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ABSTRACT  

Motivation: Accurately clustering cell types from a mass of heterogeneous cells is a crucial 
first step for the analysis of single-cell RNA-seq (scRNA-Seq) data. Although several methods 
have been recently developed, they utilize different characteristics of data and yield varying 
results in terms of both the number of clusters and actual cluster assignments. 

Results: Here, we present SAFE-clustering, Single-cell Aggregated (From Ensemble) 
clustering, a flexible, accurate and robust method for clustering scRNA-Seq data. SAFE-
clustering takes as input, results from multiple clustering methods, to build one consensus 
solution. SAFE-clustering currently embeds four state-of-the-art methods, SC3, CIDR, Seurat 
and t-SNE + k-means; and ensembles solutions from these four methods using three 
hypergraph-based partitioning algorithms. Extensive assessment across 12 datasets with the 
number of clusters ranging from 3 to 14, and the number of single cells ranging from 49 to 
32,695 showcases the advantages of SAFE-clustering in terms of both cluster number (18.2 - 
58.1% reduction in absolute deviation to the truth) and cluster assignment (on average 36.0% 
improvement, and up to 18.5% over the best of the four methods, measured by adjusted rand 
index). Moreover, SAFE-clustering is computationally efficient to accommodate large datasets, 
taking <10 minutes to process 28,733 cells. 

Availability and implementation: SAFEclustering, including source codes and tutorial, is 
freely available at https://github.com/yycunc/SAFEclustering. 

Contact: yunli@med.unc.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 INTRODUCTION 

RNA sequencing (RNA-seq) has been widely used to study gene regulatory networks 
underlying the complex processes of cellular proliferation, differentiation and reprograming 
(Trapnell et al., 2014; Treutlein et al., 2014; Darmanis et al., 2015). However, for most genes, 
their expression levels are found to vary dramatically across cell types and in different 
individual cells (Tang et al., 2010; Buganim et al., 2012; Shalek et al., 2013). Therefore, bulk 
RNA-seq, measuring the average expression across many cells of different cell types, may 
mask the real functional capacities of each cell type (Trapnell et al., 2014). Comparatively, 
single-cell RNA sequencing (scRNA-Seq) enables researchers to investigate the cellular 
heterogeneity in gene expression profiles, as well as to determine cell types and predict cell 
fates, thus presenting enormous potential for cell biology and clinical applications (Treutlein 
et al., 2014; Kalisky and Quake, 2011; Arsenio et al., 2014; Jaitin et al., 2014; Mahata et al., 
2014; Grün et al., 2015; Jia et al., 2017). 

  Single-cell clustering provides intuitive identification and characterization of cell types from 
a mass of heterogeneous cells, which can itself be of interest (Rozenblatt-Rosen et al., 2017), 
and can be used as covariates in downstream differential expression analysis (Sun et al., 2017; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 6, 2018. ; https://doi.org/10.1101/215723doi: bioRxiv preprint 

https://doi.org/10.1101/215723
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Zhu et al., 2017). Because of the importance of clustering for scRNA-Seq data, recently, 
several algorithms have been developed, including t-Distributed Stochastic Neighbor 
Embedding algorithm (t-SNE) (Van der Maaten and Hinton, 2008) followed by k-means 
clustering (Grün et al., 2015; Shin et al., 2015), Seurat (Satija et al., 2015), DIMM-SC (Sun et 
al., 2017), SIMLR (Wang et al., 2017), SC3 (Kiselev et al., 2017), DendroSplit (Zhang et al., 
2018) and SCANPY (Wolf et al., 2018). However, none of the clustering algorithms is an apparent 
all-time winner across all datasets (Freytag et al., 2017). Discrepancies across methods occur 
both in the estimated number of clusters and in actual single-cell-level cluster assignment. 
These discrepancies are mainly due to the use of different characteristics of scRNA-Seq data 
by different methods, for example, different sets of genes used for downstream clustering from 
different choices of gene level filtering subsetting of gents, transformation and dimension 
reduction. Individual clustering methods may fail to reveal the true clustering behind a 
heterogeneous mass (of single cells in this case) when assumptions underlying the methods are 
violated. Therefore, it is highly challenging, if not impossible, to choose an optimal algorithm 
for clustering scRNA-Seq data when no prior knowledge on cell types and/or cell type specific 
expression signatures are given. 

  In the absence of one single optimal clustering method, cluster ensemble provides an elegant 
solution by combining results from multiple individual methods into one consensus result 
(Strehl and Ghosh, 2002; Ghosh and Acharya, 2011). Compared to individual solutions, 
ensemble methods exhibit two major advantages. First, ensemble improves clustering quality 
and robustness, as demonstrated in other contexts including analysis of cell signalling dynamics 
and protein folding (Kuepfer et al., 2007; Hubner et al., 2005). Second, ensemble methods 
enable model selection. For example, we and others (Lin et al., 2017; Kiselev et al., 2017; 
Freytag et al., 2017) observe, in certain datasets, dramatically different estimates for the 
number of clusters across individual solutions. It is hard to decide on one single solution 
without any external knowledge or constraints. Cluster ensemble is able to estimate an optimal 
number of clusters by quantifying the shared information between the final consensus solution 
and individual solutions (Ghosh and Acharya, 2011). Although the majority may not always 
be the most accurate in every case and for every cell, a consensus approach tends to outperform 
each individual method when the optimal method is not known in advance. However, to date, 
there is no published cluster ensemble approach across multiple types of clustering methods 
specifically designed for scRNA-Seq data. 

  To bridge the gap, we have developed SAFE-clustering, Single-cell Aggregated (From 
Ensemble) clustering, to provide more stable, robust and accurate clustering for scRNA-Seq 
data. In the current implementation, SAFE-clustering first performs independent clustering 
using four state-of-the-art methods, SC3, CIDR, Seurat and t-SNE + k-means, and then 
combines the four individual solutions into one consolidated solution using one of three 
hypergraph partitioning algorithms: hypergraph partitioning algorithm (HGPA), meta-
clustering algorithm (MCLA) and cluster-based similarity partitioning algorithm (CSPA) 
(Strehl and Ghosh, 2002). 
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2 MATERIALS AND METHODS 

2.1 Overview of SAFE-clustering 

Our SAFE-clustering leverages hypergraph partitioning methods to ensemble results from 
multiple individual clustering methods. The current SAFE-clustering implementation embeds 
four clustering methods: SC3, Seurat, t-SNE + k-means, and CIDR. Fig. 1 shows the overview 
of our SAFE-clustering method. 

 

 

Fig. 1. Overview of SAFE-clustering. Log-transformed expression matrix of scRNA-Seq data 
are first clustered using four state-of-the-art methods, SC3, CIDR, Seurat and t-SNE + k-means; 
and then individual solutions are combined using one of the three hypergraph-based 
partitioning algorithms: hypergraph partitioning algorithm (HGPA), meta-cluster algorithm 
(MCLA) and cluster-based similarity partitioning algorithm (CSPA) to produce consensus 
clustering. 

 

2.2 Expression matrix normalization 

SAFE-clustering takes an expression matrix as input, where each column represents one single 
cell and each row corresponds to one gene or transcript. To make the data well-suited for all 
four individual clustering methods, Fragments/Reads Per Kilobase per Million mapped reads 
(FPKM/RPKM) data are converted into Transcripts Per Million (TPM); and UMI counts are 
converted into Counts Per Million mapped reads (CPM). For CIDR, SC3 and t-SNE + k-means, 
the input expression matrix is log-transformed after adding ones (to avoid taking log of zeros). 

 

2.3 Clustering using four state-of-the-art methods 

CIDR. To deal with the dropout events in scRNA-seq data, CIDR first identifies dropout 
candidates from the expression matrix and performs implicitly imputation to mitigate the 
impact of lowly expressed genes (Lin et al., 2017). Then, dissimilarity matrix (Euclidean 
distance) is calculated between single cells using the imputed data. As CIDR performs principal 
coordinate analysis (PCoA) to reduce dimensionality, the number of principal coordinates 
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(PCo’s) identified, representing the estimated data dimensionality, heavily influences the final 
clustering results. Here, the number of PCo’s is determined by the internal nPC function, 
default choice in CIDR. Alternatively, users can visually decide on an ideal number of PCo’s 
by selecting a threshold at a clear elbow from plotting the proportions of variations explained 
by the PCo’s (also generated by the nPC function). With the selected PCo’s, single cells are 
hierarchically clustered into 𝑘"#$%&'()*  clusters, with 𝑘"#$%&'()*  estimated using the Calinski-
Harabasz Index (Caliński and Harabasz, 1974). 

SC3. SC3 adopts consensus clustering, and summarizes the probability of each pair of cells is 
from the same cluster (Kiselev et al., 2017). Quality control (QC) metrics are calculated on the 
input expression matrix to detect potentially problematic genes and/or single cells. Although 
gene-level filtering is recommended by SC3, for 9 out the 12 benchmarking datasets, all genes 
would be filtered out and clustering cannot be performed. Therefore, we set the gene filtering 
option to be “FALSE”. In order to speed up computation, we first use the Tracy-Widom method 
(Tracy and Widom, 1994; Patterson et al., 2006) to estimate the number of clusters, denoted 
by 𝑘"#$%&+', . With the estimated 𝑘"#$%&+', , matrices of Euclidean, Pearson and Spearman 
(dis)similarity metrics are calculated among single cells, followed by k-means clustering. 
Based on k-means results across the three different (dis)similarity matrices, a consensus matrix 
is computed using CSPA, followed by a hierarchical clustering to assign the single cells into 
𝑘"#$%&+', clusters. 

  For the two PBMC mixture datasets (both with >5,000 single cells), via SC3 default 
implementation, support vector machines (SVM) is employed to further speed up computation. 
Specifically, a subset of single cells is randomly selected to form the training dataset where a 
SVM model with a linear kernel is constructed, using the svm function in R-package e1071. 
The default minimum number of single cells to run SVM is set to be 5,000 (SC3 option 
svm_max, default = 5,000). The trained SVM is then used to predict the cluster labels of the 
remaining single cells. 

Seurat. Seurat embeds an unsupervised clustering algorithm, combining dimension reduction 
with graph-based partitioning methods. First, expression matrix is filtered to remove genes 
expressed in <3 single cells and single cells with <200 expressed genes. Then, the expression 
data of each single cell is scaled to a total of 10,000 molecules and log-transformed following 
the procedure described in Macosko et al. (2015) (Macosko et al., 2015). After that, undesired 
sources of variations are regressed out. Single cells with <200 expressed genes would be 
considered as “NA” in the final Seurat clustering results. Data dimensionality is reduced via 
principal component analysis (PCA) with the principal components (PCs) selected by the nPC 
function in the CIDR package. Graph-based clustering is carried out using the smart local 
moving algorithm (SLM) (Waltman and van Eck, 2013) with the resolution parameter set to 
be 0.9. For small datasets, Seurat has been reported not to work well (Waltman and van Eck, 
2013) and has a tendency to assign all single cells into one cluster when the resolution 
parameter is set to be 0.9. We therefore increase the resolution parameter from 0.9 to 1.2 when 
the number of single cells is less than 200. 
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t-SNE + k-means. t-SNE followed by k-means clustering is a popular method for single cell 
clustering, where high dimensional data are first reduced into a lower dimensional subspace by 
t-SNE algorithm and then the lower-dimensional data are clustered with k-means. Here, we use 
the Rtsne package with default parameters to reduce normalized expression data into three 
dimensions by default (Users can specify otherwise via option dims, detailed in 
Supplementary Results). However, when the number of input single cells is small, users may 
run into the problem that the default perplexity of 30 is too big, for example, for small datasets. 
Since t-SNE has been shown to be reasonably robust across perplexity values ranging from 5 
to 50 (Van der Maaten and Hinton, 2008), we set the perplexity to be 10 when the input data 
contain <200 single cells. More evaluations on the perplexity parameter are presented in 
Supplementary Results. 

  Results from k-means clustering can vary dramatically across different runs even with the 
same input data and same parameters because of random initial cluster centers. To mitigate this 
potentially highly stochastic behavior, we use the ADPclust R-package (Wang and Xu, 2015) 
to first estimate the centroids. ADPclust can also estimate the number of clusters. Therefore, in 
our SAFE-clustering implementation, we perform k-means clustering using the centroids and 
number of clusters estimated through ADPclust. 

 

2.4 Hypergraph Partitioning Cluster Ensemble Algorithms 

After obtaining clustering results from different individual methods, we perform cluster 
ensemble to provide a consensus clustering using one of the three hypergraph-based 
partitioning algorithms: HGPA, MCLA and CSPA, as described in Strehl and Ghosh (2002). 
Moreover, certain single cell(s) may be excluded from clustering by some individual clustering 
method(s) due to quality control filter(s) of the corresponding method(s). Ensemble approach 
can provide a consolidated assignment for these single cells by borrowing information from 
solutions of the other methods. 

  We start with transforming the output labels of each clustering method into a hypergraph. 
Briefly, for the 𝑗%.  clustering method, we use 𝑣01  (note subscript j is omitted for presentation 
brevity) to denote the 𝑖%. row of the hypergraph 𝐻4, which is the row vector for the cluster 
labels (coded as binary dummies or indicator functions) of the 𝑖%. single cell, where 

𝑣01 = 6
1, the	𝑖%.	cell	 ∈ 	the	𝑘4

%.	cluster
0, the	𝑖%.	cell	 ∉ 	the	𝑘4

%.	cluster
 

and 𝑘4 = 1, 2, … , 𝐾4, with 𝐾4 being the total number of clusters from the 𝑗%.  clustering method. 
Here, each column is a hyperedge, representing one particular cluster identified by that method. 
An overall hypergraph 𝐻 is constructed by combining individual hypergraphs (from individual 
methods). 

HGPA. HGPA directly partitions hypergraphs by cutting a minimal number of hyperedges. 
We adopt the approach described in Karypis et al. (1999), where the authors developed a fast 
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and efficient multilevel hypergraph partitioning algorithm through recursive bisection. 
Specifically, we perform a 𝑘-way hypergraph partitioning using the shmetis program in the 
hMETIS package v. 1.5 (Karypis et al., 1999) for a range of 𝑘  from 2 to maxK𝐾4L , 𝑗 =
1, 2, 3, and	4 for the four different individual clustering methods and  𝐾4 again for the total 
number of clusters from the 𝑗%.  method. The parameter UBfactor is set at 5, so that in any 
bisection, each of the two partitions contains 45 - 55% of the total number of vertices.  

MCLA. Unlike HGPA, MCLA starts with computing pairwise Jaccard similarities (𝑆R) among 
all the hyperedges. Specifically, for any two hyperedges ℎ$ and ℎT: 

𝑆R =
ℎ$ℎTU

ℎ$V + ℎTV − ℎ$ℎTU
 

where 𝑝 and 𝑞 = 1,… , ℎ, where ℎ is the total number of hyperedges, which equals to the sum 
of estimated cluster numbers from individual solutions. With the calculated similarity matrix, 
all the hyperedges are partitioned into 𝑘  meta-clusters using the gpmetis program in the 
hypergraph partitioning package METIS v. 5.1.0 (Karypis and Kumar, 1998).  

  An association index 𝐴𝐼(𝑀𝐶`0) is computed to represent the association between meta-cluster 
𝑐 and the 𝑖%. single cell, by averaging the vertices 𝑣`. of the corresponding hyperedges: 

𝐴𝐼(𝑀𝐶`0) =
1
𝐻`
c 𝑣`.

de
 

where	ℎ ∈ 𝐻` is the set of hyperedges assigned in meta-cluster 𝑐. Each single cell is assigned 
to the meta-cluster with the highest association index. However, some of the 𝑘 clusters may be 
empty due to no single cells having the highest association index with the cluster(s) (Strehl and 
Ghosh, 2002). Under that scenario, we will re-label the single cells into 𝑘′ clusters, where 𝑘′ 
is the number of non-empty clusters. 

CSPA. CSPA also starts with computing pairwise similarities. In contrast to MCLA, CSPA 
defines the similarity between two single cells to be 1 if they are always assigned to the same 
cluster, and 0 if they are never assigned to the same cluster. The 𝑛 × 𝑛 (where n is the number 
of single cells) similarity matrix 𝑆 can be simply constructed by 

𝑆 =
1
𝐽 𝐻𝐻

U  

where 𝐻 is the overall hypergraph, and	𝐽 is the total number of individual clustering methods, 
here J = 4. For CSPA, similar to MCLA, we also use the gpmetis program in the METIS v. 
5.1.0 package. 

  

2.5 Performance evaluation using Average Normalized Mutual Information (ANMI).  
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Since individual methods cluster the single cells into their own optimal number of clusters, we 
need to estimate an overall optimal cluster number 𝑘"#$%  using each of the three ensemble 
algorithms. For this purpose, we have implemented consensus clustering for a set of 𝑘i =
(2, 3,… , 𝐾i) , where 𝐾i = 𝑚𝑎𝑥K𝐾4L  and 𝑗 = 1, 2, 3	and	4  again for the four individual 
clustering methods, using each of the three algorithms. We evaluate the performance at each 
𝑘i by measuring the shared information between the inferred and true original cluster labels 
(i.e., mutual information) using the Normalized Mutual Information (NMI) metric, defined in 
Ghosh and Acharya (2011): 

𝑁𝑀𝐼K𝐿i, 𝐿4L 	= 	
∑ ∑

𝑛pq
𝑛 log t

𝑛pq
𝑛 uvw

qxy
vz
pxy − ∑ 𝑛p

𝑛 log t𝑛p𝑛 u − ∑
𝑛q
𝑛 log t

𝑛q
𝑛 u

vw
qxy

vz
pxy

{∑ 𝑛p
𝑛 log t𝑛p𝑛 u ∗ ∑

𝑛q
𝑛 log t

𝑛q
𝑛 u

vw
qxy

vz
pxy 	

								 

where 𝐿i and 𝐿4 are the labels from ensemble and from the 𝑗%.  method with 𝐾i and 𝐾4 clusters, 
respectively. 𝑛  is the total number of single cells; 𝑛q  denotes the number of single cells 
assigned to a specific cluster 𝑦  (𝑦 = 1, 2, . . , 𝐾4 ) by method 𝑗 ; similarly 𝑛p  denomtes the 
number of single cells assigned to cluster 𝑥 (𝑥 = 1, 2, . . , 𝐾i) via ensemble; and 𝑛pq represents 
the number of single cells shared between cluster 𝑦 (from the solution of the jth individual 
method) and cluster 𝑥 (from the ensemble solution). 

  We calculate Average Normalized Mutual Information (ANMI) (Strehl and Ghosh, 2002) 
between each consensus/ensemble solution and each solution from the individual methods. For 
a particular ensemble solution, the average ANMI across individual methods quantifies its 
similarity to the solutions from individual methods. The ensemble solution with the highest 
average ANMI value (again, average across four individual methods) is selected as the final 
cluster ensemble 𝐿"i&#$% with the estimated cluster number 𝑘"i&#$%: 

K𝐿"i&#$%, 𝑘"i&#$%L 	= 	argmax
�z,vz

∑ 𝑛4 ∗ 𝐴𝑁𝑀𝐼K𝐿i, 𝐿4L�
4xy

∑ 𝑛4�
4xy

 

where 𝑛4 is the total number of single cells clustered by individual method 𝑗; and 𝐾i is the 
number of clusters from an ensemble solution. Note this “average” is more precisely a weighted 
average rather than a plain average across individual methods unless all methods clustered the 
same number of single cells (e.g., without removing or failing to cluster any single cell(s), 𝑛4 =
𝑛 for all j’s). When users simultaneously employ multiple partitioning algorithms (note our 
default is one single algorithm), the optimal cluster ensemble is given by: 

K𝐿"i&#$%, 𝑘"i&#$%L = 	 argmax
�z,vz,�∈{����,����	���/��	����}

𝐴𝑁𝑀𝐼� 

 

2.6 Summary of SAFE-clustering 
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Run four individual clustering methods and get a 𝑌�×� matrix of cluster labels. n is the total 
number of single cells. 

Construct hypergraph 𝐻 = {𝐻y, 𝐻V, 𝐻,,𝐻�} 

For 𝑘=2 to 𝐾��p // 𝐾��p is either specified by user or is the maximum across the 4 individual 
methods 

          If MCLA == TRUE //Default partitioning method 

                           Do MCLA 

                                     Compute Jaccard similarity matrix 𝑆R�'  

                                     𝑘-way partitioning using gpmetis 

        Compute association index (𝑀𝐶`0) , 𝑐 = 1,… , 𝑘; 𝑖 = 1,… , 𝑛, and assign 
each single cell to the meta-cluster c with the largest AI metric 

        If there are empty clusters 

           Re-label into 𝑘′ non-empty meta-clusters 

                                     End 

   End 

            If HGPA == TRUE // If switched to TRUE by the user 

               Do HGPA  

                                     𝑘-way partitioning using shmetis 

                             End 

            If CSPA == TRUE // If switched to TRUE by the user 

             Do CSPA  

      Compute and normalized similarity matrix 𝑆 

      𝑘-way partitioning using gpmetis 

                             End 

            Calculate 𝐴𝑁𝑀𝐼 across ensemble algorithm(s) used 

            Return Consensus cluster labels 𝐿"i and 𝐴𝑁𝑀𝐼 

End 
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Return Optimal consensus result 𝐿"i&#$%  of 𝑘"i&#$%  clusters with the highest 𝐴𝑁𝑀𝐼  (across 
attempted k’s) 

 

2.7 Benchmarking datasets.  

For performance evaluation, we carried out clustering analysis on 12 benchmark scRNA-Seq 
datasets (Table 1) (Darmanis et al., 2015; Baron et al., 2016; Biase et al., 2014; Ting et al., 
2014; Yan et al., 2013; Zeisel et al., 2015; Zheng et al., 2017), using our SAFE-clustering and 
the four individual clustering methods. All these datasets have pre-defined gold/silver-standard 
(we call “true”) cell type information. We used default parameters for 10 out of the 12 datasets, 
with the two exceptions being the 2 PBMC mixture datasets (each with >28,000 single cells). 
For SC3, gene-level filtering option was turned on only in 3 out of the 12 datasets (Yan, Biase 
and Ting), because the remaining 7 datasets would each have zero genes surviving its quality 
filtering. For SC3 and t-SNE + k-means, all reported results are from random seed 123. 

 

Table 1 Major characteristics of the 12 benchmarking datasets, including organism origin, 
number of single cells, the numbers of true and estimated clusters by SAFE-clustering and four 
individual methods, as well as references.  

        #estimated clusters   

  organism #single 
cells 

#true 
cluster
s 

SC3 CIDR Seurat t-SNE + 
k-means 

SAFE-
clusterin
g 

Ref 

Baron_human1 Human 1,937 14 23 3 12 11 11 Baron et 
al., 2016 

Baron_human2 Human 1,724 14 23 9 10 6 5 Baron et 
al., 2016 

Baron_human3 Human 3,605 14 37 5 12 7 14 Baron et 
al., 2016 

Baron_human4 Human 1,303 14 19 3 9 4 8 Baron et 
al., 2016 

Baron_mouse1 Mouse 822 13 18 13 9 9 9 Baron et 
al., 2016 

Biase Mouse 49 3 3 5 3 3 4 Biase et 
al., 2014 

Darmanis Human 420 8 11 7 5 5 5 Darmanis 
et al., 
2015 

Ting Mouse 187 7 13 10 5 6 9 Ting et 
al., 2014 

Yan Human 90 7 5 5 3 3 3 Yan et 
al., 2013 

Zeisel Mouse 3,005 9 32 5 13 6 13 Zeisel et 
al., 2015 

simple case 
PBMC mixture 

Human 28,733 3 3 3 16 4 3 Zheng et 
al., 2017 

challenging case 
PBMC mixture 

Human 32,695 3 2 10 14 3 3 Zheng et 
al., 2017 

 

  Performance is measured by the similarity between the estimated cluster labels (𝐿�) and the 
true cluster labels (𝐿U) using the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985): 
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𝐴𝑅𝐼(𝐿�, 𝐿U) 	= 	
∑ t𝑛i%2 ui,% − �∑ t𝑛i2 ui ∑ t𝑛%2 u% � / t𝑛2u

1
2 �∑ t𝑛i2 ui + ∑ t𝑛%2 u% � − �∑ t𝑛i2 ui ∑ t𝑛%2 u% � / t𝑛2u

 

where 𝑛 is the total number of single cells; 𝑛i and 𝑛% are the number of single cells in estimated 
cluster 𝑒 and in true cluster 𝑡, respectively; and 𝑛i%  is the number of single cells shared by 
estimated cluster 𝑒 and true cluster 𝑡. ARI ranges from 0 to 1, where 1 means the estimated 
cluster is exactly same to the true cluster, while 0 means the two are completely different. 

  Computing time reported in this work is all from running on an iMac with 3.4 GHz Intel Core 
1.5, 32 GB 1600 MHz DDR3 of RAM and OS X 10.9.5 operating system. 

 

3 RESULTS 

3.1 Individual methods capture different characteristics of scRNA-Seq data. 

We observe relatively moderate similarity among solutions from individual ensemble methods 
(Fig. 2), consistent with findings from Freytag et al. (2017). These may reflect different 
methods capturing different aspects of information from the rather complex and high-
dimensional scRNA-Seq data, leading to different solutions, but no clear winner.    

 

 

Fig. 2. Similarity of solutions from individual clustering methods. (a) Zeisel dataset; (b) 
Baron_human3 dataset; (c) simple case PBMC mixture dataset; (d) challenging case PBMC 
mixture dataset. 
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3.2 Improving and running individual ensemble methods 

Seurat. Seurat provides a “resolution” parameter to alter the granularity of the clustering 
results. However, the default “resolution” (= 0.8) tends to result in no clustering for small 
datasets, as shown in the SC3 paper (Kiselev et al., 2017). To further evaluate the performance 
of Seurat on small datasets, we generated 100 subsets of samples from the Darmanis dataset, 
using stratified random sampling without replacement where each cell type was one stratum 
and single cells from each cell type were randomly selected according to the corresponding 
cell type proportion. Our sampling strategy resulted in 61 - 239 single cells from the eight cell 
types, across the 100 generated datasets. The resolution was set to 0.6, 0.9 and 1.2, respectively, 
following the instruction of Seurat. Due to non-determination from random sampling, the 
sampling process and the downstream clustering were repeated 100 times for each resolution. 
The performance of different resolution is quantified by ARI according to published clustering. 
When sample size ranges from 61 to 150, Seurat clustering with resolution = 1.2 performs 
significantly better than 0.6 and 0.9 (p < 0.05, Supplementary Fig. S1a), except for the case 
between resolution 0.9 and 1.2 in the subset of 120 cells (p = 0.124). Comparatively, only one 
cluster is identified in the subset of 61 cells when resolution = 0.6. When sample size increases 
to 210, resolution makes no difference.  

  When applying Seurat to the three small datasets, Biase (𝑛 = 49 single cells), Yan (𝑛 = 90) 
and Ting (𝑛 = 187), we used all three resolutions. Overall, Seurat performed better with 
resolution = 1.2 (Supplementary Fig. S1b), with the exception of Yan dataset, where 
clusterings with all the three resolutions are the same. For Biase dataset, Seurat cannot 
distinguish different cell types with resolution = 0.6, but ARI reaching to 1 when resolution 
increases to 1.2. 

tSNE + k-means. Results from t-SNE + k-means are stochastic rather than deterministic. To 
mitigate the fluctuations across runs, we used the ADPclust R-package (Wang and Xu, 2015) 
to first obtain clustering centroids. We compared the performance with and without this 
ADPclust centroid estimation step before k-means, on four datasets, Yan, Ting, Darmanis and 
Baron_human2. Expression matrix was log-transformed and dimensionality reduced using t-
SNE. For each clustering strategy, t-SNE was carried out 100 times. The number of clusters 
ranged from 2 to (𝑘  + 2), where 𝑘  is the maximum number of clusters, in term of the true 
and estimated numbers of clusters. As expected, ARI’s from the 100 datasets without ADPclust 
centroid estimation varied dramatically at most 𝑘’s attempted where k is the number of clusters 
fed to k-means (Supplementary Fig. S2). In contrast, with ADPclust centroid the estimation 
had much improved stability. 

SC3. For the two PBMC mixture datasets, SC3 estimated 588 and 586 clusters for the simple 
and challenging case, respectively, dramatically deviating from the truth (𝑘 = 3 for both two 
datasets). The k estimation method in SC3 has not been benchmarked and validated for large, 
shallowly sequenced datasets, and it is likely that the distribution of eigenvalues of the 
covariance matrix does not adhere to the assumed Tracy-Widom distribution (Tracy and 
Widom, 1994). However, clustering results of SC3 are not affected by this since 𝑘 estimation 
in SC3 is completely independent of the clustering algorithm (SC3 source codes on Dec 11, 
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2017; https://github.com/hemberg-
lab/SC3/blob/8478ff2c8f523f004d129aec56ae57ce6853bd12/R/CoreFunctions.R). We 
therefore performed PCA plot visualization (using plotPCA function of scater R-package) to 
narrow down a reasonable range of 𝑘. PCA plot suggested 3 distinct clusters for the simple 
case and 2 clusters for the challenging case (Supplementary Fig. S3). We therefore decided, 
for SC3, on 𝑘 = 3 for the simple case and 𝑘 = 2 for the challenging case. SC3 ARI for the 
simple case at our selected 𝑘 = 3 is 0.995 and for the challenging case at 𝑘 = 2	is 0.595. 

  Because of the issue revealed from the PBMC mixture datasets and because estimation of 
number of clusters can be separated from clustering per se, we ran SC3 for both datasets within 
a more reasonable range of 𝑘: from 2 to 7. Using the SC3 results from this range, we assessed 
the robustness of our SAFE-clustering method, holding all the other three individual methods 
constant. Supplementary Fig. S4 shows that ARI from SC3 fluctuates considerably (0.599 - 
0.995 and 0.596 - 0.768 for the simple and challenging case, respectively) when 𝑘 increases 
from 2 to 7. Comparatively, results from our SAFE-clustering are much more stable (ARI 
ranges from 0.852 to 0.995 for the simple case and from 0.582 to 0.694 for the challenging 
case, respectively). These results suggest that even with a non-optimal 𝑘  selected by one 
individual method, our SAFE-clustering ensemble method is able to generate robustly accurate 
results, because our ensemble method borrows information from the other contributing 
methods. Furthermore, SAFE-clustering correctly estimates the number of clusters (i.e., 3) for 
both the simple and the challenging case with SC3’s 𝑘 ranging from 2 to 7. 

 

3.3 Benchmarking of SAFE-clustering across 12 datasets 

We benchmarked SAFE-clustering together with its four embedded individual clustering 
methods on 12 published scRNA-Seq datasets, reflecting a wide spectrum of experimental 
technology, sequencing depth, tissue origin, number and heterogeneity of single cells examined 
(details are summarized in Table 1 and Supplementary Table 1). Among the 12 datasets, we 
examine two large peripheral blood mononuclear cells (PBMC) mixture datasets with >28,000 
single cells were constructed by mixing single-cell datasets of purified cell types generated by 
the 10× Genomics (Zheng et al., 2017) as described in Sun et al. (2017). Specifically, we 
created one dataset representing a “simple case” with 28,733 single cells from three distinct 
cell types: CD56+ natural killer cells, CD19+ B cells and CD4+/CD25+ regulatory T cells; and 
the other dataset representing a “challenging case” with 32,695 single cells from three highly 
similar cell types: CD8+/CD45RA+ naive cytotoxic T cells, CD4+/CD45RA+/CD25- naive T 
cells and CD4+/CD25+ regulatory T cells.  

  For the 12 datasets attempted, SAFE-clustering outperforms all the individual solutions in 
five datasets: Baron_human1, Baron_human3, Baron_mouse1, and the two PBMC mixture 
datasets (Fig. 3). Furthermore, SAFE-clustering performs better than at least two individual 
methods in six additional datasets (Biase, Yan, Darmanis, Zeisel, and Baron_human2 and 4) 
(Fig. 3). These results show that SAFE-clustering performs robustly well across various 
datasets. We also compared the estimated number of clusters and found that among individual 
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methods, CIDR performs the best (Fig. 4b); SC3 tends to overestimate the number of clusters 
(Fig. 4a), while t-SNE + k-means tends to underestimate (Fig. 4d). Our SAFE-clustering 
outperforms all individual solutions (Fig. 4e and f), quantified by the average absolution 
deviation from the true/gold-standard cluster numbers (𝐷¢ = y

�
∑ |𝑘" − 𝑘%|� , where m is the 

number of datasets (= 12 in our work); 𝑘" is the estimated number of clusters; and 𝑘% is the true 
(or predefined gold/silver standard) number of cell types. 

 

 

Fig. 3. Benchmarking of SAFE-clustering in 12 published datasets. Adjusted Rand Index (ARI) 
is employed to measure the similarity between inferred and true cluster labels. Detailed 
information of the 12 datasets can be found in Table 1 and Supplementary Table 1. 
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Fig. 4. Accuracy evaluation of the inferred number of clusters. (a-e) Correlations between 
inferred cluster numbers from SC3, CIDR, Seurat, t-SNE + k-means and SAFE-clustering, 
respectively, and the true cluster numbers, across the 12 benchmarking datasets. (f) Average 
deviations between the inferred and the true numbers of clusters, measured by 𝐷¢ =
y
�
∑ |𝑘" − 𝑘%|� , where the number of datasets 𝑚 equals to 12. 

 

  For the simple case PBMC mixture dataset, both CIDR and SC3 yielded 3 clusters with 
Adjusted Rand Index (ARI) of 0.827 and 0.995, respectively (Fig. 3). Seurat assigned the single 
cells into 16 clusters with an ARI of 0.239. Also, Seurat failed to generate clustering results for 
three (out of 28,733) single cells because of <200 expressed genes in these cells. For t-SNE + 
k-means, we applied t-SNE on the top 1,000 most variable genes to save computing time and 
memory usage (Supplementary Fig. 5), identifying three clusters with an ARI of 0.976. 
Combining the four individual solutions, SAFE-clustering generated the most accurate result 
with an ARI of 0.995 (Fig. 3 and Supplementary Fig. 6a). Moreover, all the three single cells 
not clustered by Seurat were correctly assigned into their corresponding clusters by SAFE-
clustering’s borrowing information from the remaining three individual solutions.  

  For the challenging case PBMC mixture dataset, none of the four individual methods 
performed well, because CD4+/CD45RA+/CD25- naive T cells are quite similar to 
CD4+/CD25+ regulatory T cells. SC3 generated the most accurate individual solution, 
identifying two clusters with an ARI of 0.595 (Fig. 3), followed by t-SNE + k-means (3 clusters 
and ARI = 0.405). Similar to the simple case, Seurat failed to generate clustering results for 28 
single cells with <200 expressed genes, and resulted in 13 clusters with an ARI of 0.264. SAFE-
clustering again outperformed all the four individual methods (Fig. 3 and Supplementary Fig. 
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6b), correctly identifying three clusters with an ARI = 0.612, and correctly clustering 23 out of 
the 28 single cells which were not clustered by Seurat. These results strongly suggest that 
SAFE-clustering can provide robust and high-quality clustering even under challenging 
scenarios. 

  Besides the four individual methods used in our package, we also compared our results with two 
additional widely-used clustering methods SIMLR (Wang et al., 2017) and RaceID (Grün et al., 2015), 
and the results showed that SAFE-clustering excels SIMLR in 8 out of 12 datasets, and outperforms 
than RaceID in 11 out of 12 datasets (Supplementary Fig. S7). To assess the extensibility of SAFE-
clustering to other scRNA-seq clustering methods, we incorporated one more individual method, 
SIMLR, into our SAFE-clustering and found that the ensemble solutions are similar to those from the 
original SAFE-clustering without the fifth SIMLR method (Supplementary Fig. S7). Our results 
suggest SAFE-clustering is robust also to the increasing number of employed individual methods. 

  Additionally, we evaluated the potential impacts of several factors: inclusion/exclusion of 
ribosomal protein genes, filtering on percentage of mitochondrial reads, dropout imputation 
and denoising of expression profiles, perplexity parameter for t-SNE, and number of t-SNE 
dimensions carried forward for k-means clustering. Details of the evaluation results are given 
in the Supplementary Results. 

  Overall, across the 12 datasets, SAFE-clustering on average improved ARI by 36.0% over the 
average of the individual methods, and up to 18.5% over the best individual method for each 
dataset. All codes for two example datasets are made available via an R markdown freely 
available at both https://github.com/yycunc/SAFEclustering   and 
https://yunliweb.its.unc.edu/safe/SAFEclustering_tutorial.html. 

 

3.4 Benchmarking of three hypergraph partitioning algorithms in SAFE-clustering 

SAFE-clustering has three hypergraph partitioning algorithms implemented. Among them, 
CSPA is computationally expensive for datasets with large number of single cells because 
computational complexity increases quadratically with the number of single cells (Punera and 
Ghosh, 2008). To assess the feasibility of the three algorithms on big datasets, we recorded the 
running time for the simple case of 28,733 cells. As the running time is insensitive to the 
number of clusters k, a 3-way partitioning (that is, k was set at 3, the true cluster number) was 
performed, running each of the algorithms 100 times. As expected, HGPA is ultrafast taking 
an average of 0.51 +/– 0.02 second per clustering (s/c), followed by MCLA, 8.26 +/– 1.54 s/c. 
CSPA is the slowest with ~576.64 +/– 0.74 s/c (Fig. 5a). Finally and importantly, we would 
like to note that computational costs of these ensemble algorithms are negligible (HGPA and 
MCLA) or low (CSPA), compared to the computing costs of individual clustering methods (2.5 
- 22 hours per clustering). 
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Fig. 5. Benchmark of the three hypergraph partitioning algorithms: HGPA, MCLA and CSPA. 
(a) Running time for 3-way partitioning of simple case PBMC mixture dataset with 28,733 
single cells using each of the three partitioning algorithms. Each algorithm was applied 100 
times. (b) Stability of HGPA from 100 runs using simple case PBMC mixture dataset with 
28,733 single cells. (c) Similarity between consensus clustering and individual solutions in 12 
benchmarking datasets, measured by Average Normalized Mutual Information (ANMI). (d) 
Performance of the three partitioning algorithms, measured by ARI, across the 12 
benchmarking datasets. 

 

  Among the three ensemble algorithms, MCLA and CSPA results are deterministic conditional 
on any specified random number generator (RNG) seed. HGPA, however, generates stochastic 
results even with a specified RNG seed. To evaluate the stability of HGPA’s clustering results, 
we performed HGPA partitioning 100 times on the simple case dataset and calculated both 
ANMI and ARI for each run. Fig. 5b shows that HGPA results, although relatively stable, vary 
slightly across different runs. Another consequence of HGPA’s stochasticity is that different 
numbers of cluster may be estimated. Therefore, SAFE-clustering by default runs HGPA 10 
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times, selects the run with the median ANMI value among the 10 runs, and outputs the 
corresponding consensus result. 

  To evaluate the performance of the three hypergraph partitioning algorithms, we performed 
ensemble clustering of the 12 datasets using each of them (namely HGPA, MCLA and CSPA) 
separately. Comparatively, MCLA is a clear winner: manifesting the highest ANMI in 11 out 
of the 12 benchmarking datasets (Fig. 5c); and exhibiting the highest ARI in 11 out of the 12 
datasets (Fig. 5d). For the single dataset (Baron_human3) where MCLA is not the best 
according to ANMI, its ANMI (0.658) is a close match of the best (0.662 from CSPA). In 
addition, in this Baron_human3 dataset, if gauged using ARI, MCLA again outperforms all 
other methods with ARI = 0.507 and the second best ARI = 0.215 from CSPA. For the Ting 
dataset where MCLA is not the best according to the ARI metric, it is the close match second 
best with ARI = 0.429, compared with the best (from CSPA) with ARI = 0.556 and 0.465 
respectively. These results suggest that MCLA provides more accurate consensus clustering 
than the other two algorithms. Therefore, SAFE-clustering uses MCLA as the default 
partitioning algorithm. These three partitioning algorithms vary in performance due to their 
inherently differences: although they all employ hyperedges and hypergraphs, they differ quite 
drastically in how (Karypis and Kumar, 1998; Karypis et al., 1999). Specifically, HGPA 
partitions the hypergraph by cutting a minimal number of hyperedges that creates k clusters of 
approximately equal size, which would not be optimal when cluster sizes vary substantially. 
CSPA starts with a similarity matrix computed from the hypergraph to perform partitioning, 
and MCLA first computes a pairwise Jaccard similarity matrix and collapses related 
hyperedges(clusters). 

 

4 DISCUSSION 

We present SAFE-clustering, an unsupervised ensemble method to provide fast, accurate and 
flexible clustering for scRNA-Seq data. Although there are a number of clustering methods 
developed for scRNA-Seq data in the recent literature, individual clustering methods differ in 
many aspects including data pre-processing, choice of distance metrics,  clustering method, 
and model selection to determine number of clusters, thus their performances tend to vary, 
sometimes rather dramatically, across datasets. There is no clear winner among the existing 
clustering methods. Our SAFE-clustering employs hypergraph portioning algorithms to build 
an ensemble solution based on multiple solutions from individual clustering methods, the first 
time ensemble has been leveraged across different types of methods for scRNA-Seq data. The 
leveraged information from all these individual methods enables our SAFE Ensemble method 
to reach robustly satisfactory performance across datasets. We have benchmarked SAFE-
clustering along with four individual clustering methods (SC3, CIDR, Seurat and t-SNE + k-
means) on 12 published scRNA-Seq datasets, which is the most comprehensive to date. Among 
the 12 datasets, SAFE-clustering outperforms all four individual solutions in five 
benchmarking datasets, and performs better than at least two individual methods in six datasets 
(Fig. 3). For the two PBMC mixture datasets with 28,733 and 32,695 single cells respectively, 
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SAFE-clustering accurately identifies the three cell types of ARI = 0.995 and 0.612 
respectively (Fig. 3 and Supplementary Fig. S6). Gauged by ARI, SAFE-clustering 
outperforms the most accurate existing method for each dataset by up to 18.5%, and on average 
by 36.0% over the average performance of the four state-of-the-art methods, across the 12 
datasets. Moreover, although care needs to be taken for interpreting these cluster number 
estimates (Supplementary results and Supplementary Fig. S8), SAFE-clustering provides 
the most accurate estimation on the number of cell types compared to the individual methods: 
SAFE-clustering’s average absolute deviation from true cluster numbers (3.58) is substantially 
smaller than that any of the four individual methods (average absolute deviation ranging from 
4.42 to 7.17) (Fig. 4f). These results suggest that SAFE-clustering produces more stable and 
accurate clustering across various datasets. We note that many pre-processing steps can also 
influence results noticeably and should be carried out with caution. We have made efforts to 
evaluate a number of them (Supplementary results) and add corresponding options to our 
SAFE-clustering package with default values. A complete evaluation of all possible 
preprocessing choices is beyond the scope of this work, if not impossible. Finally, SAFE-
clustering is computationally efficient, with the additional hypergraph partitioning of 
individual methods’ cluster assignments taking less than 10 seconds to cluster 28,733 cells, 
using the default MCLA algorithm (Fig. 5a). SAFE-clustering is scalable to even larger 
datasets; taking 5-22 minutes for datasets with 150,000 - 300,000 single cell for instance 
(Supplementary Fig. S9). We anticipate that SAFE-clustering will prove valuable for 
increasingly larger number of investigators working with scRNA-Seq data. 
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