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Abstract 21 

Grapheme-colour synaesthesia is a subjective phenomenon related to perception and imagination, in 22 

which some people involuntarily but systematically associate specific, idiosyncratic colours to 23 

achromatic letters or digits. Its investigation is relevant to unravel the neural correlates of colour 24 

perception in isolation from low-level neural processing of spectral components, as well as the neural 25 

correlates of imagination by being able to reliably trigger imaginary colour experiences. However, 26 

functional MRI studies using univariate analyses failed to provide univocal evidence of the activation 27 

of the ‘colour network’ by synaesthesia. Applying Multivariate (multivoxel) Pattern Analysis (MVPA) 28 

on 20 synaesthetes and 20 control participants, we tested whether the neural processing of real 29 

colours (concentric rings) and synaesthetic colours (black graphemes) shared patterns of activations. 30 

Region of interest analyses in retinotopically and anatomically defined visual regions revealed neither 31 

evidence of shared circuits for real and synaesthetic colour processing, nor processing difference 32 

between synaesthetes and controls. We also found no correlation with individual experiences, 33 

characterised by measuring the strength of synaesthetic associations. The whole brain, searchlight, 34 

analysis led to similar results. We conclude that identifying the neural correlates of the synaesthetic 35 

experience of colours may still be beyond the reach of present technology and data analysis 36 

techniques. 37 
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Introduction 41 

Synaesthesia is a subjective experience shared by only a fraction of the population (Simner et al., 42 

2006; Chun & Hupé, 2013; Simner & Carmichael, 2015; Rouw & Scholte, 2016; Watson et al., 2017), 43 

offering, in principle, an opportunity to study the neural bases of subjective experience, drawing on 44 

individual differences just like in neuropsychology, but involving healthy people. Moreover, colour, 45 

the typical prototype of a qualia (what it feels like to perceive something) is the most often cited (or 46 

at least studied: Ward, 2013) content of the synaesthetic experience. However, the very subjective 47 

nature of the synaesthetic experience represents a major obstacle when trying to set an objective 48 

and operational definition, as required in an experimental protocol. Not only subjective descriptions 49 

may vary a lot between subjects (Flournoy, 1893), but also within subjects when asked to complete 50 

the same questionnaire again (Edquist, Rich, Brinkman, & Mattingley, 2006) or when describing their 51 

subjective experience of colour for different letters (Hupé, Bordier, & Dojat, 2012b). Using 52 

psychophysical tests, the synaesthetic experience of colour appears more similar to imagined or 53 

remembered than perceived colours (Witthoft & Winawer, 2013; Chiou & Rich, 2014; Hupé & Dojat, 54 

2015; Janik McErlean & Banissy, 2017). The experience of synaesthetic colours can be indeed 55 

formally described as a form of mental imagery, since it occurs without any corresponding spectral 56 

stimulation. The obligatory experience of colour when exposed to letters or digits may therefore 57 

justify the label of ‘intrusive visual imagery’ (Reeder, 2016). Unfortunately, this simplification does 58 

not help much with defining the phenomenological content of synaesthesia, since self-reports of 59 

mental imagery show at least as much diversity as those of synaesthesia (Galton, 1880), with mixed 60 

evidence about whether the presence of synaesthesia may relate to individual differences in mental 61 

imagery (Chun & Hupé, 2016). One may, however, study how much synaesthesia requires the neural 62 

resources involved in visual perception. This bottom-up approach, which does not address the 63 

phenomenological issue, can at least be operationalized. Moreover, grapheme-colour synaesthesia 64 

offers a unique opportunity regarding the neural correlates of imagination as it restrains both 65 

individual variability and the content specificity of visual imagery. Last but not least, synaesthetic 66 

colours are systematically triggered by letters and digits, unlike “regular” mental imagery that 67 

depends on both the good will and the (uneven) ability of subjects. 68 

Several brain imaging studies have compared activations in the visual cortex for real and synaesthetic 69 

colours, whose majority did not reveal any overlap. There were even questions whether activations 70 

triggered by synaesthetic stimuli, when observed, were in fact related to the synaesthetic experience 71 

at all (Hupé & Dojat, 2015). This surprising ‘Null’ result may be due to methodological limitations 72 

since only massive univariate analysis of brain imaging data were used so far, which may reveal only 73 

processes well localized in the brain (Hupé et al., 2012b). Multivariate (multivoxel) Pattern Analysis 74 
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(MVPA) does not suffer from such a restriction. MVPA provides a way to reveal how information is 75 

encoded by the brain (Cox & Savoy, 2003; Norman, Polyn, Detre, & Haxby, 2006; Formisano & 76 

Kriegeskorte, 2012; Hebart & Baker, 2017). It has been applied successfully to the decoding of 77 

aspects of mental images (Thirion et al., 2006; Reddy, Tsuchiya, & Serre, 2010). Using fMRI, here we 78 

simply asked whether classifiers trained on patterns of blood oxygenation dependent signals (BOLD 79 

responses) elicited by different coloured stimuli could predict which synaesthetic colours were 80 

experienced by synaesthetes when seeing achromatic letters and digits. We studied in particular the 81 

early stages of visual processing by identifying cortical areas V1 to V4 in each subject, using 82 

retinotopic mapping, thus avoiding the problems related to structural normalization (Poldrack, 2007; 83 

Hupé, 2015). We also explored the whole visual cortex (including parts of the parietal cortex) using 84 

regions of interest based on a probabilistic atlas (Eickhoff et al., 2007), and performed whole brain 85 

searchlight analyses (Kriegeskorte, Goebel, & Bandettini, 2006). We compared all the measures 86 

obtained in synaesthetes with those obtained in a group of non-synaesthetes to take into account 87 

any potential non-specific effect related to the choice of stimuli. We also took into account the 88 

individual variability of the synaesthetic experience: without any possibility to characterize 89 

objectively the different phenomenological accounts, we measured the strength of the synaesthetic 90 

associations (Ruiz & Hupé, 2015).  91 

 92 

Materials and Methods 93 

Participants 94 

We tested 20 synaesthetes and 20 non-synaesthetes. Synaesthetes (17 women) were between 21 95 

and 42 years old (M = 27.9, SD = 5.5). Recruitment was diverse and opportunistic, based on self-96 

referral following publicity on internet: lab webpage, Facebook event, announcements on university 97 

networks in Grenoble and Paris. Potential participants, after a first phone interview, were asked by 98 

email to fill-up a questionnaire to describe their synaesthetic associations and for grapheme colour 99 

associations to send us a list of those. Synaesthetes were included if they had a sufficient and diverse 100 

number of letter-colour and digit-colour associations as required by the design of our experiments 101 

(see below). When they came to the laboratory to perform the experiments, they had a semi-102 

directed interview to evaluate the phenomenology of their synesthetic associations. They also ran a 103 

modified version of the “Synaesthesia Battery Test” (Eagleman, Kagan, Nelson, Sagaram, & Sarma, 104 

2007) to choose precisely the colour of each letter and digit. This procedure was also used as a retest 105 

to confirm the validity of the first-person reports (Ruiz & Hupé, 2015): in all subjects, all chosen 106 

colours matched those indicated by print or by name in the questionnaire. In addition, objective 107 
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measurements of synaesthetic associations were obtained by Stroop-like tests (see below in the 108 

‘Protocol’ section).  Seven of the included synaesthetes had already participated in psychophysics 109 

experiments between 2007 and 2010 (Ruiz & Hupé, 2015). 110 

Control participants were recruited after synaesthetes to match their demographic statistics (16 111 

women, age range between 23 and 38 years old, M = 28.5, SD = 4.3), following similar advertisement 112 

strategies as well as soliciting colleagues at the Grenoble Institute of Neuroscience. Interviews were 113 

conducted to verify the absence of any type of synaesthesia, not only the absence of grapheme-114 

colour associations. We chose not to run any consistency score with the control subjects in order not 115 

to prime them to do any voluntary association between graphemes and colours before the tests in 116 

the scanner. It could be argued that some of the controls may have had implicit synaesthetic 117 

associations they were not aware of, as it sometimes happens. In any case, this unlikely possibility 118 

could not bias our results because most of our analyses did not require any direct comparison of the 119 

performances by synaesthetes and controls.  120 

The study was performed in accordance with the Declaration of Helsinki, it received approval by the 121 

Institutional Review Board of Grenoble (CPP 12-CHUG-17, approval date 04/04/2012) and written, 122 

informed consent was obtained from all subjects. A medical doctor verified that all subjects were 123 

without past or current brain disease and had no detected cognitive deficit. All subjects had normal 124 

colour perception on the Lanthony D-15 desaturated colour test (Richmond products), and normal or 125 

corrected to normal eyesight (then using MRI-compatible glasses). 126 

Materials 127 

Stimuli: for each synaesthete, we tried to identify four pairs of graphemes made of one letter and 128 

one digit that had similar colour associations. We never chose graphemes for which a synaesthete 129 

indicated several colours. We tried to find pairs of red, green, blue and yellow (R, G, B, Y) graphemes, 130 

but we were only partially successful and in some cases we selected a pair from the most saturated 131 

colours available. Figure 1 shows the actual letters and digits with colours used in the experiments. 132 

Only 13 subjects named the pairs red, green, blue and yellow; other colours were named orange, 133 

violet, fuchsia and brown, as well as light and dark blue or green. Syn08 and syn48 had a pair made of 134 

two letters. Since each synaesthete was tested with a different set of stimuli, each control subject 135 

was tested with the stimuli of a specific synaesthete (with the exception of syn10 who had no 136 

matched control, by mistake; two controls were tested instead with the stimuli of syn11. Paired 137 

comparisons were therefore based on 38 subjects). 138 

 139 
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140 
Figure 1. Letters and digits used for each synaesthete, with their corresponding synaesthetic RGB colours (the rendering of 141 

the colours using the projector in the scanner was different). 142 

 143 

In the MR scanner, we presented these letters and digits in black at the centre of the screen (upper 144 

case, Helvetica font, extent up to 2 degrees eccentricity) over a grey uniform background (CIE xyY 145 

[0.29 0.3 77.4], half of the maximal luminance of the screen). Stimuli were projected on a translucent 146 

screen at the back of the scanner by a video projector Epson EMP 8200. We used a 147 

spectrophotometer (PhotoResearch PR 650) for colour and luminance measurements used to 148 

compute calibrated images. We also presented dynamic concentric rings (square luminance profile, 149 

similar to the stimuli used by Brouwer & Heeger, 2009, except for the absence of anti-aliasing so as 150 

to use only the colours selected by each synaesthete), with the exact same (real) colours as those 151 

chosen by each synaesthete for each grapheme. The choice of colours matching the individual 152 

grapheme ‘R, G, B, Y’ colour associations was done again by each synaesthete in the scanner over the 153 

same grey background, using a house-modified MRI compatible, comfortable, 10-button console 154 

controller, and the colour-picker of the “Synaesthesia Battery Test” as was done previously outside of 155 

the scanner. The same coloured rings were used for each matched control. The rings extent was also 156 

up to 2 degree eccentricity and the spatial frequency was 3 cycles/degree (six circles). The phase of 157 

the rings changed randomly at 6 Hz to almost nullify visual effects induced by the absence of anti-158 

aliasing. 159 

These stimuli were chosen with the purpose of training and testing classifiers (see below, “Data 160 

analysis: classifications”). Briefly, we wanted to use the BOLD responses to the coloured rings to train 161 

classifiers on colours, and the BOLD responses to graphemes to train classifiers on synaesthetic 162 

colours. This required choosing pairs of dissimilar graphemes, i.e. a letter and a digit, to try to avoid 163 

that the classifier trained on some shared form features, but rather on their common associated 164 

colour. This also implied that decoding should not be feasible that way based on the responses of 165 

control subjects. The use of pairs of graphemes also allowed the training on letters and testing on 166 

digits (or the reverse), with success in principle possible only for synaesthetes, based on their 167 

synaesthetic colour associations. The careful matching procedure of synaesthetic colours allowed the 168 

training of classifiers on real colours and testing on graphemes to identify which brain regions, if any, 169 
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coded both real and synaesthetic colours. Again, any decoding success would in principle be possible 170 

only in synaesthetes. 171 

Classifiers would be trained and tested on four categories, ‘R, G, B, and Y’, referring either to the real 172 

or the synaesthetic prototypical colours that we tried to select. To maximize classification 173 

performances, categories should be perceptually disjoint. Figure 2 represents the actual colours used 174 

in the scanner for each synaesthete within the CIE L*a*b* colour space, which is more perceptually 175 

uniform than the CIE xyY space. As was already obvious in Figure 1, differences of luminance were 176 

important to distinguish stimuli. Figure 2 illustrates that the colour and luminance distances were not 177 

similar across subjects between categories and within pairs, leading to unequal clusterisation. We 178 

could even expect some confusions by the classifiers for some subjects (e.g. “green/yellow” for 179 

syn11, “red/blue” for syn13 or “blue/yellow” for syn41). While the maximal theoretical performance 180 

achievable by classifiers was therefore below 100%, classifiers could however obtain more than the 181 

25% chance performance in every subject. For all the analyses (described below), we tested if the 182 

performance of classifiers across subjects was correlated with the ratio of colour distance (indicated 183 

for each subject in Table 1) as measured in the L*a*b* space; we did not find any evidence of that, 184 

except for the classification of colours in the searchlight analysis, when testing the group of 185 

synaesthetes: we found one significant cluster (106 voxels, 2862 mm
3
), in the left fusiform gyrus, 186 

peaking at  MNI XYZ = [-27 -73 -4], extending from about V4 to FG4, in line with the involvement of 187 

these regions in colour processing. 188 

189 
Figure 2. Colour coordinates in the CIE L*a*b* space of the stimuli used for each synaesthete, corresponding to the 190 

idiosyncratic synaesthetic colours of letters (+) and digits (x). The colours of the crosses are arbitrary and correspond to the 191 

four categories the classifiers had to distinguish. The size of the crosses is proportional to luminance (marker size = 0.4*L, 192 

where max(L) = 100; axes limits are +/- 130, possible range being −128 to +127). 193 

 194 

Note that luminance variations constitute a major difference, due to the constraint of using 195 

synaesthetic colours, with other MVPA studies of the neural correlates of colour processing, which 196 

used isoluminant stimuli (Brouwer & Heeger, 2009; Parkes, Marsman, Oxley, Goulermas, & Wuerger, 197 

2009). We do not know how differences along the luminance axis should be perceptually scaled to 198 

differences along the green/red opponent colours a* axis and the blue/yellow opponent colours b* 199 
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axis. This question is probably an ill-posed problem when studying brain correlates of colour 200 

perception, since at the cortical level visual circuits rely on both (but with different degrees) the 201 

parvo- and the magno-cellular pathways (Tootell & Nasr, 2017).  202 

Protocol 203 

Each subject ran three fMRI sessions of about 1 hour. In addition, synaesthetes ran a 1 hour 204 

psychophysics experiment (before or interleaved with fMRI experiments, depending on schedule 205 

availability) to measure the strength of their synaesthetic associations using variants of Stroop tasks.  206 

All the details of the psychophysics experiment as well as the results of 11 synaesthetes are 207 

published (Ruiz & Hupé, 2015). Briefly, eight graphemes (repeated 36 times each) were presented 208 

randomly either with the colour chosen by each synaesthete (congruent condition) or with the 209 

synaesthetic colour of the other presented graphemes (incongruent condition). Synaesthete had to 210 

name as fast as possible the real colour of the grapheme (‘colour’ task). Response times were 211 

measured a posteriori based on the audio recording. The procedure was then repeated, but 212 

synaesthetes had this time to name as fast of possible the name of the synaesthetic colour (called a 213 

photism) they associated to each grapheme, which was also either congruent or incongruent with 214 

the real colour of the stimulus (‘photism’ task). The index of the strength of synaesthetic associations 215 

(‘photism strength’) combined two measures: the response time difference for congruent and 216 

incongruent stimuli in the colour task, which reflects the difficulty to inhibit synaesthetic 217 

associations; the response time difference to name the real and the synaesthetic colours (in the 218 

congruent condition), which reflects how easily synaesthetes retrieve the synaesthetic colour. 219 

The data of one synaesthete (syn40) could not be analysed because the chosen orange and 220 

yellow/green colours revealed too similar (see Figure 2) and were not named consistently over the 221 

course of the experiment. Table I provides a summary of the data. It shows that even synaesthetes 222 

who obtained a relatively low score of photism strength (e.g., syn01) were very fast at naming the 223 

synaesthetic colour of letters and numbers, even though the real colour of the stimulus was 224 

systematically varied. Moreover, they very rarely made any mistake (Ruiz & Hupé, 2015). Such a task 225 

would be extremely difficult to perform by any non-synaesthete trying to memorize (without 226 

training) random colour associations. These data therefore provide a further objective validation of 227 

the genuineness of the synaesthetic experience of these participants as well as an estimate of the 228 

strength of the associations. 229 

  230 
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 231 

     Colour   Photism   

     Congruent Incongruent Congruency 

effect 

Congruent Incongruent Photism 

delay 

Synaesthete Age Sex Distance 

ratio 

Photism 

strength 

CC CI CI-CC PC PI PC-CC 

syn01 21 F 13 -107 443 454 12 561 685 119 

syn02 21 F 13 52 466 543 77 491 543 25 

syn05 30 F 38 20 452 501 49 480 568 29 

syn08 35 M 6 69 484 585 101 516 619 32 

syn10 31 F 9 40 556 633 77 593 689 37 

syn11 28 F 21 146 643 782 138 636 681 -7 

syn12 33 F 9 136 597 683 86 548 646 -50 

syn13 29 F 4 30 668 744 76 714 795 46 

syn20 23 F 4 19 506 556 50 537 637 31 

syn26 27 M 4 -19 497 528 31 547 690 50 

syn27 24 F 10 -4 547 582 36 586 676 39 

syn30 27 F 14 416 466 844 378 427 449 -39 

syn31 24 F 6 20 525 573 47 553 639 27 

syn32 33 F 12 -57 456 477 21 534 620 78 

syn33 30 F 11 -30 447 457 10 487 525 40 

syn39 26 F 13 48 440 523 83 475 582 35 

syn40 42 F 5 NaN       

syn41 23 F 6 -15 484 514 30 529 678 45 

syn45 27 F 10 10 539 564 25 554 691 16 

syn48 22 M 9 -73 487 529 42 602 770 115 

 232 

Table 1. Demographics and characteristics of the tested synaesthetes. The variable ‘Distance ratio’ is a measure of 233 

clusterisation of the pairs of colour (average between-cluster distance divided by average within-cluster distance, measured 234 

in the L*a*b* space). The higher the value, the better the clusterisation (see Figure 2). The variable ‘Photism strength’ is the 235 

measure of the strength of synaesthetic associations as developed by Ruiz et al. (2015), based on the results of Stroop like 236 

tests. The next columns indicate the median time measured in ms for each subject to name either the real (‘Colour’) or the 237 

synaesthetic colour (‘Photism’) of the letters and numbers shown in Figure 1, when the real colour was either congruent or 238 

incongruent with the synaesthetic colour indicated by each synaesthete. The ‘Congruency effect’ was measured as the 239 

difference of response time in the ‘Colour’ condition. ‘Photism delay’ is the difference between naming the real and the 240 

synaesthetic colours, and ‘Photism strength’ is the difference of these two values. The interpretation of this index is only 241 

relative (the zero value does not have any special meaning). The data of syn40 data were not consistent (see text). 242 

  243 
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fMRI experiments 244 

The MR experiments were performed at the IRMaGe MRI facility (Grenoble, France) with a 3T Philips 245 

Intera Achieva, using a 32 channels coil. The experiments can be decomposed successively in three 246 

“sessions” (about 1 hour each), “runs” (a few minutes), “blocks” (1 minute) and “events” (1 second). 247 

One session was dedicated to retinotopic mapping and functional localizer runs using pictures of 248 

objects, words and coloured stimuli (Mondrian). These latter runs were included to test whether 249 

voxels involved in the decoding of synaesthetic colours were located in regions well-defined 250 

functionally, respectively the Lateral Occipital Complex (LOC: Grill-Spector, Kourtzi, & Kanwisher, 251 

2001), the Visual Word Form Area (VWFA: Dehaene & Cohen, 2011) and “colour centres” (Hupé et 252 

al., 2012b). We did not have the opportunity to use those localizers (see Results). Retinotopic 253 

mapping was performed strictly as described in a previous study (Bordier, Hupé, & Dojat, 2015), 254 

using the Brain Voyager analysis pipeline to define in each subject the ventral and dorsal as well as 255 

the left and right parts of areas V1, V2, V3 and V4 (ventral only). The parameters of the EPI functional 256 

images were TR/TE: 2000/30 ms, excitation pulse angle: 80°, acquisition matrix: 80x80, bandwidth: 257 

54.3 Hz/pixel, isotropic nominal resolution: 3 mm, 30*2.75 mm thick slices with 0.25 mm interspace 258 

covering the whole visual cortex, with four additional dummy scans. To allow the precise alignment 259 

of functional scans across sessions, a high-resolution structural image of the brain was also acquired 260 

using a T1-weighted MP-RAGE sequence. The sequence parameters were TR/TE: 25/2.3 ms, 261 

excitation pulse angle: 9°, 180 sagittal slices of 256*240 (read x phase), bandwidth: 542.5 Hz/pixel 262 

isotropic nominal resolution: 1 mm, for a total measurement time of 4 min 31 s. 263 

Another session was dedicated to the “synaesthesia” protocol (a structural image was also acquired 264 

with the same parameters as in the first session, in the middle of the functional runs). Twelve 265 

functional runs were acquired. The parameters of the EPI functional images were identical to those 266 

used for the retinotopic mapping experiment but TR: 2500 ms for an acquisition volume of 45 slices 267 

covering the entire brain with a total measurement time of 3 min 47 s. In each functional run, stimuli 268 

of one type only were presented: letters, digits, concentric rings with the synaesthetic colours of 269 

letters, or concentric rings with the synaesthetic colours of digits. The session contained three 270 

successive sequences of four runs, each run with a different stimulus type (with a different random 271 

order of stimulus type in each sequence). Each run contained 3*60 s blocks of a rapid-event 272 

paradigm, separated by 10 s fixations. Stimuli of different “colours” were presented pseudo-273 

randomly in each block to optimize the estimation of the main effects. For example, in a letter block 274 

for syn01 and her matched control, the letters E, N, V and A  were presented six times each for 1 s, 275 

with 1 s +/- 333 ms fixation only between each letter. This protocol allowed an estimation of the 276 

BOLD response to each letter in each block (beta weights, using a General Linear Model, see below) 277 
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based on six presentations. We obtained three estimations (betas) in each run for each “colour”, for 278 

a total of thirty-six estimates (9 * 4 “colours”) for each type of stimulus to be used by classifiers. The 279 

power of classification algorithms depends on both the number and quality (signal to noise ratio) of 280 

estimates (called exemplars). The present compromise between quantity and quality was based on 281 

(Mumford, Turner, Ashby, & Poldrack, 2012) and on preliminary experiments (Ruiz, Hupé, & Dojat, 282 

2012). Subjects had to fixate the centre of the screen (the fixation point, present between stimuli and 283 

at the centre of the coloured rings, or the centre of the grapheme) and pay attention to the stimuli 284 

for the whole duration of each run. To help subjects maintain attention, they performed a one-back 285 

task (pressing a button each time the same stimulus was repeated twice in a row). 286 

In the remaining session, a high-resolution, high-contrast structural image of the brain was acquired 287 

using a T1-weighted MP-RAGE sequence. The sequence parameters were TR/TE/TI: 25/3.7/800 ms, 288 

excitation pulse angle: 15°, acquisition matrix: 180 sagittal slices of 256*240 (read x phase), 289 

bandwidth: 191 Hz/pixel, readout in anterio-posterior direction, number of averages: 1, sense factor 290 

anterio-posterior: 2.2, right-left: 2, isotropic nominal resolution: 1 mm, with a total measurement 291 

time of 9 min 41 s. This image was the structural reference image of each subject. We also acquired 292 

diffusion-weighted images, analysed in another study (Dojat, Pizzagalli, & Hupé, 2018) and a 293 

sequence of functional resting state (not analysed yet). 294 

We recorded oculomotor signals during the scans with an ASL EyeTracker 6000. At the beginning of 295 

each session, subjects had to fixate each point of a calibration matrix, and were therefore aware that 296 

the quality of their fixation was monitored. However, signal quality in some subjects was not good 297 

enough or not constant, or even too poor to be of any use for subjects who had to wear non-298 

magnetic glasses in the scanner, so we did not even attempt to analyse these data. We can only 299 

speculate that subjects had a better fixation than if they did not know that their gaze was recorded. 300 

Whole brain univariate analyses did not reveal any activation along the anterior calcarine and the 301 

parieto-occipital sulcus, where activations correspond to the signature of blinks (Hupé, Bordier, & 302 

Dojat, 2012a), providing indirect evidence that the distributions of blinks were not correlated with 303 

our stimuli presented randomly. 304 

Data Analysis 305 

The standard pre-processing procedure of functional images was applied using SPM8: slice-timing 306 

correction, then motion correction with realignment, together with correction of spatial distortions 307 

of the static magnetic field (Vasseur et al., 2010). The within session structural image was realigned 308 

to the mean EPI image, as well as the high resolution high contrast structural image, but no further 309 

transformation of the EPI images was performed. No spatial smoothing was applied for MVPA, as 310 
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maximally differential activation of voxels was shown to maximize the power of classifiers (Ruiz et al., 311 

2012). This was confirmed on these data when testing spatial filters with FWHM = 3, 6 and 9 mm. 312 

Transformation matrices were computed between the structural image and the MNI template to 313 

allow the transformation and projection of atlas-based masks of specific anatomical structures 314 

(Anatomy Toolbox for SPM8 Version 2.2b, 2016) into the subject’s space.  315 

For MVPA (our main analysis), for each subject and each run we first ran a General Linear Model 316 

(GLM). The six parameters of motion correction were included as factors of non-interest in the design 317 

matrix. Thirteen main predictors, four events (grapheme or colour) * three blocks plus one for when 318 

only the fixation point was shown, were obtained by convolving the canonical HRF with Dirac 319 

functions corresponding to the time of presentation of each stimulus. The corresponding beta 320 

weights estimated by the GLM for each colour (real or synaesthetic) and stimulus type (ring or 321 

grapheme), divided by the square root of residuals, were used as examples by a Support Vector 322 

Classification (SVC) algorithm (Scikit-learn version 0.15.2, implemented in Python version 2.7.9.0: 323 

Pedregosa et al., 2011). We used a linear kernel (default value of the C parameter = 1) and a one-324 

versus-one classification heuristic to classify each example in one of the four categories. For all five 325 

classifications describes below, training and test runs were always fully independent: betas obtained 326 

from blocks from the same run were never split between training and test runs.  327 

Classifications. We trained and tested five families of classifiers (Figure 3). Six runs (eighteen blocks) 328 

were used for colour (‘Col’ family of classifiers) and synaesthesia (‘Syn’) decoding. The procedure was 329 

leave-one-run-out. Six classifiers were therefore trained to classify (5 runs * 3 blocks * 4 colours = 60) 330 

colour exemplars in four categories, and tested on (1 run * 3 blocks * 4 colours = 12) independent 331 

exemplars. Performance was therefore computed over seventy-two classifications (6 classifiers * 12 332 

tested exemplars), with chance level = 25% and 95% Confidence Interval of chance for each subject = 333 

[16 36]% (binomial probability, Agresti-Coull estimation). For grapheme runs, training was performed 334 

on pairs made of one letter and one digit. If the decoder learnt only the letters, for example (by being 335 

able to filter out the responses to digits), then performance on decoding letters and digits could 336 

reach up to 50%, without knowing anything about synaesthetic colours. One could expect, however, 337 

that performance of synaesthetes would be higher than for controls because of the additional 338 

information provided by synaesthetic colours. A more stringent test of synaesthetic coding (‘g1g2’) 339 

was the training of one classifier on letters (3 runs * 12 exemplars) and testing on digits (and the 340 

reverse). Learning was achieved using thirty-six exemplars (letters or digits) to be classified in four 341 

categories, test was on thirty-six exemplars (digits or letters), for a total performance over seventy-342 

two classifications by combining training on letters and training on digits. To evaluate if brain regions 343 

coded both real and synaesthetic colours (‘C2S’), training was performed by one classifier on six 344 
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colour runs (seventy-two exemplars), test on six grapheme runs (seventy-two exemplars). We also 345 

performed the reverse classification (‘S2C’). 346 

 347 

 348 

Figure 3. MVPA classifications. ‘Col’ classification: The procedure was leave-one-run-out. Six classifiers were trained to 349 

classify 60 colour exemplars from 5 runs in four categories, and tested on 12 independent exemplars of the remaining run. 350 

Performance was therefore averaged over seventy-two classifications (6 classifiers * 12 tested exemplars). ‘Syn’ 351 

classification: The procedure was the same as for the ‘Col’ classification, based on pairs of graphemes and therefore also 352 

synaesthetic colours for synaesthetes. ‘C2S’ classification: Training was performed by one classifier on six colour runs 353 

(seventy-two exemplars), test on six grapheme runs (seventy-two classifications). ‘S2C’ classification: The procedure was 354 

the same as for the ‘C2S’ classification. ‘g1g2’ classification: Classifiers were trained on letters (3 runs * 12 exemplars) or 355 

digits (3 runs) and tested respectively on digits or letters. Overall performance was based on seventy-two classifications. 356 

 357 

We computed MVPA in regions of interest (ROIs) defined in each native (non-transformed) subject 358 

space. We used visual areas defined by individual retinotopic mapping as well as atlas-based ROIs 359 

(Figure 4). We expected synaesthetic colours to involve the ventral visual pathway, anterior to V4, so 360 

we tested the four subdivisions of the fusiform gyrus (FG, Figure 4a). Some studies have also 361 
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suggested the role of parietal areas, even though no consensus emerged about exactly which part if 362 

any may be involved (Hupé & Dojat, 2015), so we defined ROIs in parietal regions (Figure 4b). 363 

  364 

Figure 4. a. Atlas-based regions of interest (ROI) of the fusiform region. From left to right, FG1, FG2, FG3 and FG4. Colour 365 

gradients denote the probability of being in the specified ROI, from 0% (dark blue) to 100% (dark red). We considered the 366 

largest ROI as the mask of the corresponding region. b. Parietal ROIs. From left to right, AIPS_IP1, AIPS_IP2, AIPS_IP3, 367 

IPL_PGa and IPL_PGp. See text for full names and references of these areas. 368 

 369 

For each subject, anatomical ROIs were defined as the intersection of the subject’s grey matter mask 370 

and the mask of the anatomical ROIs (Anatomy Toolbox for SPM8: Eickhoff et al., 2007) projected 371 

into the subject’s space. Both retinotopic and atlas-based ROIs had different number of voxels within 372 

and across subjects. The performance of classifiers may depend on the number of voxels (called 373 

“features” for the algorithm), making difficult the comparison of absolute performance in different 374 

ROIs. Between-subject differences may also bias group comparisons. 375 

To address this issue, we first tested ROIs of different sizes by regrouping retinotopic areas and 376 

subdivisions of the fusiform areas and of the parietal areas. The pattern of results were similar 377 

whatever our grouping choice of ROIs. We present the results for ROIs of intermediate size (we 378 

indicate the min and max number of voxels across subjects in each ROI), regrouping the right and left 379 

parts of retinotopic areas (V1 = [206 441], V2 = [125 420], V3 = [156 340], V4 = [94 268]), the two 380 

posterior (J. Caspers et al., 2013) (left = [98 150], right = [61 125]) and anterior (Lorenz et al., 2017) 381 

(left = [174 331], right = [127 271]) parts of the fusiform areas, the 3 subdivisions of the Intaparietal 382 

Sulcus (Choi et al., 2006; Scheperjans et al., 2008) (left = [197 311], right = [191 275]) and the anterior 383 

and posterior parts of the Inferior Parietal Lobule (S. Caspers et al., 2006; S. Caspers et al., 2008) (left 384 

= [131 335], right = [124 279]). 385 

We also defined ROIs using the same number of voxels in each subject and ROI. To do that, for all 386 

classifications, we selected 100 voxels with the highest F-scores to colours in each area (we tested 387 

different selection sizes and found that 100 was about the optimal number of voxels to reach 388 

maximum performance). In order to have enough voxels to choose from in every subject, we 389 
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selected voxels in only six large areas: the left and right retinotopic areas V1 to V4 (minimum number 390 

of voxels across subjects were respectively 352 and 327), the left and right fusiform areas FG1 to FG4 391 

(298 and 188) and the left and right parietal areas (347 and 315). Such a selection provides the best 392 

chances for colour classifiers (since we select voxels maximally modulated by colours), but 393 

classification is then not independent of selection when measuring colour decoding after selection of 394 

F-scores to colours (but classification is independent for grapheme decoding). In order to provide a 395 

fair measure of colour decoding performance to compare grapheme decoding with, voxels were 396 

selected using F-values computed based only on runs used for training, meaning that each of the six 397 

training sets was based on a different set of voxels. For other classifications, the same set of voxels 398 

was used based on F-values computed across all colour runs. 399 

Statistical analysis 400 

In each ROI, we computed 95% CIs of the performance of each group, as well at the 95% CIs of the 401 

between group differences. We performed both independent and paired comparisons. Paired 402 

comparisons are in principle more appropriate and powerful with this protocol, because it cancels 403 

any difference due to the specific choice of colours and graphemes; however, for voxels not 404 

concerned with those small differences, pairing is artificial and may just bring some noise. Results 405 

were in any case very similar for both comparisons. We show the CIs for paired comparisons. We also 406 

performed paired comparisons by computing the 95% CI of the odds ratio when comparing 19 407 

synaesthetes against their matched controls, using a mixed-effect generalized linear model, with a 408 

binomial family and a logit link function, as implemented in the library lme4 (Bates, Mächler, Bolker, 409 

& Walker, 2015) in R, version 3.3.3. 410 

In order to fully exploit our data set, we performed two additional analyses. 411 

A searchlight analysis was performed over the whole brain (Kriegeskorte et al., 2006). Whole brain 412 

analyses are in principle less powerful than ROI analyses because they constrain to distort each 413 

subject’s anatomical space within one common space, so the average performance at any given voxel 414 

may in reality correspond to different anatomico-functional voxels in different subjects. Moreover, 415 

they re-introduce the methodological issues related to spatial smoothness (Stelzer, Lohmann, 416 

Mueller, Buschmann, & Turner, 2014). This analysis was therefore exploratory. It allowed us to 417 

discover other clusters potentially involved in synaesthesia, which we could further analyse as post-418 

hoc regions of interest to see if they displayed a consistent pattern of results across classifiers. The 419 

searchlight analysis used a 15 mm radius and the SVC algorithm. Performance maps were 420 

transformed to the common DARTEL space for voxel-wise group comparisons (resolution 3 by 3 by 3 421 

mm). We performed in SPM8 two-sample (groups of 20 subjects) and paired-sample t-tests (N = 19) 422 
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between synaesthetes and controls, as well as one-sample t-tests to compare the average 423 

performance of each group (N = 20) against chance (= 0.25). For all comparisons, no individual voxel 424 

reached pFWE < 0.05. We used cluster-based statistics with the cluster-forming threshold set to p = 425 

0.001 and pFWE < 0.05.  426 

We also performed whole-brain univariate analyses on the groups of synaesthetes and controls to 427 

test for differences of magnitude of the BOLD responses to graphemes evoking synaesthetic colours. 428 

The design of the experiment was not optimized for these analyses since we did not have any control 429 

stimuli (those being not necessary for MVPA). The rationale was the same as for the whole brain 430 

searchlight analysis: if any difference was found between synaesthetes and controls, the revealed 431 

clusters could be defined as post-hoc regions of interest for our classifiers to test if those regions 432 

were involved in coding synaesthetic colours. A 9 mm FWHM spatial smoothing was applied to the 433 

subjects’ EPI images before testing two contrasts: a T-contrast of all stimuli against the fixation point 434 

(we did not have graphemes that did not evoke any synaesthetic colour); an F-contrast of the four 435 

pairs of graphemes. Contrast maps were distorted within the study-specific template computed using 436 

DARTEL procedure as implemented in VBM8 (Dojat et al., 2018) and to the MNI space (resolution 1.5 437 

by 1.5 by 1.5 mm). For second-level analyses, we compared the contrast maps of synaesthetes (N = 438 

20) against controls (N = 20) using t-tests (testing stronger signals either in synaesthetes or controls). 439 

We also performed paired t-tests on 19 synaesthetes against their matched control to account for 440 

possible differences due to the specific choices of graphemes in each synaesthete. For all 441 

comparisons, no individual voxel reached p < 0.05, corrected for the family-wise error (FWE, based 442 

on the random field theory as implemented in SPM8). We used cluster-based statistics with the 443 

cluster-forming threshold set to p = 0.001 (Eklund, Nichols, & Knutsson, 2016) and pFWE < 0.05. As a 444 

final control analysis, we performed the same analyses for coloured stimuli. 445 

Data Availability. The datasets generated and analysed during the current study are freely available 446 

on request (https://shanoir.irisa.fr/Shanoir/login.seam), contact M. Dojat. The data are not publicly 447 

available due to privacy restrictions. 448 

 449 

 450 

Results 451 

Multivariate pattern analysis in regions of interest (defined at the individual level) 452 

Figure 5 shows the performance of all classifiers (described in Figure 3) in all our ROIs, without any 453 

voxel selection (ROIs have therefore different number of voxels across regions and subjects). 454 
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 455 

Figure 5. Performance of classifiers in retinotopic areas, the fusiform gyrus and parietal areas. Each ROI regrouped several 456 

areas, for example the left and right parts of V1 for ‘retV1’ in order to provide a large number of voxels in each subject and 457 

ROI (at least > 60, and > 100 voxels in most ROIs; see Methods: Data Analysis). ‘retV1’ to ‘retV4’ were defined based on 458 

retinotopic mapping in each subject; other ROIs were defined as the intersection of the subject’s grey matter mask and the 459 

mask of atlas-based anatomical ROIs (Anatomy Toolbox for SPM8) projected into the subject’s space (see Figure 4). FG12L = 460 

left (FG1 + FG2), IP13L = left (AIPS_IP1 + AIPS_IP2+ AIPS_IP3), PGapL = left (IPL_PGa + IPL_PGp), etc. Each classifier was 461 

trained and tested on beta weights computed on voxels in the native subject space with no spatial smoothing. Each panel 462 

displays the individual and average performances of five classifiers (see Figure 3): ‘Col’ = training and test on betas for real 463 

colours (rings); ‘Syn’ = training and test for synaesthetic colours (graphemes, letters or digits); ‘C2S’ = training on real 464 

colours (rings) test on synaesthetic colours (graphemes); ‘S2C’ = training on synaesthetic colours test on real colours; ‘g1g2’ 465 

training on letters test on digits or training on digits test on letters. The y-axis represents both the performance of classifiers 466 

(between 0 and 1, chance level = 0.25, thick green line; 95%CI of chance for each subject = [0.16 0.36], thin green lines) for 467 

individual subjects (blue = controls, red = synaesthetes) and their group average (with 95% Confidence Intervals) and the 468 

difference of performance (grey crosses) between synaesthetes and their matched controls (0 = no difference between 469 

groups, blue line; whiskers denote 95% CI). 470 
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In each subplot, the first two beeswarms from the left show the performance of decoders in each 471 

subject for real colours (‘Col’ classification). As expected, the decoding of real colours was above 472 

chance (0.25, thick green line) in retinotopic areas as well as in the fusiform gyrus for both controls 473 

(blue points) and synaesthetes (red points). No difference was expected nor observed between 474 

groups (whiskers across the zero blue line denote the 95% CI for paired comparisons of performance 475 

of 19 synaesthetes against their matched control, the difference of performance being denoted by 476 

the grey crosses). Note though that the whole 95% CI was slightly above 0 in retinotopic V3, ‘retV3’, 477 

and it was slightly below 0 in the subdivisions 1 and 2 of the right fusiform gyrus, ‘FG12R’ (differences 478 

are more visible when estimating the CI by a mixed-effect generalized linear models: Supporting 479 

Information, Figure S4). But without any independent evidence, these small differences could be due 480 

to random sampling. Indeed, all the 99.58% CIs included 0 (Bonferroni correction over 12 tests). 481 

The next beeswarms are for the classification of pairs of graphemes. In synaesthetes only, 482 

classification could in principle be achieved based on the synesthetic colours, since the synesthetic 483 

colour was the main shared feature associated to each grapheme pair (in most cases one letter and 484 

one digit) had in common (so we called it the ‘Syn’ classification). For example, E and 7 were both 485 

associated to red by syn01 (see Figure 1). Performance was above chance level (25%) in controls. This 486 

means that this performance could be achieved by classifiers based on either some spatial features 487 

shared by each grapheme pair or by optimizing decoding to only one of the graphemes. In order to 488 

test whether graphemes could be decoded on the basis of synaesthetic colours, we looked if 489 

synaesthetes performed better than controls. This was the case in retinotopic V2 (95% CI of the 490 

difference of performance, two-sample t-test: [1.5 12.5]%; paired t-test: [0.5 13.4]%; 95% CI of the 491 

odds ratio = [1.15 1.56]; see Methods, statistical analysis) and to a lesser extent in retinotopic V3 (but 492 

note that performance was lower for synaesthetes in the subdivisions 1 to 3 of the left Intra-Parietal 493 

Sulcus, IP13L; such a difference is most likely due to random sampling since none of the group 494 

performances in IP13L was above chance). Only the difference in V2 survived Bonferroni correction 495 

over 12 tests, for the mixed-effect analysis (p = 0.0002). 496 

The third group of beeswarms represent the data answering our main question: can synaesthetic 497 

colours be decoded based on real colours (‘C2S’ classification)? This was not the case in any ROIs we 498 

considered in controls, as expected, but also in synaesthetes (the 95% CI of all groups crossed the 499 

0.25 chance baseline). In particular, performance was not significantly above chance in V2, as would 500 

have yet been expected if the higher performance in synaesthetes for the ‘Syn’ classification was 501 

really due to the coding of synaesthetic colours. Moreover, there was no evidence of better 502 

classification in synaesthetes than controls. We obtained similar null results when we tried to decode 503 
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real colours based on graphemes (and possibly synaesthetic colours in synaesthetes: ‘S2C’ 504 

classification). 505 

The last beeswarms on the right of each subplot show the performance for another classification that 506 

should have been possible only on the basis of synaesthetic colours: classifiers were trained on one 507 

set of graphemes (digits or letters) and tested on the other set of graphemes (‘g1g2’ classification). 508 

Again, performance was never above chance and we found no difference between groups, in 509 

particular in V2. We even observed lower scores for synaesthetes in V1 (where it even survived 510 

Bonferroni correction for the mixed-effect analysis: p = 0.0002) and V3, where we had yet observed 511 

higher performance for ‘Syn’ decoding. This lack of consistency across different tests addressing the 512 

same question confirmed that these small variations, even when statistically “significant”, were most 513 

likely due to random sampling. 514 

We performed again all these analyses using six larger ROIs (regrouping either the left or the right 515 

parts of V1 to V4, FG1 to FG2 and the areas of the inferior parietal lobule and the intraparietal sulcus) 516 

in which we selected the 100 voxels with the largest scores to F-tests to real colours, in order to feed 517 

the classifiers with the voxels most sensitive to real colours (Figure 6). The performance of the ‘C2S’, 518 

‘S2C’ and ‘g1g2’ classifiers was never above chance in synaesthetes (nor in controls, as expected), 519 

and performance was never better in synaesthetes. 520 

 521 

Figure 6. Performance based on the same number of voxels (= 100) in each large ROI (retinotopic areas, fusiform gyrus and 522 

parietal regions) and subject. For the classification of real colours (‘Col’), the selection of the best F-values to colours was 523 

different for each of the six leave-one-out classifications, based each time only on the five runs used for training the 524 

classifier, to insure independence of training and test. For the other selections, all colour runs were used to select the 525 

voxels with the highest F-scores. The high performance for the ‘Syn’ classification in retinotopic areas indicates that many 526 

voxels respond both to change of colour or luminance and the shape of graphemes, probably thanks to the small receptive 527 
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fields of lower visual areas. Same conventions as in Figure 5. The CIs of the odds ratio computed by mixed-effect 528 

generalized linear models are shown in Supporting Information, Figure S5. 529 

Individual differences 530 

The phenomenological experience of synaesthetic colours may vary a lot across synaesthetes, which 531 

may compromise the visibility of effects at the group level. While this phenomenology has been so 532 

far problematic to capture with objective measures, we could estimate the strength of the 533 

synaesthetic associations in each subject, using variants of Stroop tasks. We reasoned that 534 

synaesthetes with stronger synaesthetic associations might have stronger modulations of the BOLD 535 

signal and thus larger decoding values. We first tested area V2, where we had observed on average 536 

higher performance in synaesthetes for the ‘Syn’ classification. We were wondering if this higher 537 

performance was really due to the coding of synaesthetic colours, because our other, more specific 538 

classifiers (‘C2S’, ‘S2’C and ‘g1g2’), had not revealed any difference. A correlation between 539 

synaesthetic strength and performance would constitute an independent validation of coding. Figure 540 

7 shows the performance of each subject as a function of the strength of synaesthetic associations, 541 

measured in Stroop-like psychophysics experiments (see Table 1 and Ruiz & Hupé, 2015, for further 542 

explanations about the ‘Photism Strength’ index) for synaesthetes only (red crosses). Controls (blue 543 

circles) were attributed the value of their matched synaesthete.  544 

 545 

Figure 7. Performance of the classifier trained and tested with synaesthetic colours (pairs of graphemes) in each subject in 546 

area V2 defined retinotopically (same data as ‘Syn’ in the second panel of the first column of Figure 5) as a function of the 547 

strength of synaesthetic associations (‘Photism Strength’). This strength, measured for synaesthetes (red crosses), does not 548 

show any evidence of correlation with the performance of the ‘Syn’ decoder (r = -0.11, 95% CI = [-0.54 0.36]). Controls (blue 549 

circles) were attributed the value of their matched synaesthete (r = -0.18, 95% CI = [-0.58 0.30]). Note that one value of 550 

Photism Strength was larger than the other ones. We carefully checked that this value was correct. However, given its 551 

possible influence on the correlation results, we complemented this analysis with two other analyses, by removing this 552 

value (for synaesthetes, r = 0.28, 95% CI = [-0.21 0.66]) and by performing non-parametric correlations (Spearman r = -0.03, 553 

N = 19, p = 0.90). We compared the results of these three statistical tests for all the other tested correlations. The statistical 554 

conclusions were always similar, except for one case described in Supporting Information, Figure S2. 555 
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There was no correlation between both measures, neither for synaesthetes nor, as expected, for 556 

controls. We also observed that the difference of score between each synaesthete and her (or his) 557 

matched control did not increase with photism strength (r = 0.06, 95% CI = [-0.42 0.52]; Spearman r = 558 

0.01, N = 18, p = 0.95). Therefore, this analysis did not provide any independent argument in favour 559 

of the decoding of synaesthetic colours in V2. We computed similar correlation analyses in every ROI 560 

and for all classifiers and never found any correlation (all uncorrected p > 0.05). We also computed 561 

both positive and negative correlations over the whole brain for the five classifiers, independently for 562 

synaesthetes and controls. We never found any significant cluster (cluster forming threshold, p = 563 

0.001). 564 

Whole brain searchlight multivariate pattern analysis 565 

We complemented our ROI analysis with searchlight analyses over the whole brain (normalized to 566 

the MNI space), comparing the performance of each group against chance as well as comparing 567 

groups for the five classifications. These exploratory analyses were performed to discover clusters 568 

potentially involved in synaesthesia outside of our ROIs. “Significant” clusters could be used as post-569 

hoc regions of interest to see if they displayed a consistent pattern of results across classifiers (these 570 

results are displayed in Supporting Information, Table S1). We found no differences between controls 571 

and synaesthetes at our statistical threshold for classifiers trained and tested on colours (rings, ‘Col’ 572 

classifiers). For classifiers trained and tested on synaesthetic colours (graphemes, ‘Syn’ classifiers), 573 

we observed higher performance in synaesthetes in the parietal cortex (Table S1: on the right side 574 

with paired t-tests and on the left side with two-sample t-tests; bilateral difference could be 575 

observed for both contrasts when using a higher cluster-forming threshold). However, testing 576 

synaesthetes against chance revealed no cluster at our threshold around these coordinates of the 577 

parietal cortex (performance was above chance in both groups in the occipital cortex, as expected). 578 

We found no difference between controls and synaesthetes at our statistical threshold for the critical 579 

test of shared coding of real and synaesthetic colours, when classifiers were trained on coloured 580 

rings and tested on graphemes (‘C2S’ classifiers). Testing synaesthetes against chance also revealed 581 

no cluster. The reverse classification (learning on graphemes, ‘S2C’), however, revealed two clusters 582 

with higher performance in synaesthetes for independent t-tests, in the right occipito-temporal 583 

cortex and in the left putamen. Only the first cluster was confirmed by paired-comparisons. When 584 

testing performance against chance two clusters emerged for synaesthetes (none for controls), one 585 

again in the same part of the right occipito-temporal cortex, and the other in the left parietal cortex, 586 

abutting the parietal cluster obtained previously for the higher performance in synaesthetes for the 587 

‘Syn’ classification (we shall come back to this concordance in the following post-hoc analysis).  588 
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Finally, for classifiers trained on either letters or digits (and tested respectively on either digits or 589 

letters), a critical test of the coding of synaesthetic colours, higher performance was observed, but in 590 

controls, in the left inferior frontal gyrus, for both paired and independent t-tests. However, no 591 

cluster emerged anywhere in the brain in controls (nor in synaesthetes) when testing performance 592 

against chance, so this cluster should be considered as a false positive. 593 

Post-hoc analysis. We further explored the performance of classifiers in the two clusters identified by 594 

the ‘Syn’ classifier and the five clusters identified by the ‘S2C’ classifier, corresponding in fact to two 595 

parietal regions (left and right), one right occipito-temporal region and one cluster in the left 596 

putamen. In each cluster, we computed the average across voxels of the searchlight scores, in order 597 

to compare the performances of our five classifiers for synaesthetes and controls in these seven 598 

clusters defined post-hoc, with two-sample and paired-sample t-tests. We also compared the 599 

performance of each group against chance. Statistically “significant” differences were obtained only 600 

for the contrasts used to define the clusters (Table S1). Only one additional comparison was 601 

“significant” (p = 0.012, not corrected for multiple comparisons) in the left parietal cluster at XYZ = [-602 

33 -28 50], which had been obtained when testing synaesthetes against chance for the ‘S2C’ 603 

classification (training classifiers on graphemes and testing them on colours: Figure 8): synaesthetes 604 

also performed better than controls at decoding graphemes (‘Syn’ classification), 95%CI = [1 9]% 605 

(paired comparisons), and better than chance (95% CI = [26 31]%), but the performance was not 606 

correlated with the strength of synaesthetic associations (p = 0.51). 607 

 608 

609 
Figure 8. Left: Parietal cluster identified based on whole brain searchlight analysis for ‘S2C’ decoding, Synaesthetes>chance 610 

(27-voxel cluster at XYZ = [-33 -28 50], one-sample t-test). Middle: performance of classifiers in this cluster (same 611 

conventions as in Figure 5). The performance of synaesthetes was logically above chance for the ‘S2C’ classification, since 612 

the cluster was defined based on this contrast. For the independent classifier ‘Syn’, the performance of synaesthetes was 613 

also above chance and above that of controls. Right: Absence of correlation between the strength of synaesthetic 614 

associations and ‘Syn’ decoding (Spearman r = 0.02, N = 19, p = 0.95; for ‘S2C’ decoding, not shown: Spearman r = -0.15, N = 615 

19, p = 0.53). 616 
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Whole brain univariate analyses (normalized anatomical space) 617 

Similarly to the searchlight analyses, these whole-brain univariate exploratory analyses were 618 

performed to discover clusters potentially involved in synaesthesia outside of our ROIs. They 619 

revealed no difference between controls and synaesthetes at our statistical threshold for T-contrasts 620 

of graphemes when performing two-sample t-tests. However, the paired-sample t-tests revealed 621 

stronger BOLD signal in a small cluster in synaesthetes, close to the left precentral gyrus. We treated 622 

this cluster as a candidate region for the coding of synaesthetic colours (Supporting Information, 623 

Table S1). 624 

For F-contrasts, we did not observe any stronger modulation in synaesthetes (neither for two-sample 625 

nor paired-sample t-tests). Surprisingly, we observed stronger modulation in controls in two clusters 626 

(paired comparisons), in the right occipito-parietal cortex (Supporting Information, Figure S1) and in 627 

the left insula. The two-sample t-tests revealed only the occipito-parietal cluster. We did not have 628 

any explanation for these differences, which might be false-positives (Eklund et al., 2016). We note 629 

that the analysis by (Rouw & Scholte, 2010) revealed a cluster (which they called IPS, cluster extent = 630 

3280 mm3) at equivalent peak coordinates on the left side ([-30 -72 28]), obtained with the contrast 631 

synaesthetes>controls for (synaesthetic graphemes)>(non-synaesthetic graphemes). In our case, the 632 

weaker modulation by graphemes in synaesthetes would rather argue against the hypothesis of a 633 

functional role of this region in synaesthesia. We included these two regions in our post-hoc MVPA 634 

analyses for further exploration. 635 

We also tested T- and F-contrasts for the responses to real colours (rings). We observed stronger 636 

BOLD signal (T-contrast) in synaesthetes only, in three clusters for paired comparisons (in the left 637 

posterior and anterior insula – see Supporting Information, Figure S2 - and in the left 638 

parahippocampal region) and two other clusters for two-sample t-tests (in the right middle temporal 639 

gyrus and in the right superior, medial, frontal gyrus - see Supporting Information, Figure S3). The 640 

lack of consistency between paired and two-sample t-tests could again suggest false-positives, but 641 

we nonetheless included these five clusters in our post-hoc MVPA analyses, in case those stronger 642 

activations be related to the implicit activation of graphemes by the colours associated to them (“bi-643 

directional” synaesthesia: Gebuis, Nijboer, & Van der Smagt, 2009). F-contrasts to colours revealed 644 

only one cluster of stronger modulation in controls in the frontal region, but in the middle of white 645 

matter and thus clearly a false positive. 646 

We compared the performances of synaesthetes and controls for our classifiers in those eight 647 

clusters defined post-hoc, with two-sample and paired-sample t-tests. Only three comparisons came 648 
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out “significant” at p < 0.05, but without correction for multiple comparisons (Table S1). Supporting 649 

Information, Figs. S1 to S3 detail the results obtained in these three post-hoc clusters. 650 

 651 

Discussion 652 

Our goal with this study was to provide univocal evidence of the activation of the ‘colour network’ by 653 

imaginary colours as experienced by grapheme colour synesthetes. 654 

Studies based on univariate analyses to search the neural correlates of synaesthetic colours face two 655 

major problems. First, BOLD responses to stimuli leading to the experience of synaesthetic colours 656 

need to be compared to a control response (subtraction method: see the Figure 1 by Hupé & Dojat, 657 

2015). Such a control response may be obtained by testing the same subjects with similar stimuli that 658 

do not generate a synaesthetic experience (pseudo-graphemes or graphemes that, by chance, do not 659 

generate such an experience in the tested synaesthetes). The problem is, it is impossible to know 660 

whether the additional activations, if observed, are specific to the synaesthetic experience of colours. 661 

For example, letters and numbers can also be named, unlike pseudo-graphemes. A control response 662 

may also be obtained by testing non-synesthetes with the same stimuli. But, again, it is impossible to 663 

know whether the additional activations, if observed, are specific to the synaesthetic experience of 664 

colours. For example, synaesthetes often enjoy visualizing the synesthetic colours of graphemes: 665 

attentional and emotional components may therefore bias the comparison. Second, averaging the 666 

results across subjects require to transform the individual data within a common reference space, 667 

with the possible loss of fine-grained spatial information. The first problem may generate false 668 

positive results, the second false negative results. 669 

Thus, because univariate analysis led to inconsistent results (Hupé & Dojat, 2015), we used in this 670 

study Multivariate Pattern Analysis (MVPA) on 20 synaesthetes and 20 control participants, to 671 

explore whether the neural processing of real colours and synaesthetic colours shared patterns of 672 

activations. To our knowledge, it was the first time that MVPA was proposed in this context. By using 673 

MVPA, we could in principle overcome problems associated with univariate analysis because we test 674 

the performance, in each individual, related to the coding of certain attributes, not a level of 675 

activation in need of further interpretation. Our design was optimized to test if classifiers, trained to 676 

distinguish patterns of responses to four different real colours in groups of voxels from different 677 

regions of the brain, could classify above chance the responses of those voxels to achromatic 678 

graphemes leading to the synaesthetic experience of the exact same colours. The logic was that only 679 

synaesthetes tested with their exact, idiosyncratic, synaesthetic code could produce above-chance 680 

performance. Unfortunately, the performance of our group of 20 synaesthetes remained very close 681 
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to chance (all p < 0.05, uncorrected) in all our selections of voxels (retinotopic areas defined at the 682 

individual level as well as the fusiform gyrus and parietal regions of interest defined based on a 683 

probabilistic atlas), and whatever the extent of the chosen areas or the selection method of the 684 

voxels (Figure 5 and 6, classification ‘C2S’ in synaesthetes shown by red points). 685 

A statistical comparison revealed that the performance of synaesthetes was also no better on 686 

average than that obtained in control subjects. Of course, the absence of statistically significant 687 

effect cannot lead to conclude to the absence of effects. The null result could be due to a lack of 688 

power, if, for example, only a few synaesthetes had reached a good performance. However, the 689 

results were striking when inspecting the distributions of individual performances: the scores of most 690 

synaesthetes were distributed around the chance level, and almost no synaesthete reached an 691 

individual performance above the chance level (binomial probability: all the points are included 692 

within the green dotted lines). The correlation analyses with a measure of individual differences (the 693 

strength of the synaesthetic associations) further confirmed the homogenous performance of 694 

synaesthetes around chance. Under our experimental conditions, the collected data therefore do 695 

show quite convincingly the absence of shared coding of real and synaesthetic colours. 696 

We further analysed our data set in different ways, in order to be able to detect some signs of coding 697 

of synaesthetic colours by neural networks not involved in the coding of real colours. The ‘g1g2’ 698 

classification, which could have been achieved only on the basis of shared synaesthetic colours 699 

across letters and digits, remained at the chance level in synaesthetes. The ‘syn’ classification, 700 

expected to reach a higher performance in synaesthetes, was similar in controls. We also explored 701 

the performance of classifiers beyond our regions of interest, across the whole (normalized) brain 702 

(searchlight analysis) without obtaining significant results. 703 

We also explored the whole brain using mass univariate tests, knowing that whole brain analyses 704 

face the ill-posed problem of correction of multiple comparisons of partly correlated tests, problem 705 

not fully solved by the Random Field Theory (Eklund et al., 2016). Moreover, since we performed in 706 

total at least nine whole brain searchlight analyses and four whole brain univariate comparisons (T- 707 

and F-contrasts for responses to graphemes and colours, see Table S1), we could have set a family-708 

wise error level at 0.05/13. We preferred to keep a non-corrected level for easier comparisons with 709 

other studies. The whole brain analyses were used only for exploration, and for every detected 710 

cluster we searched for additional evidence (differential response for other comparisons, or 711 

correlation with individual differences). Since we did not find any additional evidence, we conclude 712 

that these clusters may be false positives. We however mention them (see Table S1) in case 713 

additional evidence be found in other studies. 714 
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For now however, our results further suggest that 3T fMRI studies may not be able yet to identify the 715 

neural correlates of the synaesthetic experience of colour (Hupé & Dojat, 2015), probably because 716 

those are fine-grained distributed at a resolution lower than our 3-mm3 voxel resolution, or because 717 

the nature of its coding does not translate (well) into BOLD responses. Surprisingly, though, if 718 

considering synaesthetic colours simply as a form of mental imagery, we were expecting above-719 

chance decoding performance as observed for other tasks involving mental imagery. Those other 720 

tasks, however, typically involved different categories of objects, like food, tools, faces and buildings 721 

(Reddy et al., 2010) or objects, scenes, body parts and faces (Cichy, Heinzle, & Haynes, 2012), which 722 

evoked stronger BOLD signal in specific areas (like the Fusiform Face Area). Other studies involved 723 

retinotopic properties (Thirion et al., 2006) where, again, differences of BOLD signal can be easily 724 

observed. Here we were trying to decode mental images within only a single category, colour. This 725 

confirms that synaesthetic experiences do not evoke strong BOLD responses, at least when using 726 

standard 3T MR scanner, as already suggested by the inconsistency of the published results based on 727 

univariate models. 728 

Below we consider alternative explanations (e.g., methodological flaws) to the absence in our data of 729 

neural traces of the processing of synaesthetic colours. 730 

Colour imagery could not be decoded.  731 

Our study used a protocol very similar to that used by (Bannert & Bartels, 2013), who could decode 732 

the typical colour from eight objects, presented as greyscale photos, with classifiers trained on 733 

concentric colour circles designed after (Brouwer & Heeger, 2009), like in our study. The prototypical 734 

colour of the objects was red, green, blue or yellow (like a banana and a tennis ball). Across 18 735 

subjects, decoding accuracy was “significantly” above chance in V1, but reached only 32% on 736 

average, which is hardly above the 95% CI ([24 30]%) of the performance observed for our similar 737 

classifier (‘C2S’) in the areas V1 to V4 of synaesthetes. Their experimental procedures, slightly 738 

different from ours, may have better optimized the signal to noise ratio and allowed this higher 739 

performance (see below). Alternatively, since the colour-diagnostic objects were presented before 740 

the coloured concentric rings, subjects may have imagined, when viewing the rings, the very objects 741 

that were presented before. Subjects had to do a motion discrimination task to divert their attention 742 

(similarly to our one-back task), but such a task (like ours) was not very demanding (though note that 743 

Bannert and Bartels argue that their results are due to automatically occurring processes during 744 

object vision rather than active imagery). Of course, a similar argument holds even more in our 745 

experiment: synaesthetes were very likely to recognize the colour matching exactly their 746 

synaesthetic colour of letters and digits, and they might well have imagined the letter or digit when 747 
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looking at the coloured stimuli. In both cases, decoding would be based on the complex shape of 748 

stimuli rather than their colour. In the case of Bannert and Bartels, objects were similar to those used 749 

in other successful visual-to-imagery decoding and involved several categories of objects as well as 750 

different retinotopic properties (the objects had different orientations but were rotating; however 751 

the banana or the coke can, for example, had about 12 deg extent, apparently much more than the 752 

Nivea tin or the blue traffic sign), while in our case objects all belonged to the grapheme category, 753 

and all spanned the same visual extent. It is therefore possible that in the study by Bannert and 754 

Bartels the slightly above chance decoding performance was due to residual category and retinotopic 755 

properties, not to colour. With such an interpretation, decoding of imaginary colours would have 756 

failed in both their and our study. 757 

Flaw in the paradigm used: duration of event presentation.  758 

Our close to chance performance could be linked to our choice of a fast event related paradigm, each 759 

stimulus being presented each time for only 1 s, with an ISI = 1 s +/- 333 ms. Bannert and Bartels 760 

presented images for 2 s with a 1 s ISI, each repeated four times in a row (miniblocks). One may 761 

wonder whether our presentation time was sufficient to trigger synaesthetic associations. However, 762 

psychophysical tasks show that the naming of the synaesthetic colours of graphemes takes on 763 

average much less than 1 s (Table 1). Because of our one-back attentional task, though, we cannot be 764 

sure that the synaesthetic associations were always conscious. However, synaesthetes did not report 765 

any specific difficulty with their synaesthetic experience when viewing, inside the scanner, the 766 

proposed paradigm. We designed such a protocol because we did not want synaesthetes to pay too 767 

much attention to their synaesthetic colours, then possibly triggering complex attentional and 768 

emotional processes. Those components are part of the synaesthetic experience, but they do not tell 769 

us anything about the phenomenological experience of colours, our main goal being to try to isolate 770 

the possible neural commonalities of the real and synaesthetic experience. The quasi-absence of 771 

observed differences of overall activation and modulation between synaesthetes and controls for 772 

graphemes indicates that we were successful in synaesthetes having a similar experience to controls 773 

for graphemes, in terms of attentional and emotional content. With different conditions, favouring 774 

synaesthetic colours to be experienced intensely, we would expect the overall pattern of brain 775 

activity to be different, but those differences would be poorly informative. 776 

Flaw in the paradigm used: type of stimuli.  777 

A critical aspect of our fast-event paradigm is related to the slow dynamics of the hemodynamic 778 

signal and the signal to noise we could obtain. Here, the critical benchmark was the possibility to 779 

decode real colours, since the protocol was identical for synaesthetic and real colours. We were 780 
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successful in decoding colours above chance in the visual cortex, but not to the extent that we 781 

hoped: only 35% on average, chance being 25%. Using 12 s miniblocks, Bannert and Bartels obtained 782 

an average performance for colours between 35% and 40% in V1 to V4. Differences other than the 783 

timing of the stimuli may explain this only slightly higher performance: their total presentation time 784 

of coloured stimuli was about 42 min (20 min in our study; for example, Brouwer & Heeger, 2009, 785 

obtained even higher performances with experienced participants tested for much longer durations); 786 

their stimuli were much larger (7.19 deg vs. 2 deg radius) and isoluminant (we do not know whether 787 

luminance information in our case helped or hindered decoding). Because they were constrained by 788 

the idiosyncratic synaesthetic associations, our stimuli were also not well distributed within the 789 

colour space (see Figure 2). Colour differences between categories (R, G, B and Y) and similarity 790 

between colours for pairs (letter-digit) were different between subjects and not always optimal to 791 

reach maximal performance by classifiers. Probably, some pairs of supposedly similar colours 792 

confused classifiers, as well as short distances between some categories. Retrospectively, we should 793 

in fact even consider ourselves lucky to have achieved such a performance for colour decoding. 794 

Choosing only three colours would have allowed us to avoid confusions and get more exemplars for 795 

each colour (with fewer categories to decode, though, confounding factors are more likely). More 796 

repetitions would be welcome, however we wanted to record signals for real and synaesthetic 797 

colours within the same scanning session to avoid any spatial smoothing of the voxels (which is often 798 

necessary when aligning images obtained in different sessions). Preliminary experiments had showed 799 

us indeed that combining the signals from different sessions did not improve performance (Ruiz et 800 

al., 2012). Our total session time was about 1 hour, which is about the limit one may ask naïve 801 

subjects to lie in a scanner without moving while maintaining fixation and attention over boring 802 

stimuli. 803 

Lack of statistical power to detect small differences. 804 

Given our moderate performance for colour classification, our absence of above-chance performance 805 

for the decoding of synaesthetic colours might be due to a lack of power, since performance across 806 

real and imaginary images is typically lower than for real images (Reddy et al., 2010; Bannert & 807 

Bartels, 2013). Indeed, if real differences exist between synaesthetes and controls in the measured 808 

BOLD signal, these differences are too small to be detected reliably with sample sizes similar to ours, 809 

with no indication about the minimum required sample size. Such a reasoning holds for the average 810 

performance, but some subjects did reach performance for colour decoding well above 50%. Yet, the 811 

distribution of individual scores were all very similar for controls and synaesthetes (see Figs. 5-6). 812 

There was some correlation between the performances of colour (‘Col’) and synaesthetic (‘Syn’) 813 

classifiers in retinotopic areas (especially V1), but it was similar in synaesthetes and controls (the 814 
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differences between synaesthetes and controls for the ‘Syn’ classifier were in fact even weaker when 815 

including the ‘Col’ performance as a covariate). 816 

For the statistical analysis, we adopted the “new statistical approach” proposed by (Cumming, 2012) 817 

and focussed on confidence intervals of effect sizes instead of the less informative thresholded p-818 

value maps (Hupé, 2015). In order to facilitate the comparison of our study with previous studies, we 819 

indicated when the comparisons could be considered as “significant” (a 95% CI not crossing the 820 

chance level corresponds to p < 0.05) when correcting the risk level for multiple comparisons. Note 821 

however that correction for multiple comparisons corresponds to an ill-posed problem, because 822 

there is no unique and objective way to define the family of tests (Hupé, 2015). Such a problem is 823 

pretty obvious in our case, where the number of considered ROIs depends on our choice of 824 

regrouping or not ROIs, and by how much. We applied a Bonferroni correction over twelve ROIs, but 825 

we could have considered the family across the five types of classifiers (so at least 60 tests). 826 

However, by focusing on the extent of the CIs, the conclusions do not change much for different 827 

levels of CI (the extent of a 99.58% CIs is just a bit larger than for a 95% CI): for all the cases that may 828 

suggest differences between groups, the true differences compatible with our observations may be 829 

either close to absent (difference close to or including 0, or odds ratio close to or including 1) or at 830 

most up to about 15% (or odds ratio = 1.5), a value that one may consider meaningful. As in most 831 

studies currently published in cognitive neuroscience dealing with small effects, the width of our 832 

confidence intervals is too wide to reach any definitive conclusion on the sole basis of one test (lack 833 

of power). Our choice of CI presentation, however, brings useful information allowing cumulative 834 

science (Yarkoni, Poldrack, Van Essen, & Wager, 2010) and shows that if any real difference exists, it 835 

is probably not very large because corresponding to less than a 15% difference of performance. 836 

 837 

Conclusion 838 

Identifying the neural correlates of the synaesthetic experience of colours may still be beyond the 839 

reach of present technology, including hardware (3T MR scanner) and advanced data analysis 840 

techniques such as MVPA, and that we still do not find any evidence of common neural coding of real 841 

and synaesthetic colours (Hupé et al., 2012b). However, across all our analyses, we did find several 842 

“significant” differences for several comparisons, which we listed in the Results section and detailed 843 

in Supporting Information, Table S1. Other studies also did report so-called “significant” effects, even 844 

though the methods to determine the significance levels were questionable in most studies (Hupé & 845 

Dojat, 2015). We applied the latest recommendations for group-level cluster-wise inferences (9-846 

mmm FWHM spatial smoothing, cluster-defining threshold = 0.001, cluster-based pFWE <0.05, 847 
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groups of 20 participants), yet these criteria do not protect well against false positives (Eklund et al., 848 

2016). In our study, for each “significant” effect, we had a set of independent measures to further 849 

explore any difference that may be real: the performance of other classifiers as well as individual 850 

differences (the strength of the synaesthetic associations measured in Stoop-like psychophysics 851 

tests). We never found any coherence across different measures. Moreover, the locations of the 852 

“significant” effects appeared quite randomly across the brain. As long as no other study replicates 853 

any of these “differences”, we should keep in mind that they could be false positives. Our study thus 854 

further shows that common statistical practices based on Null Hypothesis Significance Tests (NHST) 855 

are not adequate for scientific inference (Hupé & Dojat, 2015; Wasserstein & Lazar, 2016; Hupé, 856 

2017). By stressing that we did not find any evidence of common neural coding of real and 857 

synaesthetic colours, based on our data as well as past studies, we do not conclude that such a 858 

neural coding does not exist. We bring to light what is required to have any chance to reveal the 859 

neural bases of the synaesthetic experience using MRI, like more data by subject, higher signal to 860 

noise ratio and spatial resolution (e.g., 7 Tesla scanner: Turner, 2016) and maybe larger cohorts. In 861 

order to start contributing to this last aim, via the constitution of dedicated data repositories and 862 

meta-analyses, our data are freely available on request (https://shanoir.irisa.fr/Shanoir/login.seam, 863 

contact M. Dojat). Please refer to the present paper in case of the reuse of these datasets. 864 

  865 
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