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Abstract 
Pancreatic neuroendocrine tumors (pNETs) are uncommon cancers arising from pancreatic islet 
cells. Analysis of gene mutation, copy number and RNA expression of 57 sporadic pNETs showed 
that pNET genomes are dominated by aneuploidy. Remarkably, ~25% of pNETs had genomes 
characterized by recurrent loss of heterozygosity (LoH) of the same 10 chromosomes, 
accompanied by bi-allelic MEN1 inactivation, and these cases had generally poor clinical outcome. 
Another ~25% of all pNETs had chromosome 11 LoH and bi-allelic MEN1 inactivation, lacking 
the recurrent LoH pattern – these had universally good clinical outcome. Some level of aneuploidy 
was common, and overall ~80% of pNETs had LoH of ≥1 chromosome. This aneuploidy led to 
changes in RNA expression at the level of whole chromosomes and allowed pathogenic germline 
variants (e.g. ATM) to be expressed unopposed, inactivating downstream tumor suppressor 
pathways. Some pNETs appear to utilize VHL gene methylation or mutation to activate pseudo-
hypoxia. Contrary to expectation neither tumor morphology within well-differentiated pNETs nor 
single gene mutation had significant associations with clinical outcome, nor did expression of 
RNAs reflecting the activity of immune, differentiation, proliferative or tumor suppressor 
pathways. MEN1 was the only statistically significant recurrently mutated driver gene in pNETs. 
Only one pNET had clearly oncogenic and actionable SNVs (in PTEN and FLCN) confirmed by 
corroborating RNA expression changes. The two distinct patterns of aneuploidy described here, 
associated with markedly poor and good clinical outcome respectively, define a novel oncogenic 
mechanism and the first route to genomic precision oncology for this tumor type.  
 

Introduction 
Pancreatic neuroendocrine tumors (pNETs) are clinically heterogeneous tumors derived from 
neuroendocrine cells of pancreatic islets, which differ from one other by their primary organ of 
origin and degree of cellular differentiation. Currently, therapeutic decisions must be made with 
little knowledge of the biological drivers of individual NETs, underlining the importance of 
improved genomic understanding of these tumors. Although driver mutations in tumor suppressor 
genes have been found in pNETs (e.g., MEN1, DAXX, ATRX, VHL, YY1, and mechanistic target 
of rapamycin (mTOR) pathway genes (1-3)) they are infrequent and are not generally able to 
indicate specific systemic therapies. In addition to these driver mutations, other genomic changes 
have been observed in pNETs, including: telomeric dysregulation (4, 5), copy number (CN) 
changes (6), changes in RNA expression that indicate mTOR pathway activation (7), germline 
MEN1 and MUTYH inactivation (2, 8). Epigenetic changes in methylation (9) and microRNA 
expression (10) have been described in pNETs, with insulinomas especially enriched for changes 
to the sequence, methylation and expression of genes encoding epigenetic modifiers (11). 
 
Therefore, we undertook pathological examination and deep genomic analysis of a group of 
clinically homogenous sporadic pNETs. Our results show that pNETs are dominated by 
aneuploidy along with MEN1 gene mutation, with mutations evident in small numbers of other 
genes associated with chromosomal stability. By combining multi-modal genomic information, 
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we found that the extensive loss of heterozygosity (LoH) seen in pNETs is linked to dysregulation 
of RNA expression on the scale of whole chromosomes, which appears to have driven tumor 
development with few other genome lesions. Neither patterns of gene mutation or morphology, 
nor RNA expression patterns reflecting immune, differentiation, proliferative or tumor suppressor 
pathways had significant association with clinical outcome. However, distinct patterns of recurrent 
chromosome-level aneuploidy with concordant chromosome-level gene expression changes 
identified two distinct tumor clusters, which have markedly good and poor clinical outcome. 
Although the mechanisms that underpin this aneuploidy remain unclear, these two tumor clusters 
incorporate half of pNETs and will inform clinical care. 
 
Results  
 
We analyzed 57 sporadic pNETs collected from 53 individuals along with matched normal tissues. 
Key population characteristics of the pNET series are described in Supplementary Table S1, with 
individual patient characteristics described in Supplementary Table S2. Cases selected had a 
clinical and pathological diagnosis of well-differentiated pNET, expressed at least one of the three 
neuroendocrine immunohistochemical protein markers (chromogranin A, synaptophysin or CD56) 
and were surgically resectable at initial diagnosis. Genomic DNA was analyzed from 47 tumors 
using deep hybridization capture sequencing of 637 genes (578 genes previously associated with 
cancer, plus an additional 59 genes with published or predicted significance for NETs; 
Supplementary Table S3). Only a small number of somatic Single Nucleotide Variants (SNVs) 
and Indels with putative functional significance were identified (Fig. 1; Supplementary Table S5). 
However, further analysis of this sequence data identified substantial CN gains and losses, in some 
cases associated with LoH of large regions of the tumor genome (Fig. 2). RNA expression was 
analyzed from 55 tumors using Affymetrix microarrays, informing the interpretation of these 
somatic mutations and CN DNA changes.  
 
Additional total RNA and mRNA sequence analysis, methylation microarray analysis and low 
coverage whole genome sequencing (WGS) was undertaken for the first 12 tumors in this series 
(summarized in Supplementary Table S4). The WGS confirmed the CN changes revealed by the 
targeted sequencing.  In addition, non-negative Matrix Factorization (NMF) mutational signature 
analysis of the aggregated WGS data from these 12 pNETs revealed a novel G:C>T:A signature 
(Supplementary Fig. S1A and B) similar to that recently described in pNETs by Scarpa et al (2).  
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Figure 1. The mutational landscape of pNETs. Coding region somatic non-synonymous SNVs/indels, large 
deletions and intronic mutations within 2bp of splice sites with any putative functional significance (see Methods) are 
shown. Tumors are indicated in columns and genes in rows. Colored squares indicate mutation type with dots 
indicating that loss of the remaining wild type allele (LoH) could be confirmed for the locus through changes in both 
allele frequency of germline heterozygous SNPs and normalized relative regional sequence depth in tumor vs. normal 
samples. Multiple tumors from the same patient are indicated by letters after the patient-specific tumor codes (suffix 
P, N, or L indicates primary pancreas, lymph node or liver metastasis, respectively). In some tumors, there were no 
detectable mutations in the 637 genes covered by the targeted sequencing panel.   
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Figure 2. The genomic landscape of pNETs is dominated by aneuploidy. Tumors are shown in columns and 
genomic and pathological features in rows. Row 1: metastatic tumors are shown in orange. Row 2: grade 1 (Ki-67 
≤2%) is shown in light blue, grade 2 (Ki-67 2-20%) in dark blue and grade 3 (Ki-67 >20%) in black. Row 3: MKI67 
RNA expression Z-score across tumors (green-red color key to left). Dashes indicate that no expression data was 
available for specific tumors. Row 4 shows the histological identification of lymphovascular invasion (LVI) in purple, 
tumors without LVI are colored grey. Row 5 shows tumor size (diameter in cm) on a white-blue scale (white-blue 
color key to left). Rows 6-13 shows expression Z-scores across tumors of the following RNAs (green-red color key 
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to left of row 3): CCK, PPY, GCG, INS, SST, VIP, GAST and GHRL. Rows 14-16 show: multiple cancers of any type 
in the same individual, multifocal pNETs and pNETs arising at under 40 years of age, respectively indicated by red 
boxes. Row 17 shows the number of functionally significant exonic mutations on a white-blue scale (white-blue color 
key to left). In rows 18-21 blue squares indicate somatic mutations in the four listed genes. Rows 22 and 23 show the 
expression of MGMT and MEN1 mRNA (Z-scores, green-red color key to left of row 3). Row 24: Somatic mutations 
in MEN1 are shown in blue. In the large bottom panel, coloring of blocks indicates the dominant inferred CN for each 
autosome in each tumor based on combined information from: ADTEx analysis, relative somatic read counts at 
germline heterozygous positions and normalized read counts in 3kb tiles across the genome. LoH (irrespective of CN) 
is indicated by red boxes. Unmarked blue boxes indicate an inferred chromosome CN of 2 and numerals indicate CN 
when CN ≠ 2.  

Aneuploidy defines the molecular landscape of pNETs and alters gene expression. Primary 
pNETs are frequently aneuploid (Fig. 2), with 80% (33/41) having LoH of ≥ 1 chromosome and 
27% (11/41) having LoH of ≥ 8 chromosomes (Fig. 3). In the aneuploid pNETs, whole 
chromosome CN was associated with whole chromosome mean RNA expression, shown for 12 
pNETs (001P-012P) that had been analyzed by both expression microarray (Fig. 4A and B) and 
RNAseq (Fig. 4C and D). Although one pNET (009P) appeared to have a low negative association 
between whole chromosome CN and whole chromosome mean RNA expression, this was due to 
segmental intra-chromosomal CN variation (Fig. 4E), explaining the low correlation observed at 
whole chromosome level. 
 

 
 
 
Figure 3. pNET aneuploidy is extensive but varies between tumors. Histogram shows the number of monosomic 
chromosomes (i.e. both whole chromosome LoH and CN=1) in individual primary tumors. 
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Figure 4. Correlation between DNA copy number and RNA expression for tumors 001P - 012P. Graphs compare 
whole chromosomal CN (x-axis) to mean chromosomal RNA expression based on (A) microarray data or (C) RNAseq 
data (y-axis). Each panel represents a different tumor and each circle represents a different chromosome in that tumor. 
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Histogram of Pearson correlation between CN and (B) microarray RNA expression or (D) RNAseq RNA expression 
in each tumor. (E) CN across the genome of the tumor 009P that had negative CN-expression correlation (seen at left 
of histograms in panels B and D). This intra-chromosomal analysis confirms the association between CN and RNA 
expression seen at whole chromosome level in the other pNETs. Chromosomal segments with specific CN aberrations 
are shown in colored boxes, with mean RNA expression within each of these segments based on Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM) shown. 
 

Patterns of stereotyped aneuploidy and gene expression are associated with clinical behavior. 
Three distinct pNET groups based on CN change emerged (annotated above Fig. 2). In 11 pNETs 
(labelled Group 1 in Fig. 2) there was a recurrent pattern of LoH affecting the same 10 
chromosomes (1, 2, 3, 6, 8, 10, 11, 16, 21, 22), which has been previously described (2, 6). This 
idiosyncratic pattern of aneuploidy occurred in the context of somatic MEN1 mutation in 10 of 11 
tumors, an ATRX or DAXX variant was present in six, with additional PTEN, MSH2 and TP53 
mutations present in five. RNA expression analysis showed that MGMT (encoding DNA repair 
protein O-6-Methylguanine-DNA Methyltransferase) was generally expressed at lower levels in 
these 11 tumors than in other tumors (t-test P = 0.01). Microarray methylation analysis showed 
MGMT gene promoter methylation was relatively consistent across pNETs with no significant 
correlation to expression (data not shown). Therefore, differential MGMT gene methylation, which 
has been described in other tumor types (12), is unlikely to be the dominant mechanism causing 
lower MGMT RNA expression in this group of pNETs. Instead, one copy of chromosome 10 (the 
location of MGMT) was lost in all 11 tumors in this cluster, suggesting haploinsufficiency as a 
more likely mechanism for reduced MGMT expression (Fig. 2).  

Tumors in Group 1 had generally less favorable outcomes; five of the 11 tumors in this group had 
metastasized, this group contained the only three patients who progressed during the study, and all 
but one tumor had lymphovascular invasion (LVI) on pathological examination. In contrast, 
tumors in Group 2 (Fig. 2) were characterized by MEN1 mutation and chromosome 11 LoH but 
no recurrent LoH of 10 chromosomes. This group had relatively favorable pathological and clinical 
outcomes; all had low expression of proliferation-associated RNAs, all but one of the 17 tumors 
in this group were low grade (Ki-67 <2%), only three had LVI and none metastasized. Several 
patients in this group had a clinical history loosely associated with inherited cancer predisposition 
(multiple cancers, multifocal pNETs, and age ≤40yrs). Nine of the 13 tumors in this group for 
which RNA expression data was available had detectable GCG (glucagon) expression. Group 3 
(Fig. 2) was characterized by a lack of MEN1 gene mutation, contained tumors with variable 
patterns of aneuploidy (ranging from none to extensive) and variable clinical outcomes. 

pNETs have few somatic driver mutations or structural genomic lesions. pNETs have very 
few detectable somatic variants (Fig. 1, Supplementary Table S5) compared to other tumor types 
(13) and only one pNET in this study had more than one variant per MB of exons detected (Fig. 
5). However, bi-allelic MEN1 inactivation was common; 81% of tumors with somatic chromosome 
11 LoH had a putative pathogenic variant in the remaining MEN1 allele (Fig. 2). These variants 
were distributed across the entire MEN1 coding region (Supplementary Fig. S1C). Analysis of 
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MEN1 expression showed that nonsense and frameshift variants were associated with reduced 
MEN1 RNA abundance (Supplementary Fig. S1D). This suggests that processes such as nonsense-
mediated decay may contribute to reduced abundance of MENIN protein in MEN1 mutant tumors, 
in addition to the pathogenic changes introduced by these mutations altering MENIN protein 
structure and function.  
 

Methylation analysis showed no clear correlation between MEN1 gene methylation and RNA 
expression in 15 tumors tested, suggesting that methylation is not an important regulator of MEN1 
expression in pNETs.  
 

 
 
 
Figure 5. Number of mutations in pNETs. pNETs have relatively low somatic mutation frequency compared to 
other tumor types; box plots show the coding region mutation rate of pNETs compared to the coding region mutation 
rates described by Lawrence et al. (13) in other tumors analyzed by WES or WGS. 

 
 

MutSig analysis (13) identified MEN1 as the only statistically significant cancer driver gene across 
this pNET cohort, although previously described variants in a small number of other tumor 
suppressor genes were seen in multiple tumors (Fig. 1 and 2) including ATRX, DAXX, PTEN, YY1 
and VHL. Private variants in 34 other genes were detected in single patients, some of which were 
clinically interesting as previously described predictive biomarkers for specific therapies, 
including bi-allelic inactivation of MSH2 and mono-allelic variants in genes such as RET, JAK2, 
FGFR3 and BRCA2 (Fig. 1). Although these variants were classified as functionally significant 
using combinations of variant effect databases (see Methods) and many are considered clinically 
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actionable using current assessment tools (Supplementary Fig. S2), genomic analyses suggested 
that most were passenger mutations rather than drivers of tumorigenesis. For example, 
examination of variants in genes encoding tyrosine kinases that have matching small molecule 
inhibitors found no corroborating JAK2 (patient 021), FGFR3 (patient 024) or RET (patient 051) 
gene expression/pathway changes. However, the mutation pathogenicity of variants in one tumor 
was corroborated by the RNA expression data - tumor 002P had a somatic frameshift mutation in 
PTEN (a phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling inhibitor) as well as a non-
frameshift deletion and LoH in the FLCN gene (encodes the mTOR complex 2 inhibitor folliculin). 
Microarray analysis of the expression of RNAs downstream of PI3K suggested significant 
activation of PI3K/AKT/mTOR pathways in this tumor, consistent with the mutations 
(Supplementary Fig. S3).  

Pseudohypoxia determines the expression profiles of some pNETs. Tumors from six patients 
(8 samples) had high expression of a subset of the hypoxia-activated RNAs. These tumors also 
tend to have more rapid proliferation based on both MKI67 RNA expression (Supplementary Fig. 
S4A) and immunostaining (7 of these tumors were grade 2 NETs with Ki-67 immunostaining in 
3-20% of nuclei). However, further genomic analysis showed that two of the eight tumors had 
somatic VHL variants with LoH, and tumors from other patients had high VHL gene methylation 
associated with significantly low VHL RNA expression (Supplementary Fig. S4B). This suggests 
that in the majority of the pNETs analyzed, tumor hypoxia gene expression profiles are due to 
pseudohypoxia caused by disrupted VHL function rather than true hypoxia. 

Germline variants may become significant in the context of extensive aneuploidy. We were 
able to exclude with high confidence any functionally relevant germline variants in the following 
genes previously associated with NETs: MEN1, RET, TSC1, TCS2, PTEN, NF1, CDKN1B, IPMK, 
MAX, NF1, NTRK1, SDHA, SDHB, SDHC, SDHD, MUTYH and VHL. However, there were 173 
germline variants in 66 genes not traditionally associated with NETs that were predicted to disrupt 
protein function (Supplementary Table S6). The list of genes affected was significantly enriched 
for genes associated with DNA repair (GO:0006281, P = 6x10-9) using the Panther web tool (14). 
Eight of these variants appeared to become unopposed when their remaining normal allele was 
lost by somatic LoH (Supplementary Table S7). These 8 variants had ~1:1 ALT:REF allele ratios 
in germline DNA, and all had somatic LoH in tumor DNA and corresponding tumor ALT:REF 
allele ratios of ≥ 1.5. In these tumors, the degree of loss of the remaining normal allele was 
consistent with the proportion of tumor comprising somatic cells rather than stroma. As an 
example, tumor 014P had a chr11:108098576_C/G variant in ATM with an ALT:REF allele ratio 
of 0.9 in the germline but 2.8 in the tumor due to LoH (Fig. 6A). This variant has a population 
frequency of 0.007 in the ExAc database (15) and leads to a p.Ser49Phe amino acid substitution. 
Although Clinvar indicated this was a variant of uncertain significance, analysis using IPA and 
GeneSetDB indicated that numerous RNAs with expression dependent on ATM function were 
downregulated in this tumor (Fig. 6B), consistent with somatic LoH exposing a pathogenic 
germline variant causing somatic loss of ATM activity.  
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Figure. 6. Somatic LoH may expose germline heterozygous variants. (A) Example of a germline heterozygous 
mutation in the ATM locus that becomes unopposed in the tumor 014P due to somatic LoH. (B) IPA analysis indicates 
that in this tumor expression of numerous RNAs that are normally up-regulated by activity of the ATM complex is 
generally reduced, suggesting reduced ATM function. Shades of red and green indicate the degree of up- and down-
regulation of RNAs, respectively, with Z-score expression values shown below each node. 

Immune, proliferative and hormone expression characteristics of pNETs. The pVAC-Seq 
neoantigen prediction framework (16) putatively identified only one tumor (012P) with a mutation 
capable of generating a potential neoantigen consistent with the patient's HLA haplotype. This low 
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incidence of predicted neoantigens is not surprising, given the low somatic mutation rate in pNETs 
(Fig. 5). There was no association between grade and somatic variant frequency, suggesting that 
tumor grade is not determined by single gene events in pNETs.  

Pancreatic endocrine hormone RNA expression analysis was conducted to characterize the 
expression of sub-clinical functioning (e.g., insulinoma, glucagonoma) and "non-functioning" 
pNETs. Approximately two thirds of pNETs had detectable expression of the RNA encoding at 
least one hormone, despite the absence of symptoms reported clinically by patients. Expression of 
the RNAs INS (encodes Insulin) and IAPP (encodes Amylin) appeared correlated, in line with their 

known co-production by pancreatic islet  cells (Supplementary Fig. S5A). The expression of a 
set of RNAs not usually noted to be co-expressed in the same islet cells (GCG, PPY and CCK) 
also appear correlated. Tumors expressing VIP (encodes Vasoactive Intestinal Peptide) RNA did 
so exclusively (Supplementary Fig. S5A).  

Tumors expressing GHRL (encodes ghrelin, produced by  cells) RNA also did so exclusively, 
and methylation analysis found that high GHRL expression (in the three tumors from patient 009) 
had low mean methylation of CpG islands in the GHRL gene promoter, suggesting that 
dysregulated methylation may have contributed to GHRL expression in this patient 
(Supplementary Fig. S5B). Differential gene promoter methylation was not associated with RNA 
expression for any pancreatic endocrine hormones other than ghrelin in the 15 tumors assessed. 
INS RNA expression was only associated with a clinical diagnosis of ‘insulinoma’ (biochemically 
proven hypoglycemia caused by pNET insulin secretion) in a subset of tumors, and in some tumors 
there appeared to be INS RNA expression without a documented clinical syndrome 
(Supplementary Fig. S5A).  
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Discussion  
 
Unusual genomic lesions 
By combining multiple types of genomic analysis we have shown that pNETs develop through a 
range of unusual oncogenic mechanisms. Although more than half of pNETs have biallelic loss of 
MEN1, the overall frequency of somatic SNVs, Indels and structural DNA variants was low, with 
small numbers of tumors carrying tumor suppressor variants in ATRX, DAXX, VHL, PTEN, YY1 
and PAX6. These variants generally concord with previously published analyses of mutations in 
pNETs (1, 2, 4, 17, 18).  
 
Instead of mutation, it appears that most pNETs are defined by variable and extensive aneuploidy. 
For example, approximately 80% of pNETs in this series had lost a copy of ≥1 chromosome and 
a recurrent pattern of aneuploidy was observed in some pNETs, which carried LoH of an identical 
set of 10 chromosomes (Fig. 2), therefore affecting thousands of genes. Somatic haploinsufficiency 
is a plausible mechanism by which this LoH may contribute to pNET development, supported by 
the striking association we demonstrate between RNA expression and CN (Fig. 4). Given the large 
number of genes affected on these 10 chromosomes (≥9,500), it is difficult to identify gene sets or 
pathways significantly enriched above what could occur by chance. Nevertheless, a range of tumor 
suppressor genes are now thought to drive tumor development through haploinsufficiency rather 
than by simple mutation (19) and aneuploidy can disrupt entire signaling pathways (20), especially 
those that depend on precise stoichiometry of protein subunits (21). It is possible that development 
of some pNETs may be driven predominantly by aneuploidy, analogous to chromosome 5q-deleted 
myelodysplastic syndrome in which haploinsufficiency without specific mutation appears to drive 
the neoplasia (22). Understanding the origin, selection in tumor populations and clinical 
consequences of recurrent aneuploidy, such as we see here, remains a key challenge for modern 
cancer biology.  

Haploinsufficiency is a tenable direct cause for the low MGMT RNA expression in pNETs with 
the recurrent pattern of 10-chromosome loss, since heterozygous MGMT +/- mouse tissues have 
significantly reduced O-6-Methylguanine-DNA Methyltransferase activity (23). Since low MGMT 
function is one of the determinants of response to alkylating agents such as temozolomide (24), 
these pNETs with low MGMT expression may potentially respond to temozolomide therapy, and 
this aneuploid genotype may have contributed to variations in response to temozolomide in 
published series (25, 26). We also show an example where somatic LoH renders a pathogenic 
heterozygous germline variant in ATM unopposed, thereby inactivating its downstream tumor 
suppressor pathways (Fig. 6). Careful inspection of the germline in each patient found no evidence 
of traditional syndromic NET-associated mutations, or the recently recognized MUTYH germline 
mutations (2) in our cohort.  

Distinct patterns of pancreatic islet hormone expression were seen in the majority of pNETs and 
may indicate the cell of origin of these tumors. Although RNA expression might not translate into 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2017. ; https://doi.org/10.1101/214585doi: bioRxiv preprint 

https://doi.org/10.1101/214585
http://creativecommons.org/licenses/by-nc-nd/4.0/


protein expression, high expression of RNAs encoding hormones in most pNETs analysed 
suggests that clinicians should be aware of under-diagnosis of subtle secretory syndromes.  A 
recent study of 26 insulinomas found mutations, copy number changes and focal allelic imbalances 
in genes significantly enriched for epigenetic regulators (11). However, we could not replicate 
these observations in the 12 clinically-defined insulinomas in our pNET cohort. Neither the 
mutations we detected in these 12 pNETs, nor the genes affected by aneuploidy, showed 
significant enrichment for epigenetic factors listed in EpiFactors database (27). Interestingly, we 
also observed one patient with three metastatic tumors with high GHRL (encodes ghrelin) (28) 
RNA expression and promoter hypomethylation. 

Distinct genomic landscapes, putative oncogenic mechanisms and clinical features of two 
pNET subsets 
By combining CN, somatic variant analysis and expression analysis we hypothesize that there are 
distinct oncogenic mechanisms driving two subsets of pNETs (Fig. 2), summarized in Fig. 7. The 
first subset, Group 1, are pNETs with MEN1 mutation coupled with recurrent loss of 10 
chromosomes, the cause of which remains unclear. This subset generally had unfavorable grade 2 
and 3 histology, all but one patient had LVI and five of the 11 tumors in this group metastasized, 
and MGMT loss through apparent haploinsufficiency may favor the use of temozolomide. The 
second subset, Group 2, contained pNETs with MEN1 mutation and chromosome 11 LoH but few 
other changes in chromosomal CN - none of this group never went on to metastasize and all but 
one had favorable low grade histology (Ki-67 <2%). In addition, all of this second subset had low 
expression of proliferation-associated RNAs, only three of the 17 tumors in this subset had LVI 
and most expressed the RNA encoding glucagon. In this subset, the decision to leave tumors un-
resected could be considered in the setting of a clinical trial, thus avoiding the complications and 
long-term morbidity of surgery for these patients. 
 
Conclusion 
Aneuploidy appears to be a fundamental event driving pNET tumorigenesis, possibly by altering 
gene expression on a global scale and exposing pathogenic germline variants, leading to signaling 
pathway dysregulation. Tumors with few mutations and massive aneuploidy, such as many pNETs, 
will not be amenable to simple precision oncology paradigms that match drugs to single gene 
mutations; these will require more nuanced approaches that take account of oncogenic drivers that 
affect more than just individual genes. 
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Figure 7. Integrated genomic, pathological and clinical categorization of pNETs. Genomic features within pNETs 
identified three groups: Group 1 generally have MEN1 mutation and chromosome 11 loss, sporadic mutation of genes 
associated with chromosomal instability, recurrent loss of ten specific chromosomes leading to extensive disruption 
of gene expression, and reduced MGMT expression. These genomic features are strongly associated with high tumor 
grade and size, LVI and more frequent metastases. Group 2 have MEN1 mutation and chromosome 11 loss but no 
recurrent loss of ten chromosomes. They have universally low tumor grade, size and LVI, many express GCG RNA 
and importantly, this group have no metastases. Group 3 are characterized by no MEN1 mutation, with variable 
aneuploidy, clinical and pathological features. 
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Methods 
 
Tumor sample collection and processing 
Surgically resected, fresh frozen and FFPE specimens were collected from the Cancer Society 
Tissue Bank, University of Otago, NZ and Auckland Region Hospitals under New Zealand Health 
and Disability Ethics committee approvals 13/NTA/69 and 13/NTB/173 (for further information 
on sample handling, see supplementary methods). Matched blood and normal adjacent tissue, 
where possible >20mm distant, were used as germline controls for the fresh frozen and FFPE cases 
respectively. Frozen tissues were processed to isolate genomic DNA (Macheray Nagel; 
Nucleospin Tissue kit; #740952) and total RNA (Ambion miRvana RNA isolation kit; Thermo 
Fisher Scientific; AM1560). FFPE tissues were macro-dissected on slides to maximize tumor 
cellularity and gDNA and RNA isolated by QIAamp DNA FFPE kit (Qiagen; #56404) or Ambion 
RecoverAll kit (Thermo Fisher Scientific; AM1975). Whole blood/buffy coat and dried FTA blood 
spots (6 x 3mm punches) were extracted using QIAamp DNA mini kits (#51102, #51304). All 
isolation kits were used as per the manufacturer’s instructions. Nucleic acid quality and quantity 
were determined by Agilent Tapestation and Qubit Fluorometry respectively. 
 
RNA analysis.  
All microarray hybridization and sequencing machine runs for RNAseq were performed as a 
service by New Zealand Genomics Ltd. For RNAseq, 100ng RNA from tumors 001P-012P were 
used as templates to prepare separate total and mRNA libraries using TruSeq Stranded Total RNA 
Sample Prep kit with Ribo-Zero gold and TruSeq Stranded mRNA Sample Prep kits, respectively. 
They were sequenced as a multiplex of 6 samples per HiSeq lane using V3 chemistry, 2x100PE 
reads. The total RNA and mRNA sequencing reads were trimmed using cutadapt (29) v1.9.1 to 
remove leftover adapters, any reads with Phred score of <30, and read pairs where either read was 
<50bp after trimming. Reads were aligned using Bowtie 2 (30) with recommended settings. 
Aligned total RNA reads and mRNA reads were merged using Picard MergeSamFiles before gene 
and transcripts abundance quantified using RSEM (31). Fusion genes were searched for using 
TopHat-Fusion (32).  
 
For microarray expression analysis, Affymetrix PrimeView Human Gene Expression arrays were 
used (perfect-match-only microarrays with ~530,000 probes covering ~36,000 transcripts). 100ng 
RNA was labelled using the Affymetrix SensationPlus FFPE method according to manufacturer 
instructions, before hybridization to the gene chips, washing and scanning. QC was performed 
using Affymetrix Expression Console and in-house R (33) scripts to visualize probe signal 
distributions relative to control signals. Data for one tumor (015P) was discarded due to very low 
tumor-derived signals relative to spiked-in control signals, and remaining tumor data was quantile 
normalized in R using RMA (34), as implemented in the R ‘affy’ package (35). To remove any 
systematic FFPE-vs-fresh frozen sample biases, for each probe the mean signal within all FFPE 
tumors was subtracted from each individual FFPE tumor’s signal, with an identical adjustment 
performed within the fresh frozen tumor group. A comparison between the results of RNAseq and 
microarray analysis revealed relatively high concordance and is shown in Supplementary Fig. S6.  
 
For all visualizations, expression values for each probe set were transformed into Z-scores (by 
mean centering the data then expressing variation above and below the mean on a scale of standard 
deviation) and all analysis of Probe set differential expression used the LIMMA R package (36). 
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Differentially expressed probe sets were tested for enrichment of particular functional categories 
or pathways using IPA (37), GATHER (38) and GeneSetDB (39). Stromal content was estimated 
from sequence data using ADTEx (40), with Immune subtype abundance in the tumors estimated 
using the Cibersort (41) and Estimate (42) methods. mRNA expression for specific gene sets was 
visualized combined with clinical and pathological information in a web dashboard using the R 
Shiny package, using a modification of the heatmap.2 function of the gplots package (43) to draw 
annotated heatmaps. 
 
Methylation analysis 
500ng of gDNA from each of the 001P-012P, 009La, 009Lb tumors was bisulfite converted as per 
manufacturer instructions for the EZ DNA methylation kit (Zymo; D5001). Samples were labelled 
and hybridized as a service by AgResearch Ltd, GenomeNZ section, New Zealand onto Illumina 
Infinium Human 450k methylation arrays. Data was visualized and QC performed using the 
ChAMP package (44), which also provided estimates of tumor gene CN. All methylation 
BeadChips passed QC standards recommended in the ChAMP documentation. Methylation  
values were subsequently extracted from the idat files with the RnBeads (45) package in R using 
the hg19 human genome assembly and mean aggregation of each of: promoters, CpG islands and 
genes. Measurements were filtered using the Greedycut algorithm; background was subtracted 
using the noob method of the methylumi package before signal intensity normalization using the 
SWAN method of the minfi package (46). mRNA expression data (microarray) and gene 
methylation data were linked through Ensemble gene ID of the respective platform annotation 
files. A local MySQL database was generated and queried through statistical filters (significance 
of correlation and level of expression) to identify significantly anti-correlated/correlated 
methylation and mRNA expression, using the RSQLite package. 
 
DNA sequencing and data analysis 
WGS libraries were generated for tumors 001P-012P using a Rubicon ThruPLEX-FD kit with 3-
50ng of input DNA. For shallow WGS each WGS library was run 1 sample per lane of HiSeq (but 
split over multiple lanes) with V3 Chemistry 2x100PE reads. WES enrichment was performed 
using the Agilent SureSelect V5 + UTR systems on the above libraries and run in a multiplex of 3 
per lane as per the WGS analysis. For targeted sequencing, the NimbleGen SeqCap EZ 
comprehensive cancer panel was used (Roche; #4000007080 - a ~4Mb design that targets 578 
cancer related genes). An additional custom SeqCap EZ choice panel (Roche NimbleGen 
06266282001) covering 59 additional genes with a capture space of 354Kb was also designed 
(Custom NET panel) (Supplementary Table S3). This was completed according to manufacturer 
instructions, and as further described in the supplementary methods.  
 
Sequencing reads were quality trimmed using cutadapt v1.9.1 to remove left over Illumina specific 
adapters and any reads with Phred score of <30. Read pairs were removed if either read had an 
after trimming length of <50bp. Reads were aligned to UCSC hg19 reference genome using BWA-
mem (47) with default settings and duplicated reads then removed using Picard v2.1.0 
MarkDuplicates (http://broadinstitute.github.io/picard/). Aligned reads with minimum mapping 
quality of 1 were selected using Samtools (48). Due to the high sequence depth achieved by target 
capture, maximum depths were set to 9,000, the Samtools per-Base Alignment Quality calculation 
was removed and tumor purity was set to 50%. Finally, the strand filter was removed as it is not 
applicable to target-captured data. The R SomaticSignatures package (49) was used to identify and 
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plot mutational signatures using non-negative matrix factorization (Supplementary Fig. S1), with 
the R SomaticCancerAlterations package (50) used to retrieve TCGA tumor somatic variant data 
to provide comparable mutational signatures from non-NET tumor cohorts. Putative origins of 
mutational signatures are based on information in Alexandrov et al. (51). 
 
Variant calling and annotation 
Somatic SNVs and Indels were primarily detected using the VarScan2 (52) v2.3.7 somatic 
workflow. Somatic variants were detected in parallel using Strelka (53) and qSNP (54) without 
filtering with default settings – all SNVs and Indels described in this paper could be detected using 
all three methods. Neither Varscan's germline nor somatic p-value filters were used. VCF files 
were extensively annotated using PERL scripts modified from ANNOVAR (using ANNOVARs 
ljb26 database) with additional annotations from The Cancer Genome Interpreter 
(https://www.cancergenomeinterpreter.org). Variants detected in presence of supplementary reads 
were additionally annotated with a custom flag in the original VCF file using vcf-annotate in 
VCFtools (55). Somatic variants were then filtered in real time, while visualizing the effects of the 
filtering, using a web-based variant visualization dashboard based on the R VariantAnnotation and 
Shiny (56) packages. This dashboard was also used to generate many of the figures in this paper. 
It used ggplot2 (57) for graphics, the httr package to provide real time links to the IGV genome 
browser (58), and functions modified from the R DNAcopy package (59) for circular binary 
segmentation subroutines and for visualization of segmental CN aberrations and corresponding 
segmental B-allele frequency changes. Post-calling filtering used the following criteria: Normal 
tissue and tumor read depth at the site of the mutations ≥ 50, ≥ 10 tumor sequences showing the 
mutation, the site of mutation is not within the Encode Dac Mapability black list, and ≤ 2 reads 
corresponding to the mutation were found in the germline sample. All somatic variants that passed 
these filters were visually validated in IGV. Germline SNVs and Indels were detected using the 
VarScan2 v2.3.7 germline workflow. Mutation plots and lollipop plots in Figs. 1, 2 and 
Supplementary Fig. 1C were generated using modifications of the waterfall and lolliplot functions, 
respectively, of the GenVisR R package (60). 
 
Coding region mutation rate analysis 
The pNET coding region mutation rate was compared to the rates described by Lawrence et al. 
(13) in other tumor types, which had been analyzed by either WGS or WES. Mutation frequencies 
were calculated in each pNET based on the numbers of coding region mutations found in regions 
of the genome with ≥ 50x sequence coverage. Note that pNET mutation frequencies may be 
overestimated in this analysis since, compared to the WGS or WES analysis used to calculate 
coding region mutation rates for the other tumor types, the hybridization capture analysis used here 
is enriched for cancer-associated genes, which may be more likely to carry mutations.  
 
Copy-number and structural variant analysis 
CN analysis was performed using the deep targeted sequencing data for all tumors and separately 
using the WGS data available for tumors 001P-012P. CN variation was first visualized by counting 
the number of reads mapped to 3 kb tiles of the hg19 human genome using bedtools multicov, then 
analyzed using the DNACopy R package. For each 3kb tile, all raw counts were log2-transformed, 
normalized using loess splining and log ratios between tumor and normal were calculated, the log 
ratios were smoothed, segmented (circular binary segmentation) and visualized. B allele 
frequencies were also analyzed across the tumor genomes to combine with CN information in 
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order to identify combination of intra-tumoral heterogeneity and unbalanced chromosomal 
amplification. To do this required identification of germline heterozygous positions, which was 
based on: 0.4 < proportion of ALT reads in germline <0.6 and probability ≥0.95 of the observed 
germline sequence reads being sampled from a population of reads where ALT and REF alleles 
were equally common, calculated using a binomial distribution. Somatic CN aberrations were also 
analyzed in parallel using the Varscan2 CN pipeline, supplemented by statistical analyses using 
ADTEx (40), Titan (61) and for some tumors CN information from Infinium Methylation 
BeadChips were analyzed using ChAMP. WGS, WES and SeqCap aligned BAM files for patients 
001 – 012 were merged using Picard MergeSamFiles before somatic structural variants were 
analyzed using MANTA (62), Delly2 (63) and GRIDSS (64) using default settings; in the other 
tumors, structural variants were analyzed using these three packages from SeqCap data alone. 

Data Materials and Availability 
All data will be made available via European Genome-phenome Archive 
(https://www.ebi.ac.uk/ega/home). Data access will be granted via a ‘data access committee’ who 
release data to researchers who apply and meet specific guidelines. 
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