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The systematic assessment of intra-tumor heterogeneity is still limited and often unfeasible. 
In silico investigations of large tumor cohorts can be used to decipher how multiple clones 
emerge and organize into complex architectures. Here, we addressed this challenge by 
integrating mathematical modeling of cancer evolution with algorithmic inference of clonal 
phylogenies in 2,600 human tumors from 15 tumor types. Through numerical simulations, 
we could discriminate between observable and hidden intra-tumor heterogeneity, the latter 
characterized by clones that are missed by DNA sequencing of human samples. To 
overcome this limitation in human tumors, we show that population frequencies of 
detectable clones can be used to estimate the extent of hidden heterogeneity. Overall, 
simulated and human clonal architectures were highly concordant and showed that high 
numbers of clones invariably emerge through branching lineages. Interestingly, high 
numbers of alterations were not necessarily associated with high intra-tumor 
heterogeneity. Indeed, tumors with alterations in proliferation-associated genes exhibited 
high numbers of clonal mutations, but few clones. Instead, mutations of chromatin 
remodeling genes characterized tumors with high numbers of subclonal alterations and 
multiple clones. Our results identify evolutionary and genetic determinants of tumor clonal 
architectures to guide functional investigations of intra-tumor heterogeneity. 
 
Cancer is a dynamic and ever-changing disease that mutates and evolves during its progression1. 
While the transformation from healthy to malignant cell is characterized by a few selected 
oncogenic alterations2, genetic instability in formed tumors promotes the acquisition of multiple 
lesions that diversify the cancer cell population3. As a result, each tumor is a composite of 
multiple clones, defined as groups of cells that are genetically identical within groups but 
different among them4.  
 
Approaches based on single-cell profiles5–8 or multiple biopsies of the same tumor9–11 have 
revealed a daunting diversity among cancer cells. These observations questioned the ability of 
genomic studies of single tumor samples to provide a representative image of the disease. 
Unfortunately, single-cell analyses of tumors or profiling of multiple samples for each patient 
face technical and cost limitations, thus large scale datasets of these types are currently 
unavailable for systematic investigations. In response to these limitations, algorithmic 
approaches have been proposed to infer the clonal composition of a tumor from the genetic 
profile of a single sample12–15. Using such tools, different clonality and timing of emergence 
have been shown for specific therapeutically actionable mutations16 and an association between 
increasing intra-tumor heterogeneity and worse clinical outcome has been found17. However, 
these algorithmic approaches are limited in their ability to describe the dynamic emergence of 
intra-tumor heterogeneity and how this depends on features such as the rate of cell proliferation 
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or acquisition of new alterations. From a theoretical perspective, mathematical modeling has 
been used to understand mechanisms promoting and determining cancer evolution18–22, but how 
these mechanisms shape the clonal architecture of a tumor remains largely unexplored.  
 
Here, we integrated mathematical simulations of cancer evolution with algorithmic approaches to 
infer the clonal architecture of human tumors from their molecular profiles. Precisely, we 
collected the cancer genomes of 2,673 human tumors from 15 tumor types profiled by The 
Cancer Genome Atlas (TCGA) (Supplementary Table 1) and infer the clonal composition of 
each sample from its somatic mutations and copy number alterations14,23. Results from human 
tumors were analyzed in parallel with the generation of a large cohort of simulated tumors. To 
this purpose, we used a previously proposed mathematical model of cancer progression19 and 
analyzed the emergence of diverse clonal architectures as a function of alteration and 
proliferation rates. Results from both types of analyses were highly concordant, validating each 
other, but also complementary, overcoming the limitations of each approach. Indeed, numerical 
simulations allowed the exact determination of clonal architectures during tumor expansion and 
under controlled parameters. On the other hand, results on human tumors allowed to qualitatively 
examine intra-tumor heterogeneity in the context of distinct tumor types and genomic lesions.  
 
Using this combination of techniques, we explored fundamental features of intra-tumor 
heterogeneity, such as how many clones can typically be found in a tumor sample, do they have 
similar sizes or one accounts for most of the cell population, how did they descend from each 
other, and, finally, what are the evolutionary and molecular determinants of these features. The 
characterization of complex clonal architectures is a critical first step towards understanding their 
organizing principles and predicting their emergence. 
 
RESULTS 
 
To estimate intra-tumor heterogeneity in 2,673 human tumors profiled by TCGA, we used a 
combination of two algorithmic approaches. First, we use ABSOLUTE23 to integrate mutations 
and copy number changes in each tumor and determine copy number statuses of mutated and 
wild-type alleles. Then, we used PhyloWGS14 to infer the clonal architecture of a tumor from its 
set of mutations and copy number alterations. To increase the robustness of our results, we 
estimated the clonal structure of each TCGA tumor sample based on the set of top scoring 
predictions made by multiple runs of PhyloWGS, each weighted by its likelihood (see Methods). 
In parallel, we generated a cohort of ~40,000 simulated tumors using a model of cancer 
evolution governed by two parameters: the alteration rate µ, which is the probability of one cell 
to acquire a new mutation during replication, and the fitness s, which is associated with the 
probability of a cell to replicate19. For each simulation, we tracked the number of clones as well 
as their size and lineage, thus to reconstruct the exact architecture of each simulated tumor. 
Simulated tumors were generated using a wide range of alteration rate and fitness values to 
assess the impact of alteration and proliferation rates on intra-tumor heterogeneity.  
 
Observed and hidden intra-tumor heterogeneity 
At first, we explored how the number of clones varied among human and simulated tumors. 
Within the TCGA dataset, inferred intra-tumor heterogeneity was highly diverse among tumor 
types (Fig. 1a and Supplementary Table 1). The rank of tumor types based on their mean number 
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of clones bore a striking resemblance with a previously reported rank based on mutation load24, 
indicating that most mutagenic tumors are on average also the most clonally diverse. 
Nonetheless, the number of inferred clones in each tumor varied considerably and its correlation 
with the total number of mutations per sample was overall weak (Pearson’s coefficient = 0.09, 
Supplementary Fig. 1a). Hence, the number of mutations alone is not sufficient to give an 
estimate of intra-tumor heterogeneity. Conversely, in our set of simulated tumors, the numbers of 
clones increased linearly with the alteration rate (Fig 1b and Supplementary Fig. 1b) and could 
reach values orders of magnitude higher than those observed in the human dataset. In part, this 
discrepancy could be due to the fact that in each simulated tumor we can exactly count all clones, 
independently of their size, whereas molecular profiling of human samples captures only a 
portion of the tumor and only the fraction of alterations present in a sufficient number of cells. 
Indeed, only mutations with a variant allele frequency (VAF) greater than 1% were retained by 
TCGA (Supplementary Fig. 1c). To apply a similar filtering criteria to the simulated tumors, we 
only retained clones with a size (number of cells) corresponding to at least 1% of the total cell 
population. After applying this filter, the range of the number of clones in simulated tumors 
became comparable to those of the human cohort (Fig. 1c) indicating that simulated tumors are 
composed by few large clones (up to ~10 clones) and a wide array of undetectable clones. While 
multiple factors could limit the growth of newly generated clones25, this in silico observation 
suggests that, in human tumors, filtering mutations with low VAF may result in underestimating 
intra-tumor heterogeneity 
 
The number of detectable clones (i.e. size > 1%) in simulated tumors increased with the 
alteration rate and decreased with fitness. However, for high alteration rates and relatively low 
fitness, we observed an unexpected decrease of the number of clones (Fig. 1c, bottom right 
corner). Before filtering, this decrease was not observed indicating that tumors simulated within 
this range of parameters were composed by few detectable clones and a large fraction of clones 
with size below the threshold of 1%. As a consequence, highly heterogeneous simulated tumors 
now exhibited the same number of observable clones as less heterogeneous ones, “hiding” their 
true complexity. For example, simulated tumors with 6 clones could now be found for highly 
diverse alteration rates and fitness and corresponding to tumors that had very different numbers 
of clones before filtering (Fig 1c, white lines). This result challenges the interpretation of intra-
tumor heterogeneity in human tumors, where alteration rates and fitness are unknown features 
and the amount of undetected clones cannot be estimated. 
 
Interestingly, we observed that the distributions of clone sizes in simulated tumors with high 
hidden heterogeneity were different than those in tumors with low hidden heterogeneity. Indeed, 
by analyzing the size of the clones in each simulated tumor, we found that the size of the biggest 
clone decreased with the alteration rate (Fig. 1d). Vice versa, the size of the other clones 
increased with the alteration rate while µ << s (corresponding to an increase of the number of 
detectable clones), but as µ approaches s, the curves reached a peak and then collapsed below the 
detection threshold (resulting in a decrease of the number of detectable clones) (Fig. 1d and 
Supplementary Fig. 2). Also the differences among the sizes of distinct clones in each simulated 
tumor varied with the alteration rate. At low alteration rates, the first clone is significantly bigger 
than the second one (Fig. 1d – left side), whereas at high alteration rates their sizes become 
comparable (Fig. 1d – right side). Importantly, unlike the alteration rate and fitness, clone sizes 
can be estimated in human tumors. Hence this observation could be used to discriminate between 
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low and high hidden heterogeneity in the human cohort and help estimating the reliability of the 
inferred number of clones. 
 
Estimating the hidden heterogeneity in human tumors 
To quantify and compare the clone sizes of different simulated and human tumors, we recurred 
to the concept of population frequency. The population frequency (PF) of a clone i corresponds 
to the fraction of cells in a tumor that exhibit the set of alterations in i, but not necessarily only 
those14, i.e. the cells in i and in all the clones descending from i. Formally, the PF of clone i in 
tumor T is defined as: 
 

𝑃𝐹! =   
1
|𝑗|!∈!
   |𝑖|+ |𝑗|

!∈{!!}

   

 
where |𝑖| is the size of the clone i and 𝑑! is the set of clones descending from i. The distribution 
of sorted PF values (high-to-low) can recapitulate the differences among clone sizes that we 
observed at varying alteration rates (Fig. 1d). Intuitively, a sharply decreasing distribution 
indicates that the first clone had time to grow before the emergence of new clones, hence the first 
clone is considerably bigger than the others (Fig. 2a – green line). Vice versa, a slowly 
decreasing distribution indicates that new clones rapidly emerged giving rise to detectable clones 
of similar size (Fig. 2a – red line).  
 
In our simulated cohort, we estimated the sorted clone PF distribution in tumors with 5 to 10 
clones and scored each simulation by the area under the curve (AUC) of the estimated 
distribution (Fig 2a – gray area): sharply decreasing distributions will have small PF-AUC 
values, whereas slowly decreasing distributions will obtain high PF-AUC values. PF-AUC 
scores increased with alteration rates and decreased with fitness (Fig. 2b). Strikingly, PF-AUC 
values were highly correlated with the extent of hidden heterogeneity (see Fig. 2b and 2c) and 
could discriminate among simulated tumors with the same number of detectable clones, but 
different extent of hidden heterogeneity. Simulated tumors characterized by low hidden 
heterogeneity (Fig. 2d – region A) had sharply decreasing PF distributions, consistent with the 
presence of a dominant large clone, vice versa, simulated tumors with high hidden heterogeneity 
(Fig. 2d – region C) were characterized by PF distributions decreasing slower and, thus, by 
multiple clones of similar size. A third group of simulated tumors had a higher mean number of 
clones (see Fig 1c) and intermediate level of hidden heterogeneity (Fig. 2d – region B).  
 
Importantly, unlike alteration rate and fitness, clone population frequencies can be inferred in 
human tumors and used to estimate the extent of hidden heterogeneity. PF distributions in human 
tumors were highly consistent with those observed in simulated tumors (Fig 2e and 
Supplementary Fig. 3). To explore the extent of hidden heterogeneity in distinct tumor types, we 
assigned each human sample to one of the 3 groups (A, B, and C) by matching its PF distribution 
to the closest mean distribution obtained in each group by simulated tumors with the same 
number of clones. Similarly to simulated tumors, human tumor types with the highest mean 
number of clones (e.g. melanoma, lung, stomach, and bladder cancer) were mostly categorized in 
group B (Fig. 2f). Instead, colorectal and liver carcinoma samples exhibited the highest 
percentage of samples categorized in group C, where the estimated hidden heterogeneity is 
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greatest (Fig. 2f). These results suggest that the clonal heterogeneity within these tumor types, or 
at least within some of these cases might be highly underestimated.  
 
Overall, these results indicate that clone population frequencies and PF-AUC scores can provide 
a simple way to discriminate among human tumors with similar observed intra-tumor 
heterogeneity those with greater hidden heterogeneity.  
 
From clone sets to clonal architectures 
 
To capture the evolutionary history of a tumor, we need to understand how its distinct clones are 
organized into lineages, i.e. which descend from another. Observed and inferred tumor 
phylogenies allow to recapitulate this organization. Linear phylogenies are the result of the 
sequential generation of clones along the same lineage, i.e. the last clone is the product and 
summary of all its predecessors. Vice versa, in divergent phylogenies multiple clones spur from 
the same common ancestor, generating independent lineages that can evolve in clonal 
populations with little similarity from one another. Tumor phylogenies are typically 
combinations of linear and divergent evolution and they can be represented as trees where clones 
are the nodes of the tree and two clones are connected if one descends from the other14. 
According to this representation, the first emerged clone is the root of the tree, while latest 
emerging clones are its leaves. Intuitively, the more divergent a phylogeny, the closer each leaf 
will be to the root, in contrast perfectly linear phylogenies will have only one leaf at the maximal 
possible distance from its root. We formalized this intuition and quantify each phylogeny with 
the following score: 
 

𝑇𝑟𝑒𝑒  𝑆𝑐𝑜𝑟𝑒 =   1−   
1
𝐿 𝑑(𝑙, 𝑟𝑜𝑜𝑡)!

𝑁 − 1  
 
where L is the total number of leaves, N the total number of clones, and d(l, root) is the length of 
the path connecting a leaf l to the root of the tree. Based on this definition, all linear phylogenies 
will obtain a score equal to 0, while the Tree Score will increase with greater branching and 
number of nodes (Fig. 3a). 
 
First, we examined the tree scores obtained by our simulated tumors as a function of both fitness 
and alteration rate values. The resulting distribution of Tree scores (Fig. 3b) resembled the one 
observed for the number of clones (Fig. 1c) with more heterogeneous simulated tumors also 
receiving higher scores. What was peculiar of the Tree score distribution was instead its variance 
(Fig. 3c). Indeed, we identified two broad areas where simulated tumors were either always 
characterized by low Tree scores, corresponding to low divergence or linear phylogenies, or 
always characterized by high Tree scores, corresponding to highly divergent phylogenies. 
Interestingly, these areas were separated by a narrow region where alteration rate and fitness 
values allowed the emergence of a wide variety of phylogenies with highly variable Tree scores 
(Fig. 3d). This result is reminiscent of a phase transition in physical systems, where the variance 
of observable quantities (called order parameters) diverge at the transition. In our case, the 
transition is characterized by two phases: linear and divergent evolution. Such a transition 
indicates that for specific parameters (along the line 𝑠!~𝜇!!.!, Fig. 3e), linear and divergent 
phylogenies are equally likely to emerge and cannot be anticipated. 
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Next, we investigated the association between number of clones and tumor phylogenies. Number 
of clones and Tree scores were correlated in simulated tumors (Fig. 4a) and as the number of 
clones increased, these tended to be invariably organized in divergent phylogenies. Surprisingly, 
multiple clones organized in long linear phylogenies (or phylogenies with minimal divergence) 
were indeed almost completely absent (Fig. 4a, bottom right corner) indicating that these 
phylogenies are unexpected. Using the phylogenies inferred by PhyloWGS, we could repeat the 
same analysis in human tumors. The resulting association between Tree scores and number of 
clones was remarkably consistent with what the model predicted (Fig. 4b and Supplementary 
Table 1). Indeed, highly divergent phylogenies were prevalent in human tumors with high 
number clones, while linear phylogenies with numerous clones were not observed.  
 
As for the number of clones, we observed high variability of Tree scores among human tumors 
within each tumor type (Supplementary Fig. 4a) and a similarly weak correlation between Tree 
scores and the overall number of mutations (Pearson’s coefficient = 0.1, Supplementary Fig. 4b). 
High genomic instability can therefore be observed in both tumors with high and low intra-tumor 
heterogeneity. 
 
 
Clonal and subclonal genomic instability 
Previous characterizations of tumor architectures have focused on the dichotomy between clonal 
and subclonal mutations16,26,27: the first are present in all cancer cells and are grouped in the root 
of the tumor phylogeny (also referred to as the trunk of the tree28), whereas the second 
characterize only subsets or individual clones positioned further in the phylogeny. Tumor types 
in our human dataset exhibited a variable average number of clonal mutations ranging between 
40 to 60% of the total number of mutations (Fig 5a and Supplementary Table 1). Highly 
mutagenic tumors such as lung, bladder, and stomach cancers were on the lower end of this 
range. Indeed, despite exhibiting a high number of clonal mutations, they were also characterized 
by numerous subclonal events. A notable exception to this trend was skin melanoma which was 
characterized by the highest number of clonal mutations, consistent with all of these samples 
being metastatic and not primary tumors (Fig. 5a).  
 
The numbers of clonal and subclonal mutations were nonetheless highly variable among 
samples, even within the same tumor type (Supplementary Fig. 5a) and showed high fractions of 
tumors with numerous mutations segregated either in a class characterized by high numbers of 
clonal mutations (high clonal or HC) or in a class characterized by high numbers of subclonal 
mutations (high subclonal or HS) (Fig. 5b). Consistently, HS and HC tumors had significantly 
different number of clones and Tree scores (Fig. 5c), suggesting that genetic features 
discriminating between HS and HC tumors could also determine of intra-tumor heterogeneity. 
 
To explore whether selected genetic alterations were enriched in either of these classes, we 
assess the incidence of ~500 cancer-associated somatic mutations and copy number alterations29 
in HC and HS tumors. Surprisingly, most somatic mutations were enriched in the HS group, 
whereas copy number changes and TP53 mutations were most prevalent in the HC group 
(Supplementary Fig. 5b). To correct for potential associations with specific tumor types, we 
tested the same panel of alterations within each tumor type separately. TP53 mutations were 
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significantly enriched in HC tumors from 5 different tumor types (FDR q-value < 0.1). 
Moreover, in HC tumors we confirmed a higher incidence of copy number alterations across 
multiple tumor types and in particular of those affecting proliferation-associated genes such as 
CCNE1, Aurora kinase A (AURKA) and MYC (Fig. 5d). In contrast, HS tumors were found 
enriched for mutations at multiple chromatin remodelers including SWI/SNF components 
ARID1A, ARID1B, and ARID2, the chromatin insulator CTCF, and histone modifiers KMT2D, 
KMT2C, and KDM6A (Fig. 5d). 
 
High genomic instability can thus be characterized by both numerous clonal and subclonal 
mutations giving rise to different intra-tumor architectures. Interestingly, specific sets of 
observed alterations were associated with clonal and subclonal genomic instability. While the 
role of the altered cellular processes on promoting intra-tumor heterogeneity remain to be 
elucidated, these alterations could anticipate the clonal diversity of a tumor in a tumor-type 
independent manner. 
 
DISCUSSION 
 
Intra-tumor heterogeneity is intrinsically difficult to measure as a limited portion of a tumor is 
typically accessible for molecular analyses, which provide only a static snapshot of a disease in 
constant evolution. Computational techniques can help to infer the process that led to tumor 
formation, extract shared evolutionary patterns through the analysis and comparison of large-
scale sample cohorts, and predict the missing pieces of an otherwise incomplete picture. In this 
study, we integrated algorithmic inference of intra-tumor heterogeneity in human tumors and 
numerical simulations of cancer evolution. These independent approaches identified remarkably 
concordant associations among expected number of detectable clones, clone population 
frequencies, and clonal phylogenies. At the same time, the analyses of human and simulated 
tumors proved to be complementary approaches to capture both molecular and dynamic features 
of intra-tumor heterogeneity. 
 
Indeed, numerical simulations allowed to discriminate between the observed intra-tumor 
heterogeneity, characterized by clones and variants present in a sufficient number of cells to be 
detected by molecular profiling, and a hidden heterogeneity, that cannot be measured in human 
tumors. We demonstrate that the extent of hidden heterogeneity is highly variable and it does not 
correlate with the number of detectable clones. Nonetheless, we found that hidden heterogeneity 
can be estimated by clone population frequencies, providing a unique opportunity to re-assess 
inferred clonal diversity in human tumors. It should be noted, that distinct clone population 
frequencies were observed in simulated tumors with the same number of clones but different 
values of alteration rate and fitness. This association could prove useful to infer these 
evolutionary parameters in human tumors. 
 
An association between highly mutagenic tumors and multi-clonal architectures was found in 
both human and simulated tumors. However, human tumors exhibited great variability within 
tumor types and the overall correlation between number of alterations and clonal diversity was 
weak. Indeed, high genomic instability was found both at the clonal and subclonal level and it 
was associated with different clonal architectures and specific genomic alterations. Alterations 
associated with increased proliferation were more frequent in tumor with numerous clonal 
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mutations. This feature might indicate the emergence of a highly proliferative clone that end up 
dominating the cell population. It should be noted, that a similar behavior was also supported by 
our numerical simulations, where intra-tumor heterogeneity was inversely associated with the 
fitness parameter. On the other side, we found multiple mutations of chromatin modifiers in 
tumors with high subclonal instability. In light of the reported association between chromatin 
remodeling complexes and DNA repair30,31, this result suggests that altering these complexes 
favor the insurgence, viability, and co-existence of multiple clones. 
 
Finally, the approaches here adopted purposefully simplify complex dependences among 
alterations, clones, and cell types. Indeed, the inference of clonal architecture in human tumors is 
primarily based on whole exome sequencing of single tumor samples. Multiple samples for each 
patient, possibly distributed over space and time, would greatly increased the accuracy of such 
prediction. Similarly, the model we adopted ignores spatial constraints, such as interactions with 
the microenvironment or mechanical constraints between cells and assumes global and constant 
parameters in each simulation. Interestingly, experiments with alteration rates varying during a 
single simulation did not change the trends presented in this work (data not shown). On the other 
hand, it will be important in the future to explore the effect of cell-cell interaction32 and 
deleterious mutations20 on tumor heterogeneity. 
 
Targeted sequencing of cancer-associated variants is empowering clinicians with the ability to 
tailor therapeutic protocols to the genetic fingerprint of each tumor. These decisions however 
often rely on a single and potentially incomplete observation. While single-cell sequencing or 
multiple sampling of the same tumor are still for the most part unfeasible in the clinic, the 
identification of tumors at “high-risk” of intra-tumor heterogeneity could provide a means to 
better prioritize patients likely to benefit from additional analysis and profiling. Besides the 
techniques discussed above, additional investigations could include high-depth sequencing of 
both DNA and RNA to better identify rare variants33, analysis of multiple solid and liquid 
biopsies with shorter follow-ups34,35, and computational analyses to infer intra-tumor 
heterogeneity. With extended models and a growing availability of data from detailed intra-
tumor molecular profiling, it will be possible to provide qualitative and quantitative endpoints to 
systematically characterize the tumor clonal architecture of each patient.  
 
 
 
METHODS 
 
Inference of tumor phylogenies: PhyloWGS, numerical procedure and scoring 
PhyloWGS is a method to infer evolutionary relationships between clonal subpopulations based 
on variant allele frequencies of point mutations and taking into account copy number alterations 
at the mutated loci. PhyloWGS provides in output detailed phylogenies representing the clonal 
evolution, thus inferring the clonal architecture and not only the clonal composition of each 
tumor. In particular, PhyloWGS does not provide a unique tree representing the phylogenetic 
evolution of the tumor, but a number of trees, each scored by its complete-data log likelihood14. 
For each sample, we run 10 inference procedures with different seeds and we kept the 50 trees 
with the highest complete-data log likelihood for each run for a total of 500 phylogenies for each 
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human tumor. We then sorted all the trees by log-likelihood and kept the top 10% (50 trees) for 
further analysis. For the reduced list of trees, we assigned a score 𝑆!"!  to each tree i according to:  
 

                                                     𝑆!"! =    !"##!"
! !!"#  (!"##!")

!"# !"##!" !!"#(!"##!")
                                            (1) 

 
where CDLLi

50 is the complete-data log likelihood of the tree i and min(CDLL50) (resp. 
max(CDLL50)) is the minimum (resp. maximum) complete-data log likelihood value within the 
reduced set of trees. For each sample, we computed the weighted average number of clones and 
weighted average Tree score as follows:  
 
                                                   #𝐶𝑙𝑜𝑛𝑒𝑠 =    !

!!"!
!"
!!!

   𝑆!"!!"
!!! 𝐶!                                            (2) 

 
 
                                                 𝑇𝑟𝑒𝑒  𝑆𝑐𝑜𝑟𝑒 =    !

!!"!
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!!!

   𝑆!"!!"
!!! 𝑇!                                          (3) 

 
where Ci and Ti are respectively the number of clones and tree score of the tree i.  
 
Accuracy of PhyloWGS 
PhyloWGS accuracy depends on both the number of mutations and the sequencing read depth.  
In the original publication, PhyloWGS was applied to synthetic data with known clonal 
structures to test whether the method was able to recover the true number of clones based on the 
number of mutations and the read depth. Based on their results, we extract threshold lines for 
different number of clones in the population separating regions where the reconstruction is 
accurate and where it is not (Supplementary Fig. 6a-f). For tumors falling above the threshold 
line, the reconstruction is considered accurate, whereas below the threshold line the number of 
clones is likely to be overestimated. The vast majority of the TCGA samples we analyzed are in 
the region of accurate phylogenetic reconstruction. A few cases with high heterogeneity (number 
of clones > 6) fall slightly below the threshold line indicating a potential overestimation of one 
clone.  
 
ABSOLUTE 
We used ABSOLUTE23 to estimate the copy number status of each point mutation. Originally, 
ABSOLUTE was designed to infer purity and ploidy of tumor samples, but it also returns 
information on the copy number status of point mutations when a list of mutations is provided as 
input. ABSOLUTE reports multiple possible solutions and often manual curation is required to 
select the best among the top ones (personal communication). For this reason, in this study we 
relied on TCGA samples with purity and ploidy values previously reported by the authors of the 
original publication. We independently ran ABSOLUTE on all samples and for each sample i 
selected the solution that minimizes:  
 

(𝑃𝑢𝑟!!"# −   𝑃𝑢𝑟!!"#$)! +   (𝑃𝑙𝑜!!"# −   𝑃𝑙𝑜!!"#$)! 
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where (Purabs
i , Ploabs

i) is the purity and the ploidy obtained from our ABSOLUTE runs and 
(PurTCGA

i , PloTCGA
i) is the purity and the ploidy previously reported for the sample i 

(Supplementary Fig 6g-h). 
 
Modeling cancer evolution 
To model cancer evolution, we rely on the model proposed by Bozic et. al.19. This model is a 
discrete time Galton-Watson branching process in which cells can at each time step either 
replicate (with a probability b) or die (with a probability d). During the replication, one of the 
two daughter cells can acquire a new alteration with a probability µ. If an alteration occurs, this 
can be of two types: passenger with a probability µp and driver with probability µd. The 
probability µd is set to 0.025, which corresponds to 500 drivers out of 20000 genes. A driver 
alterations confers to the cell a selective advantage by reducing its probability to die. The 
probability to die of a cell i that has accumulated k driver mutations, dk

i is given by:  
 
                                                        𝑑!! =   

!
!
(1− 𝑠)!                  (4) 

 
where s is the fitness parameter. According to (1), the replication probability for the cell i with k 
mutations is bk

i = 1 − dk
i . µ and s are the input parameters of the model and remain the same 

during the simulation and for all cells. The probability to die will change during the simulation 
depending on the number of accumulated driver alterations.  
 
In our analyses, after each replication step, if no alteration has occurred then the two daughter 
cells will remain in the same clone, otherwise the sibling with the new alteration will create a 
new clone (Supplementary Fig. 7a). Importantly, a new clone is formed whether the new 
alteration is a driver or a passenger. To track the full and exact phylogeny corresponding to each 
simulation is computationally intensive as all cells need to be monitored at each replication step. 
To improve the efficiency of this computation, we simulate evolution of clones, rather than cells. 
Specifically, for a clone of size N, the number of replicating cells nr is drawn from a binomial 
distribution with a success probability b. Then among nr, we determine the number of mutating 
cells nm from a binomial distribution with a probability µ. Lastly, for each altered cell we draw 
with an equal probability a random number between 0 and 1 and assign a driver (passenger) 
alteration if the number is lower (higher) than 0.025. Finally, to calculate the mean number of 
clones and Tree score, only clones with a number of cells greater or equal to 1% of the total 
population are retained. This is in accordance with the fraction of sequencing reads typically 
required by cancer exome sequencing studies to retain a somatic mutation (Supplementary Fig. 
1). The model of clonal evolution is implemented in Python, using the ETE environment36. 
 
Determination of the size of the clones 
Within simulated tumors, we found that the average size of the biggest clone (normalized by the 
total population size) varies as a stretched exponential with the alteration rate µ (Supplementary 
Figs. 2a-b):  
 

                                                            𝐶! 𝑠, µμ =   𝑒!(
!
!∗)

!
                                                        (5) 
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Supplementary Fig. 2 indicates that the characteristic alteration rate µ� increases as a power law 
with s, µ� � s0.821±0.007 while the stretching exponent β decreases logarithmically with s as β = 
−0.37 − 0.028 log(s) (Supplementary Fig. 2c-d). The intervals for the two parameters of the fit 
are 0.37 ± 0.025 and 0.028 ± 0.003. The fits of µ� and β tend to deviate at large fitness for s > 
0.01 from the numerical results, however this regime of very high fitness is not the most relevant 
for our study since it results in monoclonal tumor evolution.  
 
Since our simulations are bounded by total number of cells (each simulation is stopped once the 
tumor has reached a size of 500 million cells), the maximal size that new clones can reach is 
bounded by the size of the largest clone. We determined an expression of the size of subsequent 
clones that depends on the size of the biggest. Supplementary Fig. 2e shows that we can define 
the size of clone Ci as:  
 
                                                             𝐶! =   𝐶! −   𝐶!

!!                                                            (6) 
 
with αi = 1+a(s)�ib(s) (Supplementary Fig. 2f). Finally, we find a(s) = −0.53−0.022 log(s), with 
0.53±0.01 and 0.022±0.0002, (Supplementary Fig. 2g) and b(s) = −1.25−80s, with 1.25±0.007 
and 80±4.5, (Supplementary Fig. 2h). Further investigations are required to understand the 
values of the different constants obtained from the numerical results, but interestingly we 
observed that several of them are close to the ratio between the probabilities of driver and 
passenger alterations !!

!!
 � 0.025.  

 
Given these expressions for clone sizes we can analytically estimate the number of clones from 
the values of µ and s. Given µ and s sampled within the space of parameters used in our 
simulations, we calculated the size of the biggest and subsequent clones using equations (5) and 
(6). The parameters in the equations are chosen from normal distributions with mean and 
variance corresponding to the values obtained from the fits. Only clones that satisfied the 
constraint Ci > 0.01 were counted. We repeated this procedure as many times as the total number 
of simulations and estimate the mean number of clones for each couple of values µ, s. The 
resulting landscape of analytically predicted number of clones are consistent with the 
numerically derived (Supplementary Fig. 2i). 
 
Average ranked population frequency (PF) in human samples 
To estimate the average ranked population frequency PF, we first sorted the clones inferred by 
PhyloWGS by their population frequency. For a linear evolution the ranks of the sorted clones 
are the same as the ranks of the clones from the root to the leaf. However, for phylogenies with 
multiple branches (or various phylogenies inferred by PhyloWGS with different topologies 
and/or number of clones) the rank of the clones from the root to the leaves is ambiguous. For this 
reason, we sorted the clones by their population frequency independently of the underlying 
topology of the phylogeny (Supplementary Fig. 7b).  
After inferring the reduced set of best trees for each human sample and sorting the clones of each 
tree by their population frequencies, we calculated the average ranked population frequency as: 
 

𝑃𝐹 𝑖 = 𝑃𝐹! !!!,!,!… =      
1
𝑆!"!!"

!!!
   𝑆!"

!
!"

!!!
𝑃𝐹!

!    
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            (7) 
 
where i is the rank of the clone,       denotes the ensemble average over all samples, and  𝑃𝐹!

! is 
the population frequency of the clone i of the jth inferred phylogeny (       indicates that the clones 
have been sorted by their population frequency in the phylogeny j). We should note that to 
compare the ranked population frequency in simulations and in human samples at a given 
number of clones (Supplementary Fig. 3), we considered for the human samples the maximum 
number of clones inferred by PhyloWGS and not the average number of clones. Furthermore, 
human samples with a maximum PF lower than 0.75 were removed from this analysis, as these 
tumors are likely characterized low purity (for 100% tumor content, the max PF is equal to 1). 
 
Alteration enrichment analysis in HS and HC tumors 
Tumors with high numbers of clonal (HC) or high numbers of subclonal (HS) mutations were 
defined within each tumor type as the samples with either a number of clonal mutations higher 
than the median and subclonal mutations lower than the median (HC), or a number of clonal 
mutations lower than the median and subclonal mutations higher than the median (HS). 
 
Alteration enrichment analyses were performed both aggregating all HC and HS samples in two 
pan-cancer groups (Supplementary Fig. 5b) and within each tumor type separately (Fig. 5d). For 
each analysis, we tested a set of previously characterized 505 cancer-associated genetic 
alterations29. Each alteration was tested if occurring in at least 5 samples of the analyzed dataset. 
The enrichment of each alteration in either the HS or HC group was statistically tested by a two-
tail exact Fisher’s test and all p-values were corrected for False Discovery Rate (FDR) using the 
Benjamini-Hochberg method. 
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Figure Legends 
 

 
 
 
Figure 1: Number of clones in human and simulated tumors.  
a) Number of clones in human tumors within each tumor type. Tumor types are ranked by mean 
number of clones and tumors within each tumor type are ranked by their respective number of 
clones. The number of clones in each human tumor is the weighted mean of the number of clones 
obtained in the top scoring PhyloWGS phylogenies for that sample. Samples with the same mean 
number of clones are grouped (dots are in size proportional to the number of samples and color 
coded with increasingly warm colors associated to higher number of clones).  
b) Mean number of clones obtained by simulated tumors as a function of their alteration rate µ 
(X-axis) and fitness s (Y-axis). For each pair of coordinates, µ and s, the mean number of clones 
observed in simulations corresponding to those coordinates is color coded (cold colors for low 
numbers, warm colors for high numbers).  
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c) Mean number of clones with a size (number of cells) greater than 1% of the total cell 
population obtained by simulated tumors as a function of their alteration rate µ (X-axis) and 
fitness s (Y-axis). For each pair of coordinates, µ and s, the mean number of clones observed in 
simulations corresponding to those coordinates is color coded (cold colors for low number, warm 
colors for high numbers). Simulations with 6 clones (white lines) can be found for different 
ranges of parameters.  
d) The size, as percentage of the total population, of the first clone (black dots) across 
simulations at different alteration rates and fixed fitness (s = 0.0002) decreases with increasing 
alteration rates µ (X-axis) and is fitted by a stretched exponential (black line). The size of the 
second clone (red dots) initially grows with increasing alteration rates, but eventually decreases. 
This trend can be fitted as a function of the size of the first clone and the model parameters (red 
line - see Methods). Subsequent clones follow the same trend (red dotted lines). Clones with a 
size greater than 1% (blue line) are detectable. 
Acronyms: CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma), UCEC 
(uterine corpus endometrial carcinoma), UVM (uveal melanoma), THCA (thyroid carcinoma), 
KICH (kidney chromophobe carcinoma), BRCA (breast invasive carcinoma), PRAD (prostate 
adenocarcinoma), KIRP (kidney renal papillary cell carcinoma), ACC (adrenocortical 
carcinoma), CRC (colorectal carcinoma), LIHC (liver hepatocellular carcinoma), STAD 
(stomach adenocarcinoma), SKCM (skin cutaneous melanoma), BLCA (bladder urothelial 
carcinoma), LUAD (lung adenocarcinoma). 
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Figure 2: Clone population frequencies predict the extent of hidden heterogeneity.  
a) Schematic of the curves of ranked clone population frequencies. A sharply decreasing curve 
(green dotted line) corresponds to a large initial clone followed by small clones (green dots with 
size indicative of the clone size). A slowly decreasing curve (red dotted line) corresponds to 
clones of a similar size (red dots with size indicative of the clone size). Each curve can be scored 
by its area under the curve (AUC – e.g. the grey area below the green line).  
b) Clone population frequency AUC (PF-AUC) values of simulated tumors with a number of 
clones between 5 and 10 as a function of the alteration rate µ (X-axis) and fitness s (Y-axis). PF-
AUC values are color coded (cold colors for low values, warm colors for high values). 
Simulation with 6 clones (white lines) have different PF-AUC values based on their range of 
parameters.  
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c) Hidden heterogeneity values (1- fraction of cells in detectable clones) of simulated tumors 
with a number of clones between 5 and 10 as a function of the alteration rate µ (X-axis) and 
fitness s (Y-axis). Values are color coded (light colors for low values, dark colors for high 
values). Simulation with 6 clones (white lines) have different extent of hidden heterogeneity.  
d) Ranked clone population frequencies curves for simulated tumors with a number of clones 
between 5 and 10. PF curves were separately derived for simulated tumors in three ranges of 
parameters (µ and s) as shown in the inset on the top right corner (group A in green, group B in 
black, group C in red). For each group, the corresponding curves were aggregated and the range 
of values are displayed.  
e) Ranked clone population frequencies curves for human (continuous lines in the background) 
and simulated (dotted lines on top) tumors with a number of clones between 5 and 10. PF curves 
of human tumors were assigned to group A, B, or C (lines are colored with the color of the 
corresponding group) based on the closest curve of simulated tumors with the same number of 
clones.  
f) Within each tumor type, human tumors were assigned to group A (green bars), B (black), or C 
(red) based on their PF curves. The percentage of cases assigned to each group in each tumor 
type is here reported. Only human tumors with a number of clones between 5 and 10 were 
considered. 
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Figure 3: Linear and divergent evolution in simulated tumors.  
a) Example of Tree score values for all possible phylogenies with 5 clones. Tree scores increase 
with increasing divergence.  
b) Tree scores of simulated tumors as a function of the alteration rate µ (X-axis) and fitness s (Y-
axis). Tree scores are color coded (cold colors for low scores, warm colors for high scores). The 
region (white contour) and fitted line (red line) corresponding to the transition between linear to 
divergent phylogenies are highlighted.  
c) Tree score variance values of simulated tumors as a function of the alteration rate µ (X-axis) 
and fitness s (Y-axis). Tree score variances are color coded (white to black corresponding to low 
to high variance). The region (white contour) and fitted line (red line) corresponding to the 
transition between linear to divergent phylogenies are highlighted.  
d) Tree score distribution of tumors within the region of transition.  
e) The transition line (red line) was derived by fitting the points with maximal variance (gray 
dots). 
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Figure 4: Linear and divergent evolution for low and high number of clones 
a-b) Tree score as a function of the number of clones observed in simulated (a) and human (b) 
tumors. Divergent phylogenies can emerge when at least 3 clones are detected (blue dotted line). 
The range of Tree scores for phylogenies with more than 3 clones goes from a minimal 
divergence value (green line) to a maximal divergence value (red line). 
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Figure 5: Clonal and subclonal genomic instability. 
a) Mean clonal and subclonal mutations found in each tumor type. For each tumor type we 
report: mean number of clonal mutations (blue line), mean percentage of clonal mutations (white 
circle), mean number of subclonal mutations (height of the red triangle), mean Tree score (base 
of the red triangle), and mean Tree score variance (shade of red within the triangle: intense red 
corresponds to high variance, transparent red corresponds to low variance). 
b) Median-normalized clonal mutations (X-axis) versus median-normalized subclonal mutations 
(Y-axis) for all human tumors (dots). The number of clonal and subclonal mutations in each 
tumor is divided by the clonal and subclonal median value of the corresponding tumor type. 
Human tumors are grouped into 4 categories based on their numbers of clonal and subclonal 
mutations being higher or lower than the median of the corresponding tumor type. Samples with 
clonal mutations higher than the median and subclonal mutations lower than the median are in 
the High Clonal mutation (HC) group (blue dots). Samples with clonal mutations lower than the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2017. ; https://doi.org/10.1101/214791doi: bioRxiv preprint 

https://doi.org/10.1101/214791


median and subclonal mutations higher than the median are in the High Subclonal mutation (HS) 
group (red dots). 
c) The number of clones and Tree scores of HS human tumors are significantly higher than those 
of HC human tumors (#clones: Wilcoxon-test p-value = 1.5E-119, Tree score: Wilcoxon-test p-
value =1.1E-72). 
d) Volcano plot of cancer-associated alterations tested for enrichment in either HC or HS group. 
For each alteration we assessed the difference between the percentage of altered samples in the 
HC group and in the HS group (X-axis) and tested the enrichment in either class by two-tail 
exact Fisher’s test (negative log10 of the FDR corrected p-values - q-values - are on the Y-axis). 
Significantly enriched alterations (q-value < 0.05) are color coded based on the alteration type 
(green: mutation, red: copy number amplifications, blue: copy number deletions), non-significant 
alterations are in gray. Labels were added to the most enriched in each category and those 
associated with cell proliferation (for HC enriched events) and with chromatin remodeling (for 
HS enriched events). 
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