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Visual information is conveyed from the retina to the brain by a diverse set of 
retinal ganglion cells. Although they have differing nonlinear properties, nearly all 
ganglion cell receptive fields on average compute a difference in intensity across 
space and time using a region known as the classical or linear surround1,2, a 
property that improves information transmission about natural visual scenes3,4. The 
spatiotemporal visual features that create this fundamental property have not been 
quantitatively assigned to specific interneurons. Here we describe a generalizable 
causal approach using simultaneous intracellular and multielectrode recording to 
directly measure and manipulate the sensory feature conveyed by a neural pathway 
to a downstream neuron. Analyzing two inhibitory cell classes, horizontal cells and 
linear amacrine cells, we find that rather than transmitting different temporal 
features, the two inhibitory pathways act synchronously to create the salamander 
ganglion cell surround at different spatial scales. Using these measured visual 
features and theories of efficient coding, we computed a fitness landscape 
representing the information transmitted using different weightings of the two 
inhibitory pathways. This theoretical landscape revealed a ridge that maintains 
near-optimal information transmission while allowing for receptive field diversity. 
The ganglion cell population showed a striking match to this prediction, 
concentrating along this ridge across a wide range of positions using different 
weightings of amacrine or horizontal cell visual features. These results show how 
parallel neural pathways synthesize a sensory computation, and why this 
architecture achieves the potentially competing objectives of high information 
transmission of individual ganglion cells, and diversity among receptive fields.   
 

The parallel architecture of the nervous system makes it challenging to understand the 

circuit origin of neural computations and the evolutionary advantage of those circuits. 

Despite new recording and neurostimulation techniques5,6, even widely studied 

computations such as the sensory receptive fields of retinal ganglion cells and orientation 
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selective cells in the visual cortex have not been quantitatively assigned to their neural 

components7-9. Both horizontal and amacrine cells are thought to contribute to the 

ganglion cell receptive field surround, as indicated by current injection into horizontal 

cells10,11, and pharmacological experiments on amacrine cells, although these latter 

studies have yielded conflicting results12-14. But these results neither define the 

spatiotemporal feature contributed by a particular interneuron to the ganglion cell linear 

receptive field, nor reveal the functional benefits of utilizing such a parallel architecture.  

 We first sought to directly measure the spatiotemporal contributions of individual 

interneurons to the linear ganglion cell receptive field surround. The sensory feature, Cx,t

, contributed by an interneuron to a downstream neuron is created in two stages—first the 

transformation from the stimulus to the interneuron, which is the interneuron’s own 

spatiotemporal receptive field, Fx,t —and second the transformation, Gt , between the 

interneuron and the downstream neuron in its projective field15-17 (Fig. 1A). The 

combined effect of these two functions has not been measured, and thus the contributions 

of individual interneurons are unknown. To measure the receptive field component, C a( ) , 

contributed by single sustained amacrine cells, which have linear responses, 16,18to the 

ganglion cell receptive field, we presented a one-dimensional spatiotemporal stimulus 

consisting of randomly flickering lines. We first focused on the time course of C a( )  by 

computing the spatial average, Ft
a( ) , of the amacrine cell’s receptive field (Fig. 1 B-D). 

Next, we computed the temporal filter, Gt
a( ) , describing the transmission from amacrine 

to ganglion cell by injecting white noise current for 300 s into the amacrine cell and 

correlating that current with the recorded ganglion cell spikes. This transmission filter 
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Gt
a( )  had a monophasic negative peak (Fig. 1E), indicating that the amacrine cell was 

inhibitory18.  

We then estimated the temporal feature conveyed by the amacrine cell to the 

ganglion cell as C a( )
t = Ft

a( ) ∗G a( )
t , convolving the amacrine cell temporal receptive field, 

Ft
a( ) , with the amacrine to ganglion cell transmission filter, , correcting for a double 

contribution of the amacrine cell membrane time constant18 (see methods). The visual 

feature C a( )
t  conveyed by this amacrine cell to the ganglion cell was an increase in light 

intensity with a latency of  ~120 ms.   

We found that C a( )
t  matched very closely the time course of the ganglion cell 

spatial surround (Fig. 1F). The correlation coefficient, r, was 0.81 ± 0.02 (Fig.1G, n = 21 

cell pairs), similar to the measured variation within the ganglion cell surround itself, 

computed between the two opposite sides of the ganglion cell surround (r = 0.83 ± 0.03).  

 The same analysis was then performed with horizontal cells rather than amacrine 

cells (Fig. 1D-G). Although one might expect that different interneurons with different 

temporal kernels would convey different temporal features, we instead found that the 

visual feature contributed by a horizontal cell to ganglion cells, C h( )
t , also matched the 

time course of the ganglion cell surround for each cell pair (r = 0.81 ± 0.04, n = 18 cell 

pairs). Thus, the visual features conveyed through the distinct neural pathways of 

amacrine and horizontal cells were synchronous in time, and closely matched the time 

course of the ganglion cell receptive field surround. 

We then estimated the spatial receptive field components Cx
a{ }( )  and Cx

h{ }( )  

contributed by amacrine and horizontal cell populations to a single ganglion cell. Because 

Gt
a( )
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each cell type tiles the retina in space19, the spatial weighting of one amacrine cell’s 

projective field16 —equivalent to the amacrine to ganglion cell point spread function —is 

equivalent to the spatial weighting, Gx
a{ }( )  of the convergence of many amacrine cells to 

one ganglion cell. We thus convolved the spatial receptive field (Fig. 1H) of each 

interneuron class with its measured projective field (Fig. 1I) to estimate the spatial visual 

feature conveyed by a population of amacrine or horizontal cells to a single ganglion cell 

(Fig. 1J). The receptive field component conveyed by the amacrine cell population on 

average had a smaller half-maximal width (332 µm +/- 75 µm s.d.) than that of horizontal 

cells (740 µm +/- 139 µm s.d.), with the surround sizes of ganglion cells falling in a range 

in between (Fig. 1 J, K). Thus amacrine and horizontal cells conveyed the same temporal 

feature at different spatial scales that spanned the range of sizes of ganglion cell receptive 

field surrounds. 

The above analysis relied on a linear model of the transformations from stimulus 

to interneuron to ganglion cell, and furthermore assumes that the interneuron’s effects 

were the same under perturbation by white noise current injection as during visual input. 

To measure the interneuron’s contribution without these assumptions, we designed a 

direct causal test to measure whether the interneuron’s timed visual responses specifically 

generated the ganglion cell surround. We used a full field visual stimulus to measure the 

temporal receptive field of the ganglion cell. Although this measurement sums over the 

spatial center and surround of the cell, the first peak in the ganglion cell temporal 

receptive field receives little contribution from the spatial surround, and the second 

opposing peak is almost exclusively comprised by the spatial surround (Fig. 1C, 

Extended Data Fig. 1).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/214569doi: bioRxiv preprint 

https://doi.org/10.1101/214569


To directly test whether amacrine transmission contributed to the ganglion cell 

temporal surround, we amplified or diminished the amacrine cell’s visually driven 

voltage fluctuations (Fig. 2A). We first recorded ganglion cell and amacrine cell 

responses to visual stimuli alone without current, then played back timed current that 

either amplified or diminished the voltage fluctuations of the interneuron while repeating 

the visual stimulus. This record and playback method perturbed the cell only at the times 

of the visually driven response, avoiding potential off-target effects created by mistimed 

perturbations18.  

Amplifying the amacrine cell’s output increased the amplitude of the ganglion 

cell temporal surround, with only a very small change in the sensitivity of the negative 

peak, which derived from the receptive field center (Fig. 2 B, C). Conversely, canceling 

the amacrine cell’s visually driven voltage fluctuations in some cases caused the ganglion 

cell’s temporal surround to nearly disappear, whereas the effect on the first peak was 

minor. These results show causally that the visual feature conveyed by amacrine cells is 

used to construct the ganglion cell temporal surround. 

 The above results imply that a linear amacrine cell contributes a visual feature 

equal to its own linear receptive field filtered through a temporal synaptic delay. We 

tested this idea directly by amplifying or diminishing the voltage fluctuations of an 

amacrine cell during a one-dimensional spatiotemporal stimulus. Comparing the 

amacrine amplified and diminished conditions showed that the ganglion cell population 

experienced a localized reduction in the receptive field that spatially matched the 

amacrine cell’s receptive field (Fig. 2D-F). This demonstrates causally that amacrine 

cells contribute their own receptive field to construct the ganglion cell receptive field. 
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Note that this result is not guaranteed, and that nonlinearities such as a multiplicative 

interaction between neural pathways could cause an interneuron to deliver a visual 

feature that is the combination of its own receptive field and other pathways (Extended 

Data Fig. 3, Supplementary Information). 

Similar experiments using the record and playback technique applied to horizontal 

cells altered the spatiotemporal receptive field of ganglion cells. As with amacrine cells, 

the change in sensitivity across the ganglion cell population matched the horizontal cell 

spatial receptive field (Fig. 2G). Thus, the visual feature comprising the ganglion cell 

surround was not an average of differently timed contributions from separate interneuron 

pathways. Instead, two distinct pathways contributed the same temporal feature that 

matched the final ganglion cell surround, yet at different spatial scales.  

 What is the advantage of having two neural pathways conveying the same 

temporal visual feature at different spatial scales to the ganglion cell linear receptive 

field? Ganglion cell receptive fields approximately maximize information transmission 

given the statistics of natural visual images 3,4,20,21. We confirmed that the average 

ganglion cell receptive field was consistent with these previous claims (Fig. 3A, 

Extended Data Fig. 2). Yet ganglion cells have different receptive field shapes19,22,23 (Fig. 

3B) to support different functional roles such asymmetric receptive fields in direction 

selectivity24 or selecting for particular speeds of motion25. Furthermore, it has been 

proposed that diverse neural responses reduce neural correlations and increase the 

information transmission capacity of a neural population26-34. If there is one optimal 

shape of a receptive field, one would expect that a diverse population must have some 
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cells with suboptimal information transmission. This tradeoff between diversity and 

optimal information transmission is not well understood.  

We modeled the ganglion cell receptive field as a linear combination of the 

measured average visual features contributed by horizontal and amacrine cells, as well as 

an excitatory central region (Fig. 3C). This model captured 93% ±  0.3%  (n = 1382) of 

the variance of measured ganglion cell receptive fields, indicating that we have accounted 

for the main interneuron contributions that create the linear surround (Extended Data Fig. 

4). Based on measured noise in fast Off ganglion cells, and photoreceptor noise estimates 

based on the previously measured mean vesicle release rate (see methods) we computed a 

fitness landscape of information transmission for each type of receptive field. This 

analysis revealed that around the single optimal receptive field was an extended ridge of 

receptive field shapes with near-optimal information transmission. This near-optimal 

region was achieved when the horizontal and amacrine cell weighting caused the center 

weight to slightly exceed that of the surround (Fig. 3D, E). Thus, the measured 

components of horizontal and amacrine cells together define a direction within this 

landscape in which receptive fields can be changed without impacting information 

transmission.  

When we examined the actual receptive fields of over 1,300 ganglion cells, their 

receptive fields closely approximated this ridge of near-optimal transmission yet had a 

broad distribution of receptive fields types, ranging from having surrounds matching the 

horizontal cell feature with no amacrine contribution to those with only an amacrine 

contribution. Individual cell types had different median values of amacrine contribution, 

yet varied broadly within cell type (Extended Data Fig. 5). Although some cell types had 
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weaker surrounds than the optimal value, cell types with higher noise systematically had 

weaker surrounds consistent with theories of information maximization3,4 (Extended Data 

Fig. 6).  Within this landscape, we computed the direction of greatest variation of 

receptive field shape across the ganglion cell population, and found it was nearly 

identical to the direction of least loss of information transmission, differing by ~2 degrees 

(Fig. 3D). This striking correspondence between the fitness landscape that maximizes 

information and the diversity of ganglion cell receptive fields indicates that evolution has 

generated receptive field diversity in a direction of neutral impact to information 

efficiency. Although it is unknown how this remarkable relative tuning of amacrine and 

horizontal cell input is achieved, because the horizontal cell surround component is 

already subtracted from the amacrine cell receptive field, a plausible explanation is that 

adding a greater weighting of amacrine cells automatically reduces the horizontal cell 

contribution. 

To consider the effects of different amacrine cell types on a more general 

ganglion cell population, we then analyzed how a measured inhibitory interneuron 

population (n = 36) would influence the two separate properties of information 

transmission and diversity. Taking all possible amacrine and horizontal cell pairs, we 

found that the inhibitory interneuron population is positioned at a point that maximizes 

receptive field diversity in the ganglion cell population while minimizing information 

loss due to a suboptimal receptive field (Fig. 3F-G). Interneuron pathways with the 

spatial scales of amacrine and horizontal cells support the construction of a diverse 

population of ganglion cell surrounds, each of which is near-optimal in terms of 

information transmission under natural scene statistics. 
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 These results offer a quantitative and theoretical explanation as to how and why 

two parallel inhibitory pathways generate the ganglion cell classical receptive field. Our 

analysis quantitatively accounts for the measured optimal linear receptive fields of 

ganglion cells, and explains the structure of their observed diversity. Although the 

question of what receptive field properties are optimal has been studied3,4,20,35-37, little 

attention has been given to how neural circuits should generate those receptive fields. 

Linear computations pose an added difficulty, as neural pathways that carry the same 

signals and are summed without distortion cannot be separately identified without a 

selective way to perturb each component. In contrast, parallel pathways with distinct 

nonlinearities have enabled recent theoretical and experimental studies to reveal the 

benefits of separate neural pathways differing in their thresholds31,32.   

Our approach to identify the contribution of a cell to a neural function can be 

applied to more complex nonlinear computations, other stimulus modalities and 

optogenetic perturbations. Critical to this process will be to measure the composition of 

input and output functions by both recording from a neuron and perturbing it in order to 

avoid misinterpretations that arise from optogenetic perturbation alone38. In the case of 

retinal receptive fields, this approach reveals how multiple interneuron pathways in the 

retina’s parallel and layered circuitry maintain an efficient representation, while allowing 

the evolution of a diverse neural population. 

 

 

Materials and Methods 

Visual stimuli. Stimuli were projected from a video monitor at a photopic mean intensity 
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of 10 mW/m2, and were drawn from a Gaussian distribution unless otherwise noted. The 

contrast of stimuli defined as standard deviation of the intensity distribution divided by 

the mean ranged from 10 - 35 %. 

Simultaneous intracellular and multielectrode recording. Methods for simultaneous 

intracellular and extracellular recording using a 60-electrode array in the intact 

salamander retina were as described18. Briefly, intracellular electrodes (150 – 250 MΩ) 

were used for either recording or current injection in bridge mode. To compute the 

temporal receptive field component contributed by an amacrine or horizontal cell, we 

computed a visual filter Ft as the spatial average of the spatiotemporal receptive field 

Fx,t  between the visual stimulus and the interneuron membrane potential. We then 

computed a transmission filter Gt  between white noise current injected into the cell and 

ganglion cell spikes. Current amplitudes were chosen so that they were estimated to 

maintain the membrane potential within a physiological range (~10 mV s. d.) given an 

estimate of the membrane conductance measured using pulses of current18. This value 

was 0.5 nA s.d. for amacrine cells and 0.5 – 1.0 nA s.d. for horizontal cells. To compute 

the predicted transmission, Ct  for a neural pathway as a composition of Ft  and Gt , 

because Ft  was computed between the stimulus and interneuron membrane potential, but 

Gt  was computed from injected current, we corrected for the double contribution of the 

amacrine cell membrane time constant τ  by deconvolving with the function e−
t
τ  as 

previously described18.  

For record and playback experiments, to amplify or diminish the fluctuations of 

an interneuron, first the membrane potential fluctuations were recorded without current 
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and an exponential function representing the membrane time constant of the cell was 

measured. The recorded membrane potential fluctuations were then deconvolved by the 

exponential function, creating a current sequence that when filtered according to the 

membrane time constant was predicted to match the measured voltage response. With 

cells that have slower membrane potential fluctuations such as sustained amacrine and 

horizontal cells, this procedure is not highly sensitive to an accurate measurement of the 

membrane time constant18. To amplify the cell’s voltage fluctuations, the visual stimulus 

s t( )  was repeated while injecting the current Ia t( )  synchronized with the visual 

stimulus so as to make both depolarizations and hyperpolarizations larger. The standard 

deviation of the current was set to 500 pA for amacrine cells and 750 pA for horizontal 

cells. To diminish the cell’s voltage fluctuations, s t( )  was repeated while injecting the 

current − Ia t( ) , thus partially canceling the cell’s visual input. This allowed us to 

compare two opposite perturbations of the input. 

Sustained Off-type amacrine cells likely comprise multiple cell types, most of 

which have a narrow receptive field (< 200 µm), and were identified by their sustained, 

linear flash responses, the presence of an inhibitory surround, and their inhibitory 

transmission to Off-type ganglion cells18. Horizontal cells were identified by their lack of 

receptive field surround, linear response, and a receptive field center that exceeded 200 

µm in diameter. Ganglion cells were classified by a white noise stimulus as described39. 

Fast Off-type ganglion cells include two distinct cell types, adapting and sensitizing that 

form independent mosaics, but here they were analyzed together unless otherwise noted. 

Linear model of visual responses and interneuron transmission. Linear models of 

visual responses, and of amacrine and horizontal cell transmission were computed as 
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described using the standard method of reverse correlation18. For current injection, the 

stimulus, i τ( ) , was white noise current (bandwidth of 0 – 50 Hz), and was convolved 

with a linear temporal filter, Ft = F t( ) , which was computed as the time reverse of the 

spike triggered average stimulus, such that 

h t( ) = F t − τ( )∫ i τ( )dτ .   (1)  

To compare the absolute sensitivity in spatial and temporal regions of the 

receptive field between conditions, all sensitivity was placed in the linear filter. To do 

this, the linear filter was extended to a linear-nonlinear (LN) model by computing a static 

nonlinearity N(h) that captured the threshold and average sensitivity of the cell. The 

nonlinearity was then scaled along the input axis in the condition of current injection so 

that N(h) was the same as in the control condition, and the linear filter was scaled by the 

same factor on the vertical axis21. This procedure left the overall LN model the same, but 

placed all sensitivity in the linear filter. 

Spatiotemporal receptive fields were measured using reverse correlation40 of the 

firing rate or membrane potential response with a visual stimulus consisting of 

independently modulated 100 µm squares or 50 µm wide bars.  

The normalized contribution of the surround (Extended Data Fig. 1) was 

computed as 

 Fs t( )
2 / Fs t( )

2
+ Fc t( )

2( ) ,     (2)  

where Fs  is the time course of the linear receptive field averaged over the spatial 

surround, and Fc  is the time course of the center. This measure varies between zero (no 

surround contribution) and one. Results were combined across cells by stretching the 
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total temporal receptive field Ft in time to align the negative and positive peaks. The 

center time course was computed as Fc t( ) = Ft t( )− Fs t( ) . 

Optimal receptive fields. The ideal spatial linear ganglion cell receptive field was taken 

to be one that maximizes information transmission about natural scenes. We solved for 

this optimal receptive field in the frequency domain assuming constrained ganglion cell 

response variance3. This problem can be reformulated as minimizing redundancy, !"#! 

! ! −  !"(!;!), where  !(!;!) is the mutual information between the retina’s visual 

input ! and ganglion cell response Y = F X + Nin( ) + Nout , where !!" is the input noise in 

the retinal circuit prior to the ganglion cell, !!"# is the output noise that corrupts the 

ganglion cell response after the stimulus is filtered by the linear receptive field, and !(∙) 

is the channel capacity, or upper bound on the information the optimized linear receptive 

field can transmit3,20,35. Constraining the receptive field ! to be linear and spatially 

symmetric, and making a Gaussian approximation assumption on the visual stimulus !", 

we can compute the optimal ganglion cell receptive field ! explicitly. The amplitude 

spectrum, F = F ω( )  of the spatial receptive field is given by 

      (3) 

where ω  is spatial frequency, S0 ω( )  is the power spectrum of the visual input !, 

S ω( ) = S0 ω( ) + Nin
2 ω( )  is the power spectrum of the signal + noise input the ganglion 

cell receives, and the Lagrange multiplier ! is found by numerically integrating the 

following expression, 

F = S0
2N in

2S
1+ 1+ 2λN in

2

S0
)

⎛

⎝
⎜

⎞

⎠
⎟ −

1
N in
2
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dω log S0
2λNin

2 + 1+ S0
2λNin

2

⎛

⎝⎜
⎞

⎠⎟∫ = 1
2

dω log
S Nin

2 + Nout
2( )

Nin
2 S + Nout

2( )
⎛

⎝
⎜

⎞

⎠
⎟∫ .  (4) 

 The spatial receptive field ! that maximizes information transmission depends 

only on the signal power spectrum and the input and output noise amplitude spectra. For 

all optimal receptive fields in this paper we used the average power spectrum of natural 

images obtained from a database41, and fixed the input and output noise to be Gaussian 

white noise. We constrained the total signal-to-noise ratio (SNR), 

var(X) var(XNin + Nout ) , to match the average SNR estimated from the trial-to-trial 

variability of 28 fast Off ganglion cells simultaneously recorded in response to a repeated 

35% contrast natural scenes sequence. The SNR in these experiments was measured by 

dividing the variance of each trial, averaged over all trials, by the variance across trials 

averaged across time. The relevant cone photoreceptor noise is that which occurs prior to 

spatial filtering by horizontal cells, and includes photoreceptor vesicle release. To 

estimate the SNR, we assumed a mean vesicle release rate42 of 750 s-1, Poisson noise, and 

a 100 ms integration time, meaning that in one integration time an average of 75 vesicles 

are released. We then computed the SNR as a function of the temporal contrast of a 

Gaussian stimulus, defined as the standard deviation divided by the mean intensity 

(Extended Data Fig. 2). An average value of contrast of 0.3 previously reported for 

natural scenes43, corresponds to an SNR of ~7. We also computed how information 

transmission changed over a range of SNR values, (Extended Data Fig. 7). 

To investigate the contributions of the horizontal cell and linear, or sustained, 

amacrine cell populations, C h{ }  and C a{ }  to the ganglion cell linear receptive field, we 

convolved the average amacrine cell spatial receptive field Fx
(a)  with the amacrine cell 
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projective field Gx
a( ) and similarly convolved the horizontal cell receptive and projective 

fields, and Fx
(h)  and Gx

h( ) (Fig. 1D), respectively. This convolution represents the spatial 

weighting of the horizontal and amacrine population contributions to a given ganglion 

cell, assuming that both interneuron and ganglion cell populations tile the retina. 

To explore how well horizontal or amacrine cell populations alone could 

contribute to a ganglion cell surround that maximizes information, we modeled the 

ganglion cell spatial receptive field as the linear combination 

αBµ ,σ + (1−α )(ηC{h} + (1−η)C{a} ) , where α ∈[0,1]  represents the relative weight 

between center and surround, and η ∈[0,1]  represents the relative weight between 

horizontal and amacrine contributions. For the amacrine-only surround, ! = 0, and for 

the horizontal-only surround, ! = 1. The center contribution !! is a Gaussian where both 

the mean ! and standard deviation ! are jointly fit with !,!.  Two parameters allowed for 

a spatial offset of the horizontal and amacrine receptive field components to account for 

the observation that center and surround were not always perfectly concentric. When 

fitting individual retinal ganglion cells (Fig. 3C-F), parameters were refit for each cell. 

The information landscape in Fig. 3D did not change qualitatively when ! was chosen to 

be the average center width of the five different retinal ganglion cell types.  

To enforce that the weights η  and α  were between 0 and 1 and also maintain a 

smooth gradient for optimization, η  and α were defined as η = θ ′η( )  and α = θ ′α( ) , 

where θ ( )  is a sigmoidal function with a range between 0 and 1. The alternate 

parameters ′η  and ′α  were then optimized. We verified using simulated data that the 

fitting procedure could recover weights η  and α  that were exactly 0 or 1. 
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Diversity vs. information loss. In Figure 3F-G, diversity was computed by calculating 

the angle between model ganglion cells with no amacrine cell contribution or no 

horizontal cell contribution. The angle between these models is defined as 

. To account for these effects across an interneuron 

population, these calculations were repeated with each horizontal-amacrine pair using 9 

horizontal cells, and 27 different amacrine cells. Information loss was defined as the 

percentage decrease in information transmission relative to the maximum possible 

information transmission achievable with any combination of model parameters.  

 

Supplementary Information 

 

Is the result that an interneuron contributes its own linear receptive field to the linear 

receptive field of a downstream neuron the only possibility, or are there other potential 

results that depend on nonlinearities in the circuit? To demonstrate that this result is not 

guaranteed, it is sufficient to give a theoretical example where changing the gain of an 

interneuron a1  as in the experiment in Fig. 2 can change the receptive field of a 

downstream neuron b in a manner different from the receptive field of a1 . As a simple 

example, take a neuron b that responds to two independent stimuli s1  and s2 , each with a 

Gaussian distribution, zero mean. Responses are instantaneous, so time can be ignored. 

Two interneurons – a1  with single region receptive field s1 , and a2  with receptive field 

s2  – contribute to b’s response. The response of b is 

 

 b = a1 + a2 + a1
2a2 = s1 + s2 + s1

2s2 ,    (1) 

∠ = arccos(F1
T F2 )/ | F1 | ⋅ | F2 |
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meaning that the output neuron b sums over a1  and a2 , but there also a multiplicative 

component that combines a1
2  and a2 . The Record and Playback experiment in Figure 3 

considered here would change the gain of a1  by a factor γ , such that b = γs1 + s2 + γ 2s1
2s2

. The receptive field D of b is a two-component vector, one each for s1  and s2 , and can 

be computed by the standard method of correlating the stimulus with the response, 

normalized by the stimulus autocorrelation. The standard equation to compute the 

receptive field for a white noise input is,  

 

D ∝
s1b
s1
2 ,

s2b
s2
2

⎛

⎝
⎜

⎞

⎠
⎟ =

γs1
2 + s1s2 + γ 2s1

3s2
s1
2 ,

γs1s2 + s22
2 + γ 2s1

2s2
2

s2
2

⎛

⎝
⎜

⎞

⎠
⎟  (2)  

 

where brackets,  … , denote the average over stimuli. Because s1  and s2  have zero mean 

and are independent, this equation reduces to,  

 

D ∝ γ ,1+ γ 2 s1
2( ) .   (3) 

 

 

The question of how the receptive field D changes when the amplitude of a1  is changed 

by the factor γ  is equivalent to the partial derivative of D with respect to γ . This is equal 

to  
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∂D
∂γ

= 1,2γσ s1
2( )    (4) 

where σ s1
2  is the variance of s1 . Thus, the gain of a1  changes the receptive field of b not 

only by the receptive field of a1 , which is (1,0), but the receptive field component 

contributed bya1also includes the receptive field of a2 . It is the multiplicative term s1
2s2

in equation (1) that causes this effect, because the correlation of s2  yields the term s1
2s

2

2

which has non-zero mean. Thus, the result of Fig. 2, where each interneuron contributes 

its own linear receptive field to the downstream ganglion cell is not guaranteed. 

 More generally, one can consider a neuron b  that is described by a polynomial 

function of interneuron inputs a1  and a2 , and a stimulus direction s2  that contributes to 

the receptive field of a2  but not a1 . If the polynomial expression of b  contains a term 

a1
ma2

n  where m is even and n is odd, then the correlation of a stimulus direction s2 with b  

will yield a term with an even power of both a1  and a2 , which will have a non-zero 

mean. Therefore, changing the gain of the a1  will also change the contribution of s2 to b , 

even though s2  does not contribute to the receptive field of a1 . 

 

 

Figure Legends 

 

Figure 1.  Synchronous visual features from inhibitory pathways at different spatial 

scales. A) Schematic of a hypothetical linear neuron that receives input from multiple 

neural pathways. The response of each interneuron at
i( )  is the convolution of the stimulus 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/214569doi: bioRxiv preprint 

https://doi.org/10.1101/214569


and its particular linear spatiotemporal filter F i( ) , at
i( ) = Fx,t

i( ) ∗ sx,t , where ∗  indicates a 

convolution. The response of the interneuron b is the sum of the outputs of at
i( ) , each 

filtered through a transmission filter Gt
i( ) , such that bt = at

i( ) ∗Gt
i( )

i
∑ = Fx,t

i( ) ∗Gt
i( ) ∗ sx,t

i
∑ . 

The visual feature C i( )  contributed each interneuron ai  is a combination of the neural 

pathways leading into and out of ai  (blue bold lines for one interneuron), i.e. a 

convolution of the spatiotemporal filter, F i( ) , from the stimulus to interneuron ai , and the 

temporal filter, G i( )  from ai  to b . B) Experimental arrangement showing simultaneous 

intracellular and multielectrode recording. Colored arrows correspond to measured 

temporal filters shown in F-G.  C) Top left. One-dimensional spatiotemporal map of a 

fast Off-type retinal ganglion cell. Bottom. Spatial average of receptive field surround 

(blue), center (red) and total receptive field (black). Right. One-dimensional receptive 

field of an amacrine cell and a horizontal cell. D) Spatial average of amacrine cell, 

Fx,t
a( )

x
= Ft

a( )  and horizontal cell. E) Left. Transmission filter, Gt
a( ) , between amacrine 

and ganglion cell computed from white noise current injection in the presence of the 

flickering lines visual stimulus to place the ganglion cell in a similar state of adaptation 

as in the control condition. Right. The transmission filter Gt
h( ) for a horizontal cell. F) 

Left. The visual feature, Ct
a( )  conveyed by the amacrine cell, computed as the 

convolution between Ft
a( )  and Gt

a( ) , corrected for the membrane time constant, compared 

with that of the ganglion cell surround computed by spatially averaging the region that 

lay outside the receptive field center. Right. The same for a horizontal cell and different 

ganglion cell. G) Histogram of correlation coefficients between predicted interneuron 
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transmission and ganglion cell surround time course. H) Spatial one-dimensional 

receptive field of amacrine and horizontal cells. I). The strength of transmission between 

amacrine cells (left) or horizontal cells (right) and ganglion cells computed from the 

average slope of a nonlinearity computed during white noise current injection into the 

interneuron. The nonlinearity was taken from a linear-nonlinear (LN) model computed 

between each cell pair during current injection18. J) Amacrine and horizontal cell 

population predictions estimated by convolving the interneuron receptive fields with their 

appropriate spatial transmission filters, compared to retinal ganglion cell receptive field 

spatial surrounds estimated from the linear receptive field model in Fig 3C. K) Histogram 

of the sizes of a population of linear amacrine and horizontal cells, measured as one 

standard deviation of a Gaussian fit. 

 

Figure 2. Direct causal measurements of the visual feature conveyed by an 

interneuron. A) Schematic of experiment recording the membrane potential response of 

an amacrine cell. The visual stimulus was then repeated along with current injection 

timed to either amplify or diminish the amacrine cell’s visually driven membrane 

potential fluctuations (see methods). B) Visual sensitivity to a uniform visual stimulus 

computed in the control condition, with amacrine transmission amplified, and with 

amacrine transmission diminished. Filters were scaled in amplitude so that all sensitivity 

was represented in the filter (see methods). C) Amplitude of the surround compared for 

conditions when amacrine transmission was amplified or diminished (n = 6 amacrine 

cells and 31 ganglion cells). Black symbols indicate amacrine-ganglion cell pairs for 

which a monophasic or biphasic transmission filter could be computed from the separate 
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protocol of white noise current injection (Fig. 1). D) One-dimensional spatiotemporal 

receptive field of an amacrine cell. E) Change in linear receptive field averaged across 

five ganglion cells when the amacrine cell’s output was amplified (right) or diminished 

(left) using record and playback. Ganglion cells were chosen whose receptive fields 

overlapped that of the amacrine cell. Results shown for a single amacrine cell (n = 5 

ganglion cells) F) Spatial amplitude of the amacrine cell receptive field (black) compared 

with the difference in visual sensitivity across a population of ganglion cells between 

when amacrine cell fluctuations were amplified or diminished (green) (10 amacrine cells 

and 70 ganglion cell pairs). A Gaussian fit to the average amacrine cell receptive field 

had a standard deviation of 56 µm, smaller than the total region of visual sensitivity 

resulting from summed ganglion cell receptive fields, which was 336 µm. Spatial extent 

of recorded ganglion cells shown in grey. All curves normalized by their maximum value 

for ease of spatial comparison.  G) Same as F) for horizontal cells (3 horizontal cells and 

18 ganglion cells). A Gaussian fit to the average horizontal cell receptive field had a 

standard deviation of 283 µm, smaller than the total region of visual sensitivity of the 

measured ganglion cell population, which was 363 µm. 

 

 

Figure 3. Horizontal and amacrine cell contributions create diverse retinal ganglion 

cell receptive fields that maximize information transmission. A) Normalized power 

spectra of the average retinal ganglion cell receptive field (n = 13, black) and the linear 

filter that maximizes information about natural scenes (blue), together with the amplitude 

spectrum of natural scenes (red). B) Example retinal ganglion cell receptive fields in the 
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frequency domain, colored by cell type. C) Ganglion cell linear receptive field modeled 

as a linear combination of horizontal and amacrine cell populations, together with a 

Gaussian center. D) Greyscale map shows the information fitness landscape, computed as 

the mutual information between natural scenes and the output of linear receptive field 

models as a function of different horizontal and amacrine weightings (ordinate) and 

different excitatory center contributions (abscissa). Colored symbols indicate 1,354 

ganglion cell receptive fields of different cell types, 772 fast Off adapting, 217 fast Off 

sensitizing, 159 medium Off, 58 fast On and 148 slow Off, parameterized by the model in 

(C), and stars are the examples in (B). Large black star at the origin of the two vectors 

indicates the single ideal receptive field, which lies on the ridge of near-optimal 

information transmission. Light arrow indicates the direction of least information loss 

with respect to the ideal receptive field. Dark arrow indicates the direction of largest 

variation of ganglion cell receptive fields, computed using principal components analysis. 

E) Information profile for different cell types as a function of receptive field center 

weight. Curves show information transmission at an interneuron weighting of 0.5 

horizontal cell weight, which is a horizontal slice through the grayscale image in (D). 

Stacked histograms show the number of cells with receptive fields at each center 

weighting. Dotted lines denote the medians of the distributions. The slight trough at equal 

center-surround weighting (0.5) reflects the loss of information when the mean intensity 

is completely rejected.  F) Heat map of the angle between a receptive field with no 

amacrine component or no horizontal component, as a function of the width of both 

components. Along the diagonal the pathways are identical and create zero diversity. The 

maximum achievable diversity drops off as both receptive fields become large. Three 
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examples of the maximally diverse receptive fields are plotted in the spatial frequency 

domain, with the parameters for these examples denoted by stars. Contours denote where 

pairs of recorded horizontal and amacrine cells lie on this plot, computed for 9 horizontal 

cells and 27 amacrine cells whose receptive field population component ranged in one 

standard deviation width from 256 to 453 µm (horizontal cells) and 108 to 284 µm 

(amacrine cells) in diameter. G) The fractional information loss relative to the ideal 

receptive field plotted against the maximal ganglion cell diversity achievable with 

different weightings of horizontal and amacrine cells for all possible models from (D) 

with different interneuron component widths.  Contours indicate where the population of 

horizontal and amacrine cells lie on this plot. 

 

 

Extended Data Figure 1. Contribution of spatial surround to the total ganglion cell 

temporal filter. Ganglion cell spatiotemporal receptive fields were mapped in one 

dimension. Shown is the normalized ratio (see methods) between the amplitude of the 

linear receptive field averaged over the spatial surround region, and the amplitude 

averaged over the entire receptive field. This ratio shows the contribution at each time 

point of the surround to the total receptive field averaged over space. Thin line indicates 

the mean, thick line indicates mean ± s.e.m. Results are combined for 1003 fast off-type 

ganglion cells by stretching each filter in time to align both the negative peak (shown at t 

= 0) and positive peak (shown at t = 1). 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/214569doi: bioRxiv preprint 

https://doi.org/10.1101/214569


Extended Data Figure 2. Ganglion cell linear receptive fields maximize information 

about natural scenes. A) Schematic of model of information transmission through a 

linear spatial filter in the presence of input and output noise used for Figure 33,4. B) 

Estimated SNR of cone photoreceptor output as a function of contrast, defined as the 

standard deviation of the distribution of light intensities divided by the mean intensity. 

SNR was computed using a mean vesicle rate42 of 750 s-1, and an assumption of Poisson 

release. Dashed lines indicate the average value of Michelson contrast of 0.3 computed 

from natural images41, corresponding to a photoreceptor SNR of ~7. C) Total SNR 

compared to the mean firing rate of each cell for a population of ganglion cells. This 

value was used to constrain the output noise in the model. D) Comparison of retinal 

ganglion cell linear receptive fields (black) and the filter that maximizes the mutual 

information between natural scenes and filter output, subject to a variance constraint 

(blue). This is the same analysis as in Figure 3A, but in the space domain. The optimal 

infomax solution is a “brick wall” filter that is zero everywhere the input noise variance 

exceeds the signal variance. 

 

Extended Data Figure 3. Interneurons can convey a visual feature different than 

their own receptive field through multiplicative interactions with other pathways. 

To demonstrate the potential that an interneuron can influence more than its own 

receptive field component to a downstream neuron, a simple circuit is shown where two 

stimulus regions s1  and s2  are processed by two interneurons a11 = s1and a2 = s2  and then 

contribute to a downstream neuron b  with an additive and multiplicative interaction, 

such that b = a1 + a2 + a1
2a2 = s1 + s2 + s1

2s2 . A scaling factor γ controls the gain of a1  as 
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performed experimentally in the record and playback experiment of Fig. 3. 

Supplementary Information shows that the receptive field component contributed by  

includes the receptive fields of both a1  and a2  by virtue of the multiplicative interaction. 

 

Extended Data Figure 4. Ganglion cell receptive fields  are well fit by linear model 

of horizontal, amacrine, and excitatory contributions. A) Stacked histogram of the 

mean squared error between each recorded retinal ganglion cell receptive field and its 

linear model fit, normalized by the variance of each receptive field. Vertical lines denote 

the median error for each cell type. B) A two-dimensional histogram of information 

transmitted by the linear receptive field models versus information transmitted by the 

receptive fields of the recorded retinal ganglion cells. Points indicate the mean ±  s. e. m. 

for each cell type.  

 

Extended Data Figure 5. Retinal ganglion cell types have a broad range of 

horizontal and amacrine cell contributions. Stacked histogram of the relative 

weighting between horizontal and amacrine cell population contributions to the retinal 

ganglion cell receptive field, by cell type. Dotted lines denote the median relative 

horizontal cell weights for each retinal ganglion cell type. 

 

Extended Data Figure 6. Noisier cell types have weaker surrounds. The average 

relative center vs surround weight for various retinal ganglion cell types as a function of 

the trial-to-trial reliability of that cell type measured from a separate dataset of 90 cells 

responding to a 5 minute 35% contrast white noise repeating stimulus. Cell types that 

a1
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have lower average reliability have weaker surrounds, as measured by an increased center 

weighting in the linear receptive field model fit. This finding across a population is in 

accordance with previous work3 showing that the optimal receptive field for a lower SNR 

has a weaker surround. 

 

Extended Data Figure 7. Effect of varying input noise on information landscape. As 

input noise changes, the ideal information transmitting filter changes shape3,4. To quantify 

how this change in noise effects the qualitative ridge-like appearance of the information 

landscape in Figure 3D, we varied the input signal-to-noise ratio (colored curves). At low 

SNRs, the ideal center strength is still qualitatively very similar to what we report in 

Figure 3, although slightly more monophasic receptive fields are preferred. At an SNR of 

15, the optimal center strength moves slightly to the left of the 0.5 center width, 

indicating a stronger surround relative to the center.  
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