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ABSTRACT Earlier research has suggested that Approximate Bayesian Computation (ABC) makes it possible to fit intractable
simulator-based stochastic birth-death models to investigate communicable disease outbreak dynamics and that the accuracy
of ABC inference can be comparable to that of exact Bayesian inference based on for example particle-filtering Markov Chain
Monte Carlo. However, recent findings have indicated that key parameters such as the reproductive number, R, may remain
poorly identifiable from data generated under an infinite alleles model. Here we show that the identifiability issue can be resolved
by taking into account disease-specific characteristics of the transmission process in closer detail in the birth-death model.
Using tuberculosis (TB) in the San Francisco Bay area as a case-study, we consider the situation where the genotype data are
generated as a mixture of two stochastic processes, each with their distinct dynamics and clear epidemiological interpretation.
ABC inference based on the ELFI software yields stable and accurate posterior inferences about outbreak dynamics from
aggregated annual case data with genotype information. We also show that under the proposed model the infectious population
size can be reliably inferred and that it is approximately two orders of magnitude smaller than considered in the previous ABC
studies focusing on the same data, which is much better aligned with epidemiological knowledge about active TB prevalence.
Similarly, the reproductive number R related to the primary underlying transmission process is estimated to be nearly three-fold
compared with the previous estimates, which has a substantial impact on the interpretation of the fitted outbreak model. Our
Python codes implementing the simulator model and the inference algorithm are freely available for further research and use at
GitHub.
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Introduction

Stochastic birth-death (SBD) processes are flexible models used
for numerous purposes, in particular for characterizing spread
of infections under the so called Susceptible-Infectious-Removed
(SIR) formulation of an epidemic process (Anderson and May
1992). Under circumstances where the outbreak dynamics are
such that daily, weekly or even monthly incidence counts are not
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available or applicable, estimation of key epidemiological quan-
tities, such as the reproductive number R, has to be based on
alternative sources of information and often on aggregate mea-
sures of clusteredness of cases. In contrast to standard outbreak
investigations relying on count data, likelihood-based inference
is considerably more challenging for other types of information,
such as genotype data from the observed infection cases.

There has been a considerable interest in fitting stochastic
birth-death models to tuberculosis (TB) outbreak data using Ap-
proximate Bayesian Computation (ABC) and later also in a com-
parison of ABC with exact Bayesian inference based on elaborate
Markov Chain Monte Carlo (MCMC) sampling schemes (Tanaka
et al. 2006), Stadler (2011), Aandahl et al. (2014). These investi-
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gations have considered TB outbreak data from San Francisco
Bay area originally collected by Small et al. (1994), who reported
results from extensive epidemiological linking of the cases, as
well as the corresponding classical IS6110 fingerprinting geno-
types. Such genetic data from the causative agent Mycobacterium
tuberculosis are natural to characterize using the infinite alleles
model (IAM), where each mutation is assumed to result in a
novel allele in the bacterial strain colonizing the host. When
lacking precise temporal information about the infection and the
onset of the active disease, the numbers and sizes of genotype
clusters can be used to infer the parameters of an SBD model
as shown by Tanaka et al. (2006), Stadler (2011), Aandahl et al.
(2014).

Lintusaari et al. (2016) raised the issue of non-identifiability of
R for the TB outbreak model, caused by a nearly flat approximate
likelihood over the parameter space. As shown by Lintusaari
et al. (2016), it would be possible to infer the infectious popula-
tion size provided that the reproductive number R and the death
(or recovery) rate were accurately known beforehand, or alterna-
tively any pair of these two parameters combined with either the
birth or net transmission rate, given the existing functional rela-
tionships between these quantities. In the earlier investigations
by Tanaka et al. (2006) it was concluded that a large infectious
population size n = 10000 was required for the SBD simula-
tor to produce similar levels of genetic diversity as observed
in the San Francisco Bay data. However, so large a population
of active TB disease cases is in stark contrast with the existing
epidemiological evidence (Small et al. 1994).

Here we introduce an alternative formulation of the SBD
model which resolves the identifiability issue and allows simul-
taneously for the estimation of the underlying infectious popu-
lation size. Our model incorporates epidemiological knowledge
about the TB infection and disease activation processes by as-
suming that the observed genotype data represent a mixture of
two birth-death processes, each with clearly distinct characteris-
tics. By comparing our ABC inferences for the model with the
epidemiological information available from Small et al. (1994),
it is seen that both the significantly reduced infectious popula-
tion size and the increased R for the main driver component
of the model make good sense and drastically change the inter-
pretation of the fitted model in comparison to the earlier ABC
studies.

In our new model we consider latent and active TB infec-
tions separately, as only the latter may lead to new transmission
events. Transmission clusters are formed by a recent infection
that rapidly progresses to an active TB and is spread further in
the host population. Due to the rapid onset, the fingerprint of
the pathogen remains the same in the transmission process and
the patients consequently form an epidemiological cluster. If,
on the other hand, the infection remains latent, the pathogen
will undergo mutations and hence alters its fingerprint over the
years (Small et al. 1994). Due to the rather modest requirements
for the available data, our SBD model is applicable to many
similar settings beyond the case study considered in this article.
Some useful features considered in other studies, such as the
drug resistance of different strains (Luciani et al. 2009), are not in-
cluded here since they would require more detailed information
than that available from the San Francisco Bay data set.

Materials and Methods

The SBD model for TB epidemic
Our model is based on the birth-death (BD) process where birth
events correspond to an appearance of a new case with an ac-
tive TB. A death event of a case corresponds to any event that
makes the host non-infectious, such as death, sufficient treat-
ment, quarantine or relocation away from the community under
investigation. As in the standard BD process, the events are
assumed to be independent of each other and to occur at spe-
cific rates. The time between two events is assumed to follow
the exponential distribution specified by the rate of occurrence,
causing the number of events to follow the Poisson distribution.
The time scale considered here is one calendar year.

Building upon the BD process the events carry some extra
information. At birth, a new case is assigned a label correspond-
ing to the cluster the case belongs to, which is defined by the
specific genetic fingerprint of the pathogen. The cluster index is
recorded when the case becomes observed. Below we explain
the model in more detail and notify differences to the model of
Tanaka et al. (2006).

First, we assume that observations are collected within a
given time interval that matches the observed data. In the case
of the San Francisco Bay data, the length of this interval is two
years (Small et al. 1994). The observations are collected from
the simulated process after a sufficient warm-up period, so that
the process can be expected to have reached stable properties
(exemplified in Figure 1). A patient becomes observed with
probability pobs when they cease to be infectious, i.e. when
they undergo a death event in the simulation. Here our model
makes a simplification by combining both being observed and
ceasing to be infectious under the death event. This is based on
the assumption that a typical patient is treated promptly after
being diagnosed. In contrast to the model of Tanaka et al. (2006),
there is then no separate observation sampling phase nor a prior
estimate for the underlying population size.

Second, a burden rate parameter β is introduced to reflect the
rate at which new active TB cases with an previously unseen fin-
gerprint of the pathogen appear in the community. This reflects
the reactivations of TB from the underlying latently infected
population and immigration. In the simulation process these
receive always a new cluster index that is not yet used as a label
for any earlier cases. Unlike Tanaka et al. (2006), mutations are
not explicitly modeled, but are assumed to occur during the
latent phase, which effectively removes links between patients
in different clusters. The transmission rate τ of an infectious
host then accounts for the outbreaks of TB, reflecting transmis-
sions that rapidly progress to clinical illness. In transmission,
the pathogen with a specific fingerprint is passed on (i.e. the
cluster index of the infectious host).

Third, separate transmission and death rate parameters, τ1
and δ1 respectively, are introduced for patients labeled as non-
compliant with therapy. As noted in Small et al. (1994), a signif-
icant factor behind the largest transmission clusters were non-
compliant patients, who may stay infectious for several months,
and often interact with people susceptible to rapid development
of active TB due to such conditions as homelessness, AIDS or
substance abuse. Typical patients who are compliant with the
therapy cease to be infectious relatively fast and do not in gen-
eral spread the disease as effectively before their diagnosis and
treatment. Meta-analysis of typical time delays before diagnosis
can be found from Sreeramareddy et al. (2009).

Considering the above, we assume that non-compliant cases

2 Lintusaari et al.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/215533doi: bioRxiv preprint 

https://doi.org/10.1101/215533


have a reproductive value R1 = τ1/δ1 > 1 whereas compliant
cases have a reproductive value R0 < 1. We further assume that
a new TB case is non-compliant with the therapy with probabil-
ity p0 = 0.05 (Small et al. 1994).

With the above assumptions, a subspace of parameter values
can be identified where the process is “stable”, meaning that
the population sizes do not increase without limit but fluctuate
around a certain level (Figure 1).

Statistical Analysis
The population sizes of the compliant and non-compliant sub-
populations without the clustering information can be modeled
as two interacting birth-death processes. The birth-rates are lin-
ear functions of the burden rate and the transmission rates of
the two populations at their respective sizes. Equation 1 shows
the linear equations for identifying population size values for
which the death and birth rates are equal.

Let τ0 and δ0 denote the transmission and death rates of a
single infectious case for the compliant population, and τ1 and
δ1 the equivalent rates for the non-compliant population. The
respective population size balance values b0 and b1 are obtained
by solving the following set of linear equations:

δ0b0 = p0(β + τ0b0 + τ1b1), (1)

δ1b1 = p1(β + τ0b0 + τ1b1),

where p0 is the probability of a new case being compliant
and p1 = (1− p0) non-compliant. The linear equations yield
the following solution

b1 =
p1βδ0

δ0δ1 − p0τ0δ1 − p1τ1δ0
(2)

b0 =
b1(δ1 − p1τ1)− p1β

p1τ0
.

An approximation of the mean number of observed cases per
year can then be defined as

n̂obs = pobs(δ0b0 + δ1b1). (3)

Figure 1 illustrates how the population sizes fluctuate near
their stable values after a sufficient warm-up period.

Priors are set over the burden rate β, reproductive numbers
R0 and R1, and the net transmission rate t1 = τ1 − δ1 of the
non-compliant population. For the compliant population the
death rate is fixed to an estimate δ0 = 5.95 (Sreeramareddy et al.
2009, the total delay estimate) that can be transformed to a net
transmission rate via t0 = δ0(R0 − 1). Based on the details in
Small et al. (1994) describing the San Francisco Bay data, the
probability of becoming observed was fixed to pobs = 0.8 and
the probability of a new case being non-compliant was set to
p1 = 0.05 and accordingly p0 = 0.95.

The burden rate β is given an informative prior that is able
to produce a sufficient number of clusters with respect to the
observed data. Specifically, we set

β ∼ N(200, 30). (4)

Given the solutions in Equations 2, the balance values b0 and
b1 exist when R1 < 1/p1 = 20 and R0 < (1− p1R1)/p0. The
reproductive values R1 and R0, and the net transmission rate t1
were assigned the uniform distributions

R1 ∼ Unif(1.01, 20), (5)

R0 ∼ Unif (0.01, (1− 0.05 · R1) /0.95) ,

t1 ∼ Unif(0.01, 30),

under the constraints

n̂obs < 350, (6)

τ1 < 40.

The above constraints were used to optimize the computation
given the observed data and checked to have a negligible effect
on the acquired estimates. Effectively, the values of R1 were
smaller than 15 due to the constraints. Figure S1 shows samples
drawn from the priors.

Approximate Bayesian Computation was used to carry out the
parameter inference due to the unavailability of the likelihood
function. The result is a sample from the approximate poste-
rior distribution p̃(R1, t1, R0, β | y0) (see e.g. Lintusaari et al.
2017). We used the Engine for Likelihood-Free Inference (ELFI)
software (Lintusaari et al. 2017b) to perform the inference. We
sampled 1000 parameter values with rejection sampling from a
total of 6M simulations. A visualization of the ELFI model used
can be found from Figure S2.

Summary statistics The summary statistics used in earlier ap-
proaches (see e.g. Tanaka et al. 2006; Lintusaari et al. 2016) are
not directly applicable to the proposed model. This is due to the
differences between the models that cause for example the num-
ber of observations in the sample to vary rather than being fixed.
However, the earlier summaries still provide a good starting
point for developing a more comprehensive set of summaries.

We found the following eight summary statistics to be in-
formative about the parameters. The first summary was the
number of observations. Five of the summaries were related to
the clustering structure: the total number of clusters, the relative
number of singleton clusters, the relative number of clusters of
size two, the size of the largest cluster and the mean of the suc-
cessive difference in size among the four largest clusters (Table
S1).

In addition we included two summaries from observation
times of the largest cluster. Observation times were not included
in the earlier approaches and proved to be useful in identifying
the net transmission rate t1. These were the number of months
from the first observation to the last and the number of months
when at least one observation was made. This data could be
extracted from Figure 2 in Small et al. (1994).

The distance function was the Euclidean distance between
the weighted summary statistics of the observed and simulated
data (Table S1). The weights were chosen to adjust and even
up differences in the magnitudes of the different summaries.
The inference is not very sensitive to the exact values of these
weights. The chosen values were found to perform well with
respect to the evaluation of the model. The resulting threshold
for the acquired sample was ε = 31.7 with the smallest distance
being 12.5.

Data Availability
The data are available in the article of Small et al. (1994). Fur-
thermore we have released the source code of the simulator and
the corresponding ELFI model in GitHub1. The code allows a
1 https://github.com/lintusj1/tb-model
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Figure 1 An illustration of simulated compliant and non-compliant populations as observed in the end of each year. The dashed
lines are the balance values. The population sizes fluctuate around them after the process has matured. Both populations have sur-
passed their balance value at least once after 22 years. The observation period is the green patch. The grey line shows the number of
observations that would have been collected within each year in the simulation. The number of observations from the observation
period together with the clustering structure of the observations are used in the inference of the epidemiological parameters.

replication of this study.

Results

Figure 2 shows a sample of 1000 values from the joint approx-
imate posterior distribution p̃(R1, t1, R0, β | y0). The pairwise
sample clouds seem reasonably concentrated and are away from
the edges of the axes and inside the support of the prior (com-
pare to the prior in Figure S1). The histograms and scatter plots
look rather normally shaped, the only minor exception being the
net transmission rate of the non-compliant population t1, that
has a slight tail towards high values. The posterior suggests that
the model is identifiable for the San Francisco dataset.

The posterior means, medians and 95% credible intervals are
given in Table 1. The means and medians are close to each other
supporting the above observation about normality. The t1 has
the largest discrepancy due to its small tail mentioned above.

Evaluating the model identifiability
To further evaluate the reliability of the acquired estimates,
we compute the mean and median absolute errors (MAE and
MdAE) of the mean, and the coverage property (Wegmann et
al, 2009), with 1000 synthetic observations from the posterior
with known parameter values. These results include the ABC
approximation error (see e.g Lintusaari et al. 2017) caused by the
summary statistics and the threshold of 31.7.

Table 2 lists the MAE and MdAE with the 95% error upper
percentile. These are useful in quantifying how much the esti-
mate deviates from the actual value on average. The burden rate
β and the reproductive value of the non-compliant population
R1 have the smallest relative MAEs, 4.0% and 14.9%, respectively.
The reproductive value R0 of the compliant population and the
net transmission rate t1 of the non-compliant population have
MAEs of 29.5% and 44.2%. The MAE of the latter seems rather
high. For instance the 95% error percentile (Table 2) indicates
that in 5% of the trials the error was large enough to push the
estimate of t1 with y0 (Table 1) out of its 95% credible interval

from both ends with some margin. Investigating the issue fur-
ther showed, that for some of the synthetic datasets, the t1 was
not identifiable, meaning that there was no clear mode visible
for it. Also R0 suffered slightly from the same issue. Because of
this the MdAE might be a more appropriate measure for iden-
tifiable datasets, as the median based estimate is not as much
influenced by the results of the non identifiable datasets in the
trials. Relative MdAE errors were 21.9% and 32.1% respectively.
Figure S3 in supplementary material visualizes the estimated
values against their actual values.

The coverage property (Wegmann et al. 2009) is used to assess
the reliability of the inference by checking whether the spreads
of the acquired posterior distributions are accurate. When this
is the case, for instance the 95% confidence (credible) intervals
with significance level α = .05 should exclude the true parameter
value in 5% of the trials. The estimated significance level values
were rather good and did not deviate much from the actual val-
ues (Figure 3). We however notice a bias to underestimate α for
all the other parameters except for t1. We also notice that the
relative errors decrease with increasing significance level α. This
is likely to be caused by the rather tight prior that was optimized
for computing the posterior given the observed data y0. With
synthetic data different from y0 and with small significance lev-
els the resulting wide confidence interval can not extend outside
the support of the tight prior and will artificially include the true
parameter values more often than expected. This effect lessens
with narrower confidence intervals (increasing α), that better fit
within the tight prior support. In addition, we notice that the
error decreases slowest with β which was the only parameter
with an informative prior.

Discussion

We have proposed a stochastic birth-death model extending
from several previous articles examining the use of simulator-
based inference for the spread of active TB within a community.
Outbreaks of TB are characterized by epidemiologically linked
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Figure 2 Posterior sample of size 1000 from the approximate posterior distribution p̃(R1, t1, R0, β | y0) plotted as a scatter matrix.
Compare to the prior in Figure S1.

Table 1 Posterior summaries

Parameter Mean Median 95% CIa

R1 5.88 5.79 (3.68, 8.16)

t1 6.74 6.25 (1.57, 12.9)

R0 0.09 0.09 (0.03, 0.15)

β 192 192 (170, 216)

a Credible interval is here the highest posterior density interval of the marginal posterior distribution.
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Table 2 Mean and Median Absolute Errors in 1000 trials with synthetic data from the posterior

Parameter MAE Relative MAEa MdAE Relative MdAE 95% percentileb

R1 0.85 14.9% 0.72 12.6% 2.00

t1 2.68 44.2% 1.98 32.1% 7.66

R0 0.024 29.5% 0.018 21.9% 0.07

β 7.6 4.0 % 6.1 3.1% 19.8

a As compared against the true value of the synthetic data.
b 95% of the errors were smaller than this value.
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Figure 3 Estimates for the significance level α at different lev-
els and the relative error of the estimates. The estimates are
computer using the 1000 trials with synthetic data from the
posterior. For the reference, the estimates for α = .05 were
(.030, .028, .020, .041) in the same order as in the legend.

clusters of patients with active TB that emerge within a relative
short time interval. The construction of the extended model
was motivated by several epidemiological observations made by
Small et al. (1994) concerning the San Francisco Bay transmission
cluster data. Each of the largest clusters were largely formed
by a non-compliant patient, of whom one apparently infected
29 additional patients. The earlier approach (Tanaka et al. 2006;
Aandahl et al. 2014) suffered from inability to reproduce these
large clusters with an appropriate level of heterogeneity in the
cluster sizes, without a prior assumption of a very large under-
lying infectious population size (in the order of 10000) (Tanaka
et al. 2006; Lintusaari et al. 2016). Based on epidemiological
knowledge about TB such a large infectious population size is
extremely unlikely to have existed in the study region during
the observation time interval.

Under our the new model, a prior estimate of the population
size is not needed. Instead we encode more directly available
epidemiological knowledge about the transmission process char-
acteristics in the BD model parameters. The proposed model
yields population size estimates for the currently infectious pa-
tients as a by-product of the inference for the other parameters.
For the San Francisco Bay data, the mean and median sizes were
48.4 and 48 for the compliant population and 13.5 and 11 for the
non-compliant population, respectively.

It should be noted here that being compliant or non-
compliant are thought to characterize the type of a host indi-
vidual and the model decides this at the time of the birth event.
In reality, the non-compliant cases are usually diagnosed (i.e.
observed) significantly earlier compared to when they cease to
be infectious, which implies that the simulator model deviates
from typical observation processes in this respect. However,
considering that this discrepancy applies in the analyzed TB
case study to only 5% of all the observed cases, we do not expect
any sizeable bias to arise from this assumption. Furthermore,
the summary statistics used do not consider exact death times
but rather just the span and the rate at which they occur.

In the proposed model, the reproductive numbers represent
the average number of infections that rapidly progress to active
TB, caused by a single already infectious case. This counting
therefore excludes infections remaining latent, which are instead
indirectly captured via the burden rate parameter β. We estimate
that the reproductive value of non-compliant patients is R1 =
5.88 with the 95% confidence interval (CI) (3.68, 8.16) (Table 1).
The estimate is nearly three-fold compared to the estimate of 2.10
in Aandahl et al. (2014) with the same data, but providing only
a single estimate for the whole infectious population without
considering differences between patient types. The reproductive
value of compliant cases is estimated to be 0.09 with a 95% CI
(0.03, 0.15).

6 Lintusaari et al.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2017. ; https://doi.org/10.1101/215533doi: bioRxiv preprint 

https://doi.org/10.1101/215533


The model identifiability was found to be satisfactory for
the San Francisco Bay dataset (Figure 2). The average error in
the estimate of R1 with the proposed method is evaluated to
be 14.9% (0.85 in absolute terms, Table 2). The same for R0 is
29.5% (0.024 absolute), although the median error (21.9%, 0.018
absolute) is probably a more reasonable value due to the reasons
discussed earlier. The coverage property analysis (Wegmann
et al. 2009) suggests that the confidence intervals provided by
the model are sensible.

As the IS6110 typing remains in epidemiological use despite
of advances in whole-genome sequencing of TB isolates, our
model could be used for investigations in particular in middle
and low income countries, where the TB burden is often also
highest. For example, the estimates for the epidemiological
parameters could be used to gain insight to the relative efficacy
of the control programs across multiple communities. Given
the apparent success by which the non-identifiability issue for R
and the assumption of a priori known infectious population size
were resolved by extending the SBD model by relevant and often
available epidemiological knowledge, it would be interesting
to generalize the approach in the future to other pathogens for
which the sampling process or other factors render the simulator-
based inference as the most promising estimation method.
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Figure S1 The scatter matrix of samples from the prior. The supports of the prior distributions are rather well defined with respect
to the acquired posterior (Figure 2) due to the use of analytical solutions in Equation 2 and earlier ABC trials (results not shown).
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Figure S2 The ELFI model used in computing the posterior as visualized by ELFI. The grey node named sim is the simulator. It
takes in the rate parameters that are transformed from the parameters of interest. The grey child nodes are summary statistics or
quantities from which the summary statics are computed from (not all of the summaries in Table S1 were available as individual
nodes but were computed in dist4 from obs_times and clusters). Some other side information was also collected, such as the total
simulated time and size of the compliant and non-compliant populations at the end of the simulation.
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Table S1 The summary statistics and their weights

Summary statistic Explanation Weight Value in the SF data y0

nobs Number of observations 1 473

nclusters Number of clusters 1 326

rc1 Relative number of singleton
clusters a

100/0.60 0.60

rc2 Relative number of clusters of
size 2

100/0.04 0.04

largest Size of the largest cluster 2 30

mean_largest_di f f Mean of the successive differ-
ence in size among the four
largest clusters

10 6.67

month_period Number of months from the
first observation to the last in
the largest cluster b

10 24

obs_months The number of months that
at least one observation was
made from the largest cluster

10 17

a rc1 = nc1/nobs where nc1 is the number of clusters of size 1. The value of rc2 is computed likewise.
b Observation times were available for the largest cluster in San Francisco data
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Figure S3 The estimates from the 1000 trials plotted against their true values. The black dashed line shows the 1:1 correspondence.
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