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Abstract 

Generation time varies widely across organisms and is an important factor in the life 

cycle, life history and evolution of organisms. Although the doubling time (DT), has 

been estimated for many bacteria in the lab, it is nearly impossible to directly 

measure it in the natural environment. However, an estimate can be obtained by 

measuring the rate at which bacteria accumulate mutations per year in the wild and 

the rate at which they mutate per generation in the lab. If we assume the mutation 

rate per generation is the same in the wild and in the lab, and that all mutations in the 

wild are neutral, an assumption that we show is not very important, then an estimate 

of the DT can be obtained by dividing the latter by the former. We estimate the DT for 

four species of bacteria for which we have both an accumulation and a mutation rate 

estimate. We also infer the distribution of DTs across all bacteria from the distribution 

of the accumulation and mutation rates. Both analyses suggest that DTs for bacteria 

in the wild are substantially greater than those in the lab, that they vary by orders of 

magnitude between different species of bacteria and that a substantial fraction of 

bacteria double very slowly in the wild.  

 

 

Introduction 

The bacterium Escherichia coli can divide every 20 minutes in the laboratory under 

aerobic, nutrient-rich conditions. But how often does it divide in its natural 

environment in the gut, under anaerobic conditions where it probably spends much of 

its time close to starvation? And what do we make of a bacterium, such as 

Syntrophobacter fumaroxidans, which only doubles in the lab every 140 hours (1). 

Does this reflect a slow doubling time in the wild, or our inability to provide the 

conditions under which it can replicate rapidly? 

 

Estimating the generation time is difficult for most bacteria in their natural 

environment and very few estimates are available. The doubling time (DT) for 

intestinal bacteria has been estimated in several mammals by assaying the quantity 

of bacteria in the gut and faeces. Assuming no cell death Gibbons & Kapsimalis 

(1967) (2) estimate the DT for all bacteria in the gut to be 48, 17 and 5.8 hours in 

hamster, guinea pig and mouse respectively. More recently Yang et al. (2008) (3) 

have shown that the doubling time of Pseudomonas aeruginosa is correlated to 

cellular ribosomal content in vitro and have used this to estimate the DT in vivo in a 
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cystic fibrosis patient to be between 1.9 and 2.4 hours.  

 

Although there are very few estimates of the generation time in bacteria, this quantity 

is important for understanding bacterial population dynamics. Here we use an 

indirect method to estimate the DT that uses two sources of information. First, we 

can measure the rate at which a bacterial species accumulates mutations in its 

natural environment through time using temporarily sampled data (4), or concurrent 

samples from a population with a known date of origin. We refer to this quantity as 

the accumulation rate, to differentiate it from the mutation rate, and the substitution 

rate, the rate at which mutations spread through a species to fixation. If we assume 

that all mutations in the wild are neutral, an assumption that we show to be 

unimportant, then the accumulation rate is an estimate of the mutation rate per year, 

uy. Second, we can estimate the rate of mutation per generation, ug, in the lab using 

a mutation accumulation experiment and whole genome sequencing, or through 

fluctuation tests. If we assume that the mutation rate per generation is the same in 

the wild and in the lab, an assumption we discuss further below, then if we divide the 

accumulation rate per year in the wild by the mutation rate per generation in the lab, 

we can estimate the number of generations that the bacterium goes through in the 

wild and hence the doubling time (DT = 8760 x ug / uy , where 8760 is the number of 

hours per year). 

 
 
Results 
The accumulation rate in the wild and the mutation rate in the lab have been 

estimated for 34 and 12 bacterial species respectively (Tables S1, S2); we only 

consider mutation rate estimates from mutation accumulation experiments, since 

estimates from fluctuation tests are subject to substantial sampling error and 

unknown bias, and we exclude estimates from hypermutable strains. For four 

species, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Vibrio 

cholera, we have both an accumulation and a mutation rate estimate and hence can 

estimate the DT. Amongst these four species we find our DT estimates vary from 1.1 

hours in V. cholerae to 25 hours in Salmonella enterica (Table 1). In all cases the 

estimated DT in the wild is greater than that of the bacterium in the lab. For example, 

E. coli can double every 20 minutes in the lab but we estimate that it only doubles 

every 15 hours in the wild.  
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Species 
Accumulation 
rate per site 
per year 

Mutation 
rate per 
site per 
generation 

DT (hr) 
(SE) 

Lab DT 
(hr) Ratio AR 

Ref 
MR 
Ref 

Escherichia coli 1.44 x 10-7 2.54 x 10-10 15 (7.7) 0.33 45 1 5 
Pseudomonas 
aeruginosa 3.03 x 10-7 7.92 x 10-11 2.3 (0.77) 0.5 4.6 2 6 
Salmonella enterica 2.50 x 10-7 7.00 x 10-10 25 (7.9) 0.5 50 3 7 
Vibrio cholerae 8.30 x 10-7 1.07 x 10-10 1.1 (0.26) 0.66 1.7 4 8 
 

 

Table 1. Doubling time estimates (hours) for those species for which we have both 

an estimate of the accumulation and mutation rate. Accumulation rate (AR) 

references – [1] (5). [2]  (6, 7). (7) [3] (8–12). [4] (8, 13). Mutation rate (MR) 

references – [5] (14). [6] (15). [7] (16); [8] (17). 

 

 

In theory, it might be possible to estimate the DT in those bacteria for which we have 

either an accumulation or mutation rate estimate, but not both, by finding factors that 

correlate with either rate and using those factors to predict the rates. Unfortunately, 

we have been unable to find any factor that correlates sufficiently well to be usefully 

predictive. It has been suggested that the mutation rate is correlated to genome size 

in microbes (18) but, the current evidence for this correlation is very weak, and 

depends upon the estimate from Mesoplasma florum (r = -0.83, p < 0.001 with M. 

forum and r = -0.45, p= 0.161 without M. flroum) (19). However, we can use the 

accumulation and mutation rate estimates to estimate the distribution of DTs across 

bacteria. We do this by fitting distributions to the accumulation and mutation rate 

data, using maximum likelihood, and then dividing one distribution by the other. We 

assume that both variables are log-normally distributed, an assumption which is 

supported by Q-Q plots with the exception of the mutation rate per generation in 

Mesoplasma florum, which is a clear outlier (Figure 1.). We repeated all our analyses 

with and without M. florum. 

 

If the accumulation and mutation rate data are log-normally distributed then the 

distribution of DT is also log-normally distributed with a mean of loge(8760) + mg – my 

and a variance of vg + vy – 2Cov(g,y), where 8760 is the number of hours per year 

and mg, my, vg and vy are the mean and variance of the lognormal distributions fitted 

to the mutation (subscript g) and accumulation (subscript y) rates. Cov(g,y) is the 

covariance between the accumulation and mutation rates. We might expect that 
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species with higher mutation rates also have higher accumulation rates, because the 

accumulation rate is expected to depend on the mutation rate, but the correlation 

between the two will depend upon how variable the DT and other factors, such as the 

strength of selection, are between bacteria. The observed correlation between the 

log accumulation rate and log mutation rate is negative at -0.47, but there are only 

four data points, so the confidence intervals on this estimate encompass almost all 

possible values (-0.99 to 0.89). We explore different levels of the correlation between 

the accumulation and mutation rates; it should be noted that Cov(g,y) can be 

expressed as Sqrt(vg vy) Corr(g,y) where Corr(g,y) is the correlation between the two 

variables.  

 

 

 
 
Figure 1. Normal Q-Q plots for the log of (A) accumulation and (B) mutation rate 

data. The main plot in B includes all twelve mutation rate estimates and the insert 

excludes Mesoplasma florum estimate. 

 

 

The distribution of DTs in the wild inferred using our method is shown in Figure 2. We 

infer the median doubling time to be 7.4 hours, but there is considerable spread 

around this even when the accumulation and mutation rates are strongly correlated 

(Figure 2A); as the correlation increases so the variance in DTs decreases, but the 

median remains unaffected. The analysis suggests that most bacteria have DTs of 

between 1 and 100 hours but there are substantial numbers with DTs beyond these 

limits. For example, even if we assume that the correlation between the accumulation 

and mutation rate is 0.5 we infer that 10% of bacteria have a DT of faster than one 

hour in the wild and 4.8% have a DT slower than 100 hours in the wild. If we remove 
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the Mesoplasma florum mutation rate estimate from the analysis the median doubling 

is slightly lower at 5.5 hours, but there is almost as much variation as when this 

bacterium is included; at a correlation is 0.5 we infer that 13.6% of bacteria have a 

DT faster than one hour in the wild and 3% have a DT slower than 100 hours.  

 

 

 
 

Figure 2. The distribution of DTs amongst bacteria inferred assuming different levels 

of correlation between the accumulation and mutation rates - orange r = 0, purple r = 

0.5 and red r = 0.75. We also show the distribution of lab DTs (green histogram) from 

a compilation of over 200 species made by Vieira-Silva and Rocha (2010). In panel A 

we include all mutation rate estimates and in panel B we exclude the mutation rate 

estimate for Mesoplasma florum.  

 

 

To investigate how robust these conclusions are to statistical sampling, we 

bootstrapped the accumulation and mutation rate estimates, refit the log-normal 

distributions and reinferred the distribution of DT. The 95% confidence intervals for 

the median are quite broad at 3.1 to 19 hours (2.6 to 11.2 hours if we exclude M. 

florum). However, all bootstrapped distributions show substantial variation in the DT 

with a substantial fraction of bacteria with long DTs and also some with very short 

DTs (Figure 3).  
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Figure 3. DT distributions inferred by bootstrapping the accumulation and mutation 

rate data and refitting the log-normal distributions to both datasets. Each plot shows 

20 bootstrap DT distributions assuming different levels of correlation between the 

accumulation and mutation rates - orange r = 0, purple r = 0.5 and red r = 0.75. A, B 

and C include all mutation rate estimates and D,E, and F show the analysis after 

removal of the Mesoplasma florum mutation rate estimate.  

 

 

It is of interest to compare the distribution of DTs in the wild to the distribution of lab 

DTs (Figure 1). The distributions are different in two respects. First, the median lab 

DT of 3 hours is less than half the median wild DT of 7.4 hours (5.5 hours without M. 

florum); the two are significantly different (p = 0.025 with M. florum and p = 0.042 

without M.florum, inferred by bootstrapping each dataset and recalculating the 

medians). Second, many more bacteria are inferred to have long DTs in the wild than 

in the lab. 
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Discussion 

The DT of most bacteria in their natural environment is not known. We have used 

estimates of the rate at which bacteria accumulate mutations in their natural 

environment and estimates of the rate at which they mutate in the laboratory to 

estimate the DT for several bacteria and infer the distribution of DTs across bacteria. 

We estimate that DT are generally longer in the wild than in the lab, but critically we 

also infer that DTs vary by several orders of magnitude between bacterial species 

and that many bacteria have very slow DTs in their natural environment. 

 

The method, by which we have inferred the DT in the wild, makes three important 

assumptions. We assume that the mutation rate per generation is the same in the lab 

and in the wild. However, it seems likely that bacteria in the wild will have a higher 

mutation rate per generation than those in the lab for two reasons. First, bacteria in 

the wild are likely to be stressed and this can be expected to elevate the mutation 

rate (20–24). Second, if we assume that DTs are longer in the wild than the lab then 

we expect the mutation rate per generation to be higher in the wild than in the lab 

because some mutational processes do not depend upon DNA replication. The 

relative contribution of replication dependent and independent mutational 

mechanisms to the overall mutation rate is unknown. Rates of substitution are higher 

in firmicutes that do not undergo sporulation suggesting that replication is a source of 

mutations in this group of bacteria (25). However, rates of mutation accumulation 

seem to be similar in latent versus active infections of M. tuberculosis, suggesting 

that replication independent mutations might dominate in this bacterium (26, 27). 

 

The second major assumption is that the rate at which mutations accumulate in the 

wild is equal to the mutation rate per year; in effect, we are assuming that all 

mutations are effectively neutral, at least over the timeframe in which they are 

assayed (or that some are inviable, but the same proportion are inviable in the wild 

and the lab). In those accumulation rate studies, in which they have been studied 

separately, non-synonymous mutations accumulate more slowly than synonymous 

mutations; relative rates vary from 0.13 to 0.8, with a mean of 0.57 (Table S3). There 

is no correlation between the time-frame over which the estimate was made and the 

ratio of non-synonymous and synonymous accumulation rates (r = 0.2, p = 0.53). We 

did not attempt to control for selection because the relative rates of synonymous and 
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non-synonymous accumulation are only available for a few species, and the relative 

rates vary between species. However, we can estimate the degree to which more 

selection against mildly deleterious non-synonymous accumulations in the wild 

causes the DT to be underestimated as follows. The observed rate at which 

mutations accumulate in a bacterial lineage is μobs = α μtrue δi + (1-α)(1-β) μtrue δs + 

(1-α) β μtrue δn, where α is the proportion of the genome that is non-coding and β is 

the proportion of mutations in protein coding sequence that are non-synonymous. δx 

is the proportion of mutations of class x (i = intergenic, s = synonymous, n = non-

synonymous) that are effectively neutral. α and β are approximately 0.15 and 0.7 in 

our dataset. Although there is selection on synonymous codon use in many bacteria 

(28), selection appears to be weak (29) we therefore assume that δs = 1. This 

implies, from the rate at which non-synonymous mutations accumulate relative to 

synonymous mutations, that δn = 0.6. A recent analysis of intergenic regions in 

several species of bacteria has concluded that selection is weaker in intergenic 

regions than at non-synonymous sites, we therefore assume that δi = 0.8 (30). Using 

these estimates suggests that selection leads us to an underestimate of the true 

mutation rate per year in the wild by ~27%; this in turn means we have 

underestimated the DT by ~27%, a relatively small effect. 

 

We have also assumed that there is no phylogenetic inertia in the accumulation and 

mutation rates; i.e. that closely related species do not have more similar 

accumulation and mutations rates, than more distantly related species. If there is 

phylogenetic inertia in one of the variables but not the other then our estimate of the 

distribution of DTs only applies to the taxa that have been sampled, and if there is 

phylogenetic inertia in both, then we would have to take account of the phylogenetic 

structure in our analysis. We tested for a phylogenetic signal by constructing a tree 

using 16S rRNA sequences and then applying the tests of Pagel (1999) (31) and 

Blomberg et al. (2003) (32). The accumulation rate estimates show significant signal 

using Pagel’s test (l = 0.68, p = 0.001) but not Blomberg et al. (K = 0.0005, p = 

0.37). The mutation rate estimates show no significant phylogenetic signal with either 

test (Pagel: l = 0.79 p = 0.24; Blomberg et al.: K = 0.58, p = 0.2). It therefore seems 

that there is not a strong phylogenetic signal and our method should be satisfactory. 

 

Despite the assumptions we have made in our method, our estimate of the DT of P. 

aruginosa of 2.3 hours in a cystic fibrosis patient is very similar to that independently 
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estimated using the ribosomal content of cells of between 1.9 and 2.4 hours (3). 

There is also independent evidence that there are some bacteria that divide slowly in 

their natural environment. The aphid symbiont Buchnera aphidicola is estimated to 

double every 175-292 hours in its host (33, 34), and Mycobacterium leprae doubles 

every 300-600 hours on mouse footpads (35–37), not its natural environment, but 

one that is probably similar to the human skin. Furthermore, in a recent selection 

experiment, Avrani et al. (2017) (38) found that several E. coli populations, which 

were starved of resources, accumulated mutations in the core RNA polymerase 

gene. These mutations caused these strains to divide more slowly than unmutated 

strains when resources were plentiful. Interestingly these same mutations are found 

at high frequency in unculturable bacteria, suggesting that there is a class of slow 

growing bacteria in the environment that are adapted to starvation. 

 

Korem et al. (2015) (39) have recently proposed a general method by which the DT 

can be potentially estimated. They note that actively replicating bacterial cells have 

two or more copies of the chromosome near the origin of replication but only one 

copy near the terminus, if cell division occurs rapidly after the completion of DNA 

replication. Using next generation sequencing, they show that it is possible to assay 

this signal and that the ratio of sequencing depth near the origin and terminus is 

correlated to bacterial growth rates in vivo. Brown et al. (2016) (40) have extended 

the method to bacteria without a reference genome and/or those without a known 

origin and terminus of replication. In principle, these measures of cells performing 

DNA replication could be used to estimate the DT of bacteria in the wild. However, 

it’s unclear how or whether the methods can be calibrated. Both Korem et al. (2015) 

and Brown et al. (2016) find that their replication measures have a median of ~1.3 

across bacteria in the human gut. However, a value of 1.3 translates into different 

relative and absolute values of the DT in the two studies. Brown et al. (2016) show 

that their measure of replication, iRep, is highly correlated to Korem et al.’s (2015) 

measure, PTR, for data from Lactobacillus gasseri; the equation relating the two 

statistics is iRep = -0.75 + 2 PTR. Hence, when PTR = 1.3, iRep = 1.85 and when 

iRep = 1.3, PTR = 1.03. The two methods are not consistent. They also yield very 

different estimates for the absolute DT. Korem et al. (2015) show that PTR is highly 

correlated to the growth rate of E. coli grown in a chemostat. If we assume that the 

relationship between PTR and growth rate is the same across bacteria in vivo and in 

vitro, then this implies that the median DT for the human microbiome is ~2.5 hours. In 
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contrast, Brown et al. (2016) estimate the growth rate of Klebsiella oxytoca to be 19.7 

hours in a new-born baby using faecal counts and find that this population has an 

iRep value of ~1.77. This value is greater than the vast majority of bacteria in the 

human microbiome and bacteria in the Candidate Phyla Radiation, suggesting that 

most bacteria in these two communities replicate very slowly. These discrepancies 

between the two methods suggest that it may not be easy to calibrate the PTR and 

iRep methods to yield estimates of the DT across bacteria. 

 

In summary, the availability of accumulation and mutation rate estimates allows us to 

infer the DT for bacteria in the wild, and the distribution of wild DTs across bacterial 

species. These DT estimates are likely to be underestimates because the mutation 

rate per generation is expected to be higher in the wild than in the lab, and some 

mutations are not generated by DNA replication. Our analysis therefore suggests that 

DTs in the wild are typically longer than those in the lab, that they vary considerably 

between bacterial species and that a substantial proportion of species have very long 

DTs in the wild. 

 
 
Materials and methods 
 
We compiled estimates of the accumulation and mutation rate of bacteria from the 

literature. We only used mutation rate estimates that came from a mutation 

accumulation experiment with whole genome sequencing. If we had multiple 

estimates of the mutation rate we summed the number of mutations across the 

mutation accumulation experiments and divided this by the product of the genome 

size and the number of generations that were assayed. We averaged the 

accumulation rate estimates where we had multiple estimates from the same 

species. We recalculated the accumulation rates in two cases in which the number of 

accumulated mutations had been divided by an incorrect number of years: E. coli (5) 

and Helicobacter pylori (41). For E. coli, we reestimated the accumulation rate using 

BEAST by constructing sequences of the SNPs reported in the paper and the 

isolation dates. For, Helicobacter pylori the 3-year and 16-year strains appear to form 

a clade to the exclusion of the 0-year strain because they share some differences 

from the 0-year strain. If the number of substitutions that have accumulated between 

the common ancestor of the 3-year and 16-year strain and each of the two strains 

are S3 and S16 respectively then the rate of accumulation can be estimated as (S16-
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S3)/(13 years x genome size). For the isolates NQ1707 and NQ4060 we have 

estimated the accumulation rate to be 5 x 10-6 and for NQ1671 and NQ4191 5.9 x 10-

6. We excluded some accumulation rate estimates for a variety of reasons. We only 

considered accumulation rates sampled over an historical timeframe of at most 1500 

years. Most of our estimates of the accumulation rate are for all sites in the genome, 

so we excluded cases in which only the synonymous accumulation rate was given. 

We also excluded accumulation rates from hypermutable strains. Accumulation and 

mutation rate estimates used in the analysis are given in supplementary tables S1 

and S2 respectively. 

 

The estimate of the standard error associated with our estimate of the doubling time 

was obtained using the standard formula for the variance of a ratio: V(x/y) = 

(M(x)/M(y))2(V(x)/M(x)2+V(y)/M(y)2) where M and V are the mean and variance of x 

and y. The variance for the accumulation rate was either the variance between 

multiple estimates of the accumulation rate if they were available, or the variance 

associated with the estimate if there was only a single estimate. The variance 

associated with the mutation rate was derived by assuming that the number of 

mutations was Poisson distributed. 

 
We fit log-normal distributions to the accumulation and mutation rate data by taking 

the loge of the values and then fitting a normal distribution by maximum likelihood 

using the FindDistributionParameters in Mathematica. Normal Q-Q plots for the 

accumulation and mutation rate data were produced using the qqnorm function in R 

version 1.0.143. In fitting these distributions, we have not taken into account the 

sampling error associated with the accumulation and mutation rate estimates. 

However, these sampling errors are small compared to the variance between 

species: for the accumulation rates the variance between species is 3.9 x 10-11 and 

the average error variance is an order of magnitude smaller at 3.6 x 10-12; for the 

mutation rate data, the variance between species is 7.5 x 10-18 and the average 

variance associated with sampling is more than two orders of magnitude smaller at 

1.8 x 10-20. Note that we cannot perform these comparisons of variances on a log-

scale because we do not have variance estimates for the log accumulation and 

mutation rates. 

 

To estimate phylogenetic signal in the accumulation and mutation rates we 

generated phylogenetic trees for each set of species in the two datasets. 16S rRNA 

sequences were downloaded from the NCBI genome database 
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(https://www.ncbi.nlm.nih.gov/genome/) and aligned using MUSCLE (Edgar 2004) 

performed in Geneious version 10.0.9 (http://www.geneious.com, Kearse et al. 

2012). From these alignments, maximum likelihood trees were constructed in RAxML 

(43) and integrated into the tests of Pagel (1999) (31) and Blomberg et al. (2003) 

(32) to the log10(accumulation rates) and log10 (mutation rates) implemented in the 

phylosig function in the R package phytools v.0.6 (44). 
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