materials 

and Methods, the gland likelihood scores, generated by the classifier during validation, were 

averaged over each gland in order to obtain core-wise or case-wise scores.  The core-wise 

likelihood scores from the 3 trials were then pooled together to generate the ROC curve 
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illustrated in Figure 5 (d) 52. Our results indicate an area under the curve (AUC) of 0.91. The

optimum operating point for classification was determined by assigning equal weight to the cost

of misclassifying positives and the cost of misclassifying negatives 53. This resulted in a

sensitivity of 0.94 and specificity of 0.85 for the three-fold cross validation. The higher

sensitivity of 0.94 is appropriate for our screening application, as a diagnostic tool based on this

method will generate a small number of false negatives. Such a tool can point out tissue areas

that have even a small chance of malignancy so a pathologist can inspect them more closely. 

 

 
Figure 5. (a) Three-fold cross-validation procedure for evaluating classification accuracy. (b) 
Separation of benign and malignant gland feature vectors during training in 1 of 3 validation 
trials. (c) Separation of benign and malignant gland feature vectors during validation in 1 of 3 
validation trials. (d) ROC curve for the 3 validation trials resulting in a sensitivity of 0.94 and 

specificity of 0.85 at the optimum operating point. 
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Summary and Conclusions 

 In summary, we presented a new method for screening tissue biopsies obtained from 

patients under investigation for breast cancer. Since our method relies on measurement of OPD 

maps, an intrinsic property of tissue, the basis for classification is objective and not subject to 

inter-observer variation. While in the past much of the quantitative histopathology has relied on 

analysis of stained tissue, our method performs image processing and machine learning on 

unlabeled images, making it insensitive to variability due to staining. Thus, the process of 

automating the entire method is feasible and subject to our future efforts.  

 While other label-free diagnosis methods have been proposed for these types of 

investigations, they affect the standard diagnostic pipeline in terms of either speed, resolution or 

compatibility with established workflow. SLIM, on the other hand, requires minimal changes to 

a conventional microscopic optical train due to its modular design. Equipped with a slide-

scanning feature for rapid acquisition, a SLIM tissue scanner can potentially carry out high-

throughput automated histopathology, not only reducing the case-load for pathologists but also 

providing complementary information through new markers. This carries the potential for 

incorporation into daily practice of diagnostic surgical pathology, either as a screening method to 

point out areas of the slide that need additional attention, or for difficult cases where pathologists 

need supporting tests to make a final diagnostic decision. 
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Figure Legends: 

Figure 1. (a) The SLIM module added on to a commercial phase contrast microscope. (b) Four 

frames are acquired to compute one phase image by modulating the phase difference between 

scattered and incident light using a spatial light modulator (SLM). (c) An image of the whole 

slide scanned using SLIM. (d) Example of a TMA core SLIM image. (e) Bright field image of 

the same core after H&E staining. BS, beam splitter; L1-L2, lenses; IP, image plane. 

 

Figure 2. Computing the geometric feature C  and scattering feature sl over each annotated 

gland. (a) and (b) H&E images of benign and malignant glands, respectively. (c) and (d) SLIM 

images of the same benign and malignant glands, respectively, illustrating gland curvature C . 

The median over gland C is used as the geometric feature for classification. (e) and (f) ( , )sl x y

for benign and malignant glands, respectively. The median over gland sl is used as the 

scattering feature for classification. 

 

Figure 3. Algorithm for computing the texture in a pixel’s neighborhood. (a)-(c) Generating the 

response of each pixel to a Leung-Malik filter bank. (d) K-means clustering of response vectors, 

generated from all cores in the training set, in order to find 50 cluster centroids or textons. (e) 

Histogram of textons, within a pixel’s neighborhood, comprise the texture-related feature vector 

T for each pixel. 
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Figure 4. (a) Training and (b) Validation procedure for classifying glands as benign or 

malignant. 

 

Figure 5. (a) Three-fold cross-validation procedure for evaluating classification accuracy. (b) 

Separation of benign and malignant gland feature vectors during training in 1 of 3 validation 

trials. (c) Separation of benign and malignant gland feature vectors during validation in 1 of 3 

validation trials. (d) ROC curve for the 3 validation trials resulting in a sensitivity of 0.94 and 

specificity of 0.85 at the optimum operating point. 
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