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Abstract  
Motivation: As we move towards an era of precision medicine, the ability to predict patient-specific 
drug responses in cancer based on molecular information such as gene expression data represents 
both an opportunity and a challenge. In particular, methods are needed that can accommodate the 
high-dimensionality of data to learn interpretable models capturing drug response mechanisms, as well 
as providing robust predictions across datasets. 

Results: We propose a method based on ideas from “recommender systems” (CaDRReS) that predicts 
cancer drug responses for unseen cell-lines/patients based on learning projections for drugs and cell-
lines into a latent “pharmacogenomic” space. Comparisons with other proposed approaches for this 
problem based on large public datasets (CCLE, GDSC) shows that CaDRReS provides consistently 
good models and robust predictions even across unseen patient-derived cell-line datasets. Analysis of 
the pharmacogenomic spaces inferred by CaDRReS also suggests that they can be used to understand 
drug mechanisms, identify cellular subtypes, and further characterize drug-pathway associations. 

Availability:  Source  code  and  datasets  are  available  at  https://github.com/CSB5/CaDRReS  

Contact:  nagarajann@gis.a-star.edu.sg  

Supplementary  information:  Supplementary  data  are  available  online. 

 

1   Introduction  
Cancer is a genetic disease caused by the accumulation of mutations, rang-
ing from point mutations to copy number variations and structural altera-
tions. These, in turn, impact gene expression and ultimately contribute to 
the hallmarks of cancer, including uncontrolled cell proliferation and me-
tastasis. Compared to commonly used cancer treatments such as chemo-
therapy or radiotherapy, targeted drugs can be better at killing tumor cells 
and/or have lesser toxicity to normal tissues (Begg et al., 2011). However, 
not every patient responds to drug therapy in the same way, and molecular 
information such as mutation or gene expression data can inform us on 
which patients will respond to a drug. For example, KRAS mutations can 
be used as predictors of resistance to therapy with EGFR Inhibitors 
(Massarelli et al., 2007), and targeting overexpressed Bcl-2, as observed 
in small-cell lung cancer, has been shown to provide therapeutic benefits 
(Gandhi et al., 2011). These findings emphasize the need for using 
molecular information to predict drug response and thus personalize can-
cer therapy (Thangue and Kerr, 2011; Veer and Bernards, 2008). 

As the number of patients/tumors with molecular data increases across 
cancer types, enabled particularly by large-scale studies such as TCGA 
and ICGC (Weinstein et al., 2013; Zhang et al., 2011), the identification 
of cancer driver genes has benefited greatly (Cerami et al., 2012; Zhang 
et al., 2011; Weinstein et al., 2013; Bertrand et al., 2017). However, these 
data sources typically lack drug response information and are therefore not 

suitable for identifying drug response biomarkers. On the other hand, drug 
screening on several panels of cancer cell lines has been conducted, for 
example, in the Cancer Cell Line Encyclopedia (CCLE) and the collabo-
rative Genomics of Drug Sensitivity in Cancer (GDSC) projects (Barretina 
et al., 2012; Iorio et al., 2016). These cell line datasets allow us to utilize 
genomic features and apply mathematical and statistical approaches to de-
cipher functional relationships and construct models that can predict pa-
tient-specific drug responses.  

Several types of models have been proposed for predicting drug re-
sponses using genomic features (Azuaje, 2016; Costello et al., 2014; 
McLeod, 2013; Wheeler et al., 2012). The most widely used type is a drug-
specific model, which is independently trained for each drug based on ge-
netic and drug response information from cell lines tested with each drug 
individually. Some of the methods that fall in this category include, a lin-
ear regression model using baseline gene expression (Barretina et al., 
2012; Iorio et al., 2016; Geeleher et al., 2014) or based on a combination 
of gene expression and other genomic information such as copy number 
alterations and DNA methylation (Ding et al., 2016; Chen and Sun, 2016), 
nonlinear models such as neural networks, random forests, support vector 
machines and kernel regression based on multiple types of genomic infor-
mation (Cortés-Ciriano et al., 2016; Dong et al., 2015; Gupta et al., 2016), 
and a neural network model that also incorporates drug property infor-
mation (Menden et al., 2013). 

Drug-specific models are typically limited by the number of cell lines 
that have been tested with a given drug. To increase the number of data 
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points and obtaining more robust and general models for drug response, a 
Bayesian multitask multiple kernel learning (BMTMKL) approach was 
proposed and exhibited the best performance in the DREAM challenge for 
drug response prediction (Costello et al., 2014). This work highlighted the 
importance of sharing information across drugs in improving the accuracy 
of drug response prediction. 

Multitask learning assigns all drugs equal importance in response pre-
diction for a given drug, but it is likely more meaningful to construct a 
model that prioritizes information from similar drugs, as is possible using 
collaborative filtering techniques. In the area of recommender systems, 
collaborative filtering is a framework to analyze relationships between us-
ers (cell-lines/patients) and dependencies among items (drugs) to identify 
new user-item associations (patient-specific drug response) (Koren et al., 
2009). The two major classes of collaborative filtering techniques are (i) 
neighborhood methods, which predict the user-item association based on 
predefined user-user and item-item similarities, and (ii) latent factor mod-
els, which use matrix factorization to identify a latent space that captures 
user-item associations. Matrix factorization techniques, in particular, have 
shown promising results in the Netflix Prize, a competition for collabora-
tive filtering methods to predict user ratings for movies based on a rating 
history (Bennett and Lanning, 2007). 

Collaborative filtering techniques have also been used for predicting 
patient-specific drug responses in a few studies. Based on a neighborhood 
approach, Sheng et al (Sheng et al., 2015) defined drug-specific cell line 
similarity and drug structural similarity, and then predicted unobserved 
drug responses by calculating a weighted average of observed drug re-
sponses according to both drug and cell line similarity. This model is 
purely based on the assumption that the predefined similarities can explain 
drug responses, but it did not take into account observed drug response 
information to define drug similarity. In contrast, using the latent factor 
approach, Khan et al (Khan et al., 2016) constructed component-wise ker-
nelized Bayesian matrix factorization (cwKBMF) models to predict unob-
served drug responses based on multiple cell line kernels and observed 
drug response data. Khan et al showed that cwKBMF can identify drug-
pathway associations and outperformed BMTMKL (Costello et al., 2014) 
in drug response prediction. However, a common limitation of both mod-
els is a need for normalization of drug response data, with this prepro-
cessing step leading to a loss of information on relative ranking of drugs 
within each cell line. Overall, the availability of limited training data, with 
a small number of cell lines tested with each drug, represents a major chal-
lenge for learning robust models that provide meaningful predictions in 
new datasets. Additionally, the interpretability of models and their use to 
obtain biological insights has not been extensively explored in the field. 

To address these limitations and to develop more robust models based 
on information sharing across multiple drugs, we developed the CaDRReS 
(for Cancer Drug Response prediction using a Recommender System) 
framework. CaDRReS maps drugs and cell lines into a latent “phar-
macogenomic” space to predict drug responses for specific unseen cell 
lines and patients. Our benchmarking analysis using publicly available da-
tasets (CCLE, GDSC) suggests that this allows CaDRReS to have notably 
better predictive performance and robustness than other existing methods. 
Comparisons on unseen patient-derived cell-line datasets also highlight 
CaDRReS’s robustness and ability to generalize across datasets, an im-
portant requirement for precision oncology applications. Additionally, we 
show that the unique pharmacogenomic space model inferred by Ca-
DRReS lends itself well to biological interpretation, allowing us to (i) un-
derstand drug response mechanisms, (ii) identify cellular subtypes from 
drug response profiles, and (iii) characterize drug-pathway associations.  

2   Methods 

2.1   Datasets and Data Preprocessing 
Drug-screening data for cancer cell lines was obtained from two large-
scale studies, CCLE and GDSC, and all cell lines with baseline gene ex-
pression data were retained. A Bayesian sigmoid curve fitting approach 
was applied to raw intensity data at different drug dosages to recompute 
𝐼𝐶#$ (minimal concentration that induces 50% cell death) values that were 
more comparable across datasets (see Supplementary method 1, Supple-
mentary figure 1 and Supplementary tables 1-2 for details). Drugs with 
median 𝐼𝐶#$ less than 1 µM tend to be cytotoxic drugs with high toxicity 
across cell lines and were therefore excluded (Supplementary figure 2). 
Our final dataset contained 491 cell lines, 19 drugs, and 9,096 experiments 
from CCLE, and 983 cell lines, 223 drugs, and 179,633 experiments from 
GDSC, providing a large dataset for training and validation of our models. 
Additionally, an in-house dataset based on screening of 276 drugs (65 of 
which overlap with GDSC) on 8 head and neck cancer (HNC) patient-
derived cell lines from 5 subjects was used (Chia et al., 2017). Two of the 
cell lines were found to be not sensitive to any of the overlapping drugs 
(inhibition score <50 at 1	  𝜇𝑀), while one was found to be sensitive to 
more than 25% of the overlapping drugs. Excluding these, 325 data points 
from 5 cell lines were used as an independent dataset to evaluate predic-
tions from different models.  

2.2   Cancer Drug Response prediction using a Recom-
mender System 

The first step in CaDRReS is to calculate cell line features based on gene 
expression information. To do this, we normalized baseline gene expres-
sion values for each gene by computing fold-changes compared to the me-
dian value across cell lines. For the next step, since the drug response ex-
periments in GDSC and CCLE aim to measure cell death, 1,856 essential 
genes identified based on large-scale CRISPR experiments (Wang et al., 
2015) were selected to condense the expression information for each cell 
line. Pearson’s correlation for every pair of cell lines was calculated using 
the expression fold-changes of these essential genes. Thus, in total, we had 
491 and 983 cell line features for CCLE and GDSC, respectively. 

For training the model, a drug sensitivity score	  𝑠 = −log	  (𝐼𝐶#$) was 
defined where the higher the score the more sensitive the cell line is to the 
drug. Models were trained and tested independently for CCLE and GDSC 
to avoid biases towards either of the datasets (Haibe-Kains et al., 2013; 
Haverty et al., 2016). 

To train CaDRReS, we used matrix factorization to learn a ‘phar-
macogenomic space’ i.e. a latent space to project drug and cell line data 
such that the dot product between a cell line vector and a drug vector pro-
vides the cell-line specific drug response  (Figure 1A). Drug sensitivity 
models were then computed based on equation 1: 

s12 = µμ + 𝑏6
7 +	  𝑏89 	  + 	  𝒒2 ⋅ 	  𝒑1  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  = µμ + 𝑏6
7 +	  𝑏89 +	  𝒒2 𝒙1𝑾9

? (1) 
where 𝑠86	  is the predicted sensitivity score of cell line 𝑢 to drug 𝑖, 𝜇 is the 
overall mean drug response, 𝑏6

7 and 𝑏89 are bias terms for drug 𝑖 and cell 
line 𝑢, respectively,  𝒒6, 𝒑8 ∈ ℝE  are vectors for drug 𝑖 and cell line 𝑢 in 
the 𝑓-dimensional latent space and 𝑾G ∈ ℝH	  ×Eis a transformation matrix 
that projects cell line features 𝒙8 ∈ ℝH  onto the latent space. The value of 
𝑓 was set at 10 for both CCLE and GDSC datasets based on cross valida-
tion performance. As shown in Figure 1A, this can be depicted as drug 
response matrix (𝑺) being factorized into biases (𝑩) and matrices of cell 
lines (𝑷) and drugs (𝑸). Rows of the cell line matrix (𝑷) and the drug 
matrix (𝑸) are vectors of cell lines and drugs in a latent space, respectively. 
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The latent pharmacogenomic space captures interactions between drugs 
and the genomic background of cell lines such that the dot product be-
tween a cell line vector and a drug vector (𝒑 ⋅ 𝒒) represents the interaction 
between the drug and the cell line. As shown in Figure 1B (center), cell 
line 𝑢 is sensitive to drug 𝑖 and drug 𝑗 while not being sensitive to drug	  𝑘. 
Similarly, cell line 𝑣 is unlike cell line 𝑢 and does not respond to drugs 𝑖 
and	  𝑗. This representation thus has many applications including (i) predict-
ing drug responses of unseen samples (cell lines or patients), (ii) revealing 
drug mechanisms and (iii) subtypes of cell lines, and (iv) identifying drug-
pathway associations (Figure 1B) as will be discussed in later sections. 

In order to train the model the following ‘sum of squared error’ loss 
function was optimized: 

𝐿 𝜃 = 	  
1
2|𝜅|

𝑒86Y
68

	    

e12 = s12 − s12  
where 𝑠86  and 𝑠86	  are observed and predicted sensitivity scores for cell line 
𝑢 using drug 𝑖, respectively, 𝜽	   = 	   {𝑏6, 𝑏8,𝑾G, 𝒒6}, and |𝜅| is the number 
of drug response experiments in the training dataset. Finally, we applied 
gradient descent to optimize this loss function and obtain all parameters in 
𝜽 (see Supplementary method 2). We tested CaDRReS’ robustness by 
constructing 10 different models from different random starting points for 
the gradient descent optimization and observed that the models show sim-
ilar performance (Supplementary figure 3). 

2.3   Comparisons with Related Methods 
We compared the predictive performance and robustness of CaDRReS 
against other existing methods including a method based on the elastic net 
regression model (ElasticNet; Barretina et al., 2012; Iorio et al., 2016), 
cwKBMF (Khan et al., 2016), the method from Sheng et al (Sheng et al., 
2015), as well as a control method based on random permutations of the 
drug sensitivity scores for each cell line (Control). For ElasticNet, the 
model was trained for each drug as described previously (Barretina et al., 
2012; Iorio et al., 2016) using the Elastic Net library from Scikit-learn (𝑙1-
ratio = 0.5; Pedregosa et al., 2011), where the model automatically selects 
the genes. For the method proposed by Sheng et al (Sheng et al., 2015), 
we re-implemented it as described in the paper, normalized drug response 
data, calculated drug similarity and drug-specific cell line similarity scores 
and set the parameters 𝑟H  (number of similar drugs) = 3 and 𝑟  (number of 
similar cell lines) = 9 as used in the paper. For cwKBMF, drug response 
data was normalized for each drug as described in the paper and the pro-
vided MATLAB source code was used to train a model.  

2.4   Evaluation Metrics 
We performed 5-fold cross-validation to evaluate the predictive 
performance of the models. For evaluating cell line ranking for each drug, 
we calculated Spearman correlation (𝑟a) and reported the average correla-
tion across drugs. To evaluate models for each cell line, the normalized 
discounted cumulative gain (NDCG), a widely used score for evaluating 
ranking recommendations, was calculated as follows: 

𝑁𝐷𝐶𝐺 𝒓, 𝒔 = 	  
𝐷𝐶𝐺(𝒓, 𝒔)
𝐷𝐶𝐺 𝒓, 𝒔

	    

𝐷𝐶𝐺 𝒓, 𝒔 =
2ag − 1

logY 𝑟6 + 16

  

where  𝒓 is the predicted rank of drugs tested on a cell line, 𝒔 is a list of 
observed drug sensitivity scores and 𝒓 is the known ranking of drugs. 
NDCG ranges from 0 to 1, where 1 indicates that the model correctly pre-
dicts the ranking of drugs. The numerator in DCG is designed to give 

greater weight to a drug with higher sensitivity score, while the denomi-
nator gives preference to drugs predicted to have higher ranks. 
 

 
Fig. 1. Overview of the CaDRReS framework. (A) Schematic depicting the relationship 

between the drug response matrix 𝑆, the bias terms and factorized matrices for cell lines 

and drugs. A transformation matrix (𝑊𝑷) is used for projecting cell lines onto the latent 

space. (B) The pharmacogenomic latent space captures interactions between drugs and cell 

lines and thus enables the study of drug-pathway associations, drug mechanism similarity, 

and cell line sub-types as discussed in later sections. 

2.5   Identifying Drug-Pathway Associations 
Using 217 Biocarta pathway gene sets from MSigDB (Liberzon et al., 
2011), pathway activity scores were calculated for each cell line by sum-
ming up gene expression fold-changes of genes in each pathway. To iden-
tify drug-pathway associations, we then calculated the Pearson correlation 
between pathway activity scores and predicted drug responses 
(𝐥𝐨𝐠	  (𝑰𝑪𝟓𝟎); lower values indicate greater response), where a negative 
correlation suggests that a pathway is essential for drug effectiveness, 
while a positive correlation suggests that it plays a role in drug resistance. 

3   Results 

3.1   Performance and Robustness of CaDRReS 
A common way to evaluate drug response prediction methods is to assess 
their correlation (or squared error) compared to known responses for each 
drug (across cell lines) in a cross-validation framework (Barretina et al., 
2012; Iorio et al., 2016). Using the matrix-factorization based approaches, 
CaDRReS and cwKBMF showed significantly better performance than 
ElasticNet, Sheng et al, as well as the Control method (p-values <10-30) in 
both the CCLE and GDSC datasets (Figure 2A). While the ability to pre-
dict cell line responses for a given drug is useful to understand drug effi-
cacy and to characterize drug mechanisms, ranking drugs for a given un-
seen cell-line/patient may be more relevant for precision oncology appli-
cations. Based on a weighted scoring of rankings (NDCG), we noted that 
CaDRReS and ElasticNet exhibited similar performance and improved 
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notably over cwKBMF, Sheng et al, and the Control method (p-values 
<10-20; Figure 2B). Taken together, these results suggest that CaDRReS 
improves over existing approaches in providing models that are useful for 
both drug response prediction across cell-lines and within a cell-line. 
 

 
Fig. 2.  Performance and robustness of the CaDRReS model. (A) Average performance 

(spearman correlation) across drugs based on 5-fold cross-validation (error bars represent 

1 standard deviation). (B) Average NDCG scores across unseen cell-lines based on 5-fold 

cross-validation. (C) Average percentage of overlapping genes in ElasticNet across differ-

ent CCLE cross-validation datasets. (D) Concordance between drug-specific bias terms as 

inferred by CaDRReS for every pair of cross-validation runs. Each color represents a drug 

in the CCLE dataset. (E) Concordance between cell line bias terms as inferred by CaDRReS 

for every pair of cross-validation runs. Each color represents a cell line in the CCLE dataset 

(first 50 cell lines). (F) Average hit rate (number of sensitive drugs identified) in the top 

five predictions of each method. Baseline refers to an approach that sorts drugs by their 

average sensitivity across cell lines. 

 

For drug response prediction within a cell-line, although ElasticNet 
models were trained independently for each drug, their NDCG scores were 
surprisingly high. We suspected that this may be due to overfitting while 
training using a limited number of cell lines for each drug. To assess this, 
we evaluated the robustness of ElasticNet models learned across cross-
validation runs and found that <10% of the selected genes were shared 
across folds and half of the genes were selected in only one fold (Figure 
2C). In contrast, CaDRReS showed consistently high correlation for drug 
biases (0.99; Figure 2D) and cosine similarity of inferred drug vectors 
(0.96) across cross-validation runs, as well as high correlation for cell line 
biases (0.96; Figure 2E) and cosine similarity of the inferred cell line vec-
tors (0.88), highlighting the robustness of its models. 

To further evaluate their performance, CaDRReS and ElasticNet mod-
els were trained on the GDSC dataset and tested on an independent dataset 
from patient-derived HNC cell-lines. Sheng et al and cwKBMF were not 
included here because they require normalization of drug response data, 
which leads to a loss of drug ranking information within a cell line. De-
spite having similar performance on the GDSC dataset, CaDRReS outper-
formed ElasticNet on this independent dataset (Figure 2F), emphasizing 
its ability to provide more robust and generalizable models. In particular, 

CaDRReS was able to identify on average at least one drug that elicited a 
strong response for each cell-line among its top 3 predictions, while a 
baseline method based on average response across cell lines identified 
none. 

3.2   Investigating Drug Mechanisms via the Phar-
macogenomic Space  

We trained CaDRReS models on the full datasets to obtain drug and cell-
line biases, as well as the pharmacogenomic spaces capturing drug-drug, 
cell line-cell line, and drug-cell line associations for both CCLE and 
GDSC (Supplementary figure 4). Then to study drug mechanisms, we 
took vectors defined for each drug in the pharmacogenomic space, com-
puted cosine similarities between every pair, and compared these to a com-
monly used drug structural similarity score (Tanimoto coefficient of 
SMILES calculated using the SMSD toolkit; Rahman et al., 2009). Drug 
cosine similarities were significantly higher for drug pairs having high 
structural similarities (Tanimoto coefficient > 0.3; Wilcoxon test p-value 
<0.04 for CCLE and <0.001 for GDSC), suggesting that in general, simi-
larly structured drug pairs tend to have higher cosine similarity on the 
pharmacogenomic space and thus elicit similar responses (Supplemen-
tary figure 5). However, there are indeed exceptions to this rule where 
drugs that elicit similar response profile have significantly different chem-
ical structures. For instance, PD-0332991 and PHA-665752 have rela-
tively low structural similarity (Tanimoto coefficient = 0.07), but high cor-
relation of the observed drug responses (0.51 with p-value < 10-29). This 
is likely due to the fact that PD-0332991 is a CDK4/6 inhibitor that can 
reduce RB phosphorylation (Fry et al., 2004), while PHA-665752 can in-
hibit c-MET and thus result in reduced phosphorylation of RB down-
stream (Ma et al., 2007).  Thus drug similarity in the pharmacogenomic 
space has the potential to capture deeper similarities in drug response 
mechanisms beyond those observed purely based on drug structural simi-
larity. 

In the pharmacogenomic space, we observed that clusters of drugs fre-
quently represent groups that target the same gene or pathway (Figure 3A, 
Supplementary figure 6). For example, EGFR inhibitors (Lapatinib, ZD-
6474, AZD0530, Erlotinib), RAF inhibitors (RAF265, PLX4720) and 
MEK inhibitors (PD-0325901, AZD6244) in CCLE formed separate clus-
ters based on cosine similarity. In addition, cosine similarities among the 
five MEK1 inhibitors in GDSC (CI-1040, PD-0325901, RDEA119, Tra-
metinib, and selumetinib) were significantly higher than between MEK1 
inhibitors and other drugs (p-value <10tu#). A similar trend was also ob-
served for the four BRAF inhibitors, AZ628, Dabrafenib, PLX4720, and 
SB590885 (p-value <10tv; Figure 3B). These observations are interest-
ing given that CaDRReS was trained based solely on drug response data, 
without any other information on drug properties. 

By examining dimensions of the pharmacogenomic space, we observed 
that each dimension captured different aspects of sensitivity to various 
drug classes (Figure 3C). For example, EGFR inhibitors dominated in the 
5th and 9th dimensions and thus cell lines that were projected close to the 
positive sides of these dimensions have higher EGFR inhibitor sensitivity. 
Additionally, we observed that MEK inhibitors lie on the negative side of 
the 8th dimension and the values of cell line vectors in this dimension were 
most positively correlated with activity scores for the EIF2 pathway 
(0.217), indicating that cell-lines with inactivated EIF2 pathway may be 
more sensitive to MEK inhibitors. This observation is in agreement with 
prior work showing that MEK inhibitors work by inducing activation of 
eIF-2B, which results in a shutdown of cellular protein synthesis and leads 
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to apoptosis (Quevedo et al., 2000; Liberzon et al., 2011). These results 
highlight the utility of the pharmacogenomic space learned by CaDRReS 
for capturing interpretable information related to drug mechanisms and 
pathways. 

3.3   Cell Line Subtypes in the Pharmacogenomic Space 
Clusters of cell-lines in the pharmacogenomic space should in-principle 
be tuned to capture drug-response similarities. However, not surprisingly 
we found that they also capture tissue type signatures, with cell-lines from 
the same tissue type showing significantly higher cosine similarity than 
cell-lines from different tissue types (Figure 4A, Supplementary figure 
7A), and also being visually distinct in t-SNE (Maaten and Hinton, 2008) 
2D space (Figure 4B, Supplementary figure 7B). Further segregation 
into histological subtypes was not always as clear (Supplementary figure 
7C), though most small cell lung carcinoma (SCLC) cell-lines were dis-
tinct from non-small cell lung carcinoma (NSCLC) cell-lines (except for 
NSCLC carcinoid cell-lines; Figure 4C). The placement of NSCLC car-
cinoid cell-lines with SCLC cell-lines is clearly reflected in their drug-
response profiles: e.g. while NSCLC cell-lines were typically sensitive to 
PD-0325901 (MEK inhibitor), carcinoid cell-lines were not (Supplemen-
tary figure 8). In addition, we found that cell-lines with KRAS mutations 
had significantly higher predicted PD-0325901 sensitivity (adjusted p-
value <1.4×10tx), and that KRAS mutations were common in NSCLC 
cell lines (~30%) but not seen often in SCLC or carcinoid cell-lines (~3%), 
in agreement with prior work on  KRAS mutations being activation bi-
omarkers for MEK inhibitors (Stinchcombe and Johnson, 2014). 

By leveraging pathway information, we observed that activity scores 
for the ERK pathway in NSCLC cell-lines (mean=1.52) were significantly 
higher than for SCLC cell-lines (mean=-3.24; p-value <1.3×10ty), and 
the activation of ERK pathway due to KRAS mutation could play a role 

in the increased sensitivity to MEK inhibitors (RAF-MEK-ERK pathway; 
Stinchcombe and Johnson, 2014). In contrast, cell-lines with RB1 muta-
tions had a significantly lower PD-0325901 sensitivity (adjusted p-value 
<7×10tx), and correspondingly RB1 mutations were more common in 
SCLC cell-lines (67%) than in NSCLC cell-lines (10%). These observa-
tions corroborate earlier work suggesting that mutations in the RB1 path-
way can inhibit the RAF-MEK-ERK pathway and thus induce resistance 
to MEK inhibitors (El-Naggar et al., 2009). Cell-line clusters determined 
by CaDRReS thus correlated well with mutation and pathway activation 
in explaining drug responses, and could serve to construct new testable 
hypotheses when such information is not known. 

3.4   Associations between Drugs and Pathways  
Associations between cancer drugs and key pathways can be identified in 
the pharmacogenomic space based on pathway activity scores, cell line 
vectors, and drug vectors (see Methods and Supplementary tables 3, 4). 
As expected, we observed that drugs targeting the same gene were fre-
quently associated with the same set of pathways (Figure 5A). For in-
stance, four EGFR inhibitors had IC50 values that were negatively corre-
lated with activation scores for the EGFR SMRTE pathway (assistant as-
sociation), consistent with a study showing that amplification of the EGFR 
gene is correlated with high response to anti-EGFR agents. (Normanno et 
al., 2006). Similarly, two RAF inhibitors showed assistant associations 
with the VEGF-Hypoxia-Angiogenesis pathway (VEGF), in agreement 
with previous studies showing that VEGF expression induced by Raf 
promotes angiogenesis, while RAF inhibitors can block the 
RAF/MEK/ERK pathway and inhibit tumor angiogenesis (McCubrey et 
al., 2007; Liu et al., 2006). 
 

 
Fig. 3.  Clustering of drugs on the pharmacogenomic space and its relation to mechanism-of-action. (A) Heatmap presenting average linkage hierarchical clustering of drugs based 

on cosine similarity on the pharmacogenomic space (CCLE). (B) Distribution of within- and between-group cosine similarities of drugs targeting MEK1 (GDSC) and BRAF (GDSC). (C) 

Representation of dimensions of the pharmacogenomic space capturing different drug mechanisms. For each target, the average vector of the corresponding drugs was calculated for EGFR, 

RAF, and MEK inhibitors (CCLE). 
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Fig. 4.  Subtypes of cell-lines on the pharmacogenomic space. (A) Kernel density plot showing distributions of cosine similarities between cell-lines of the same tissue type and of 

different tissue types (GDSC). (B) Visualization of GDSC cell-lines from top 5 most frequent tissue types using t-SNE. (C) Visualization of different subtypes of GDSC lung cancer cell 

lines using t-SNE. 

 
Fig. 5.  Drug-pathway associations identified on the pharmacogenomic space. (A) Drug-pathway associations based on CCLE data. For visualization, the top 40 pathways having 

highest associations across drugs (average absolute correlation) were selected. Negative and positive correlations between pathway activity and drug sensitivity scores are denoted as being 

“assistant” and “resistant” associations, respectively. (B) Assistant associations between L-685458 (gamma-secretase inhibitor) and IGF-1 MTOR pathway. (C) Assistant associations 

between Lapatinib (EGFR inhibitor) and EGFR SMRTE and HER2 pathways. 

 

We also observed resistant associations between the MTA3 pathway 
(MTA3) and multiple drugs such as L-685458 (gamma-secretase 
inhibitor) and PD-0332991 (CDK4/6 inhibitor), suggesting that the cell 
lines with inactivated MTA3 pathway tend to be sensitive to these drugs. 
In addition, the study of Fujita et al. showed that the absence of MTA3 
leads to invasive growth in breast cancer (Fujita et al., 2003). Taken 
together, these observations suggest that drugs having resistant association 
with MTA3 pathway might be effective when tumor growth is caused by 
the downregulation of the MTA3 pathway, although further work is 
needed to confirm this hypothesis.  

In terms of drug-pathway associations, we noted that the strongest as-
sistant association was observed between the drug L-685458 (gamma-

secretase inhibitor) and the IGF-1 MTOR pathway (Figure 5B). This ob-
servation is also borne out in studies reporting that gamma-secretase in-
hibitors can inactivate MTOR signaling pathway and consequently induce 
apoptosis (Shih and Wang, 2007). Interestingly, we observed a stronger 
association signal for predicted drug responses than observed drug re-
sponses, suggesting that CaDRReS may have an ability to reduce the noise 
observed in experimental drug response data. Stronger signals based on 
predicted drug responses were also observed for other known assistant 
associations, such as the one between Lapatinib (an EGFR inhibitor) and 
the EGFR SMRTE pathway (R=-0.440 vs -0.329) as well as the HER2 
pathway (R=-0.288 vs -0.242) (Figure 5C; Harari, 2004; Medina and 
Goodin, 2008). These results highlight the utility of predictions from 
CaDDReS for discovering pathway biomarkers for drug sensitivity. 
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Discussion 
Several drug response prediction models have been proposed in the liter-
ature, with a primary focus on predicting the response of different cell-
lines to a given drug. Correspondingly, the performance of these models 
was evaluated for each drug individually based on the correlation between 
the predicted and observed drug responses. However, while predicting 
cell-line response to each drug may provide insights into differential drug 
response mechanisms, the ability to rank drugs for unseen cell-lines/pa-
tients is likely to be more useful from a clinical perspective. Therefore in 
this work, besides evaluating response correlations for each drug, we eval-
uated the ability to correctly order drugs for a given cell-line using a pop-
ular weighted metric for rankings (NDCG). Under both these metrics of 
evaluation, CaDRReS consistently provided the best models and was also 
able to perform well on unseen datasets. 

In addition to its robust models, a useful feature of CaDRReS is the ease 
with which its models can be interpreted, an aspect that has not been given 
the attention it deserves in earlier studies. Models trained by CaDRReS 
provide a projection of cell-lines and drugs into a pharmacogenomic space 
which can be used to explore drug-drug, cell line-cell line, and drug-cell 
line relationships as shown in sections 3.2-3.4. This is in addition to the 
easy visualization and clustering analysis that this representation permits 
(e.g. Figure 3 or Figure 4). In contrast, while the ElasticNet model pro-
vides high concordance between observed and predicted cell line rankings, 
non-robustness in gene selection means that it may not be meaningful to 
biologically interpret the selected set of genes for a given drug. Similarly, 
while the cwKBMF model incorporates pathway information and can be 
used to infer the strength of drug-pathway associations, it does not provide 
directionality for these associations. CaDRReS models start off by being 
agnostic of pathways but by incorporating this information later, allow us 
to identify both strength and directionality of drug-pathway associations 
as highlighted in the results in Figure 5.  

Currently, drug response prediction models are trained on drug 
response data for cancer cell lines, but ignore the toxicity of drugs due to 
the unavailability of corresponding information using normal cells. This 
likely limits the practical utility of such models as drugs that elicit a strong 
response across cell lines may also have higher toxicity. Refined models 
that take into account drug toxicity could also find application in studying 
drug synergies using the pharmacogenomic space: the sum of drug vectors 
could be used to predict synergistic response, and thus enable the goal of 
reducing drug dosage to limit side-effects.  

An important limitation for the field of drug sensitivity prediction is 
that despite the presence of several publicly available cancer drug-screen-
ing datasets, the number of cell types and drugs in each dataset is still 
limited compared to the complexity of the models. Being able to merge 
information across multiple datasets could thus help construct more robust 
and general models. Experimental inconsistencies and noise across da-
tasets have so far, however, stymied efforts to work towards this goal 
(Haibe-Kains et al., 2013; Haverty et al., 2016). 

Although CaDRReS was among the top performing models for both 
cell-line and drug ordering in Figure 2, it still considered only gene ex-
pression of essential genes in its models. We suspect that integrating other 
types of omics data, such as mutations, in a meaningful manner can enrich 
information in the dataset and thus improve the predictive performance of 
corresponding models. Additionally, using information from gene 
interaction networks to capture relationships between genes could be 
another way to improve the performance and interpretability of this model 
in the future. 
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