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Abstract
Background. The ability of �nding complex associations in large omics datasets, assessing their signi�cance, and
prioritizing them according to their strength can be of great help in the data exploration phase. Mutual Information based
measures of association are particularly promising, in particular after the recent introduction of the TICe and MICeestimators, which combine computational e�ciency with good bias/variance properties. Despite that, a complete software
implementation of these two measures and of a statistical procedure to test the signi�cance of each association is still
missing. Findings. In this paper we present MICtools, a comprehensive and e�ective pipeline which combines TICe andMICe into a multi-step procedure that allows the identi�cation of relationships of various degrees of complexity. MICtoolscalculates their strength assessing statistical signi�cance using a permutation-based strategy. The performances of the
proposed approach are assessed by an extensive investigation in synthetic datasets and an example of a potential
application on a metagenomic dataset is also illustrated. Conclusions. We show that MICtools, combining TICe and MICe,is able to highlight associations that would not be captured by conventional strategies. MICtools is implemented in Python,
and is available for download at https://github.com/minepy/mictools.
Key words: Maximal information coe�cient; MIC; TIC; equitability; multiple testing; permutation test; power of statistical
signi�cance; false discovery rate; FDR

Introduction

With the growing popularity of high throughput quantitative
technologies it is now common to characterize living systems
by measuring thousands of variables over a wide range of con-
ditions. In these large datasets, the number of potential as-
sociations between variables is enormous. Computational and
statistical methods should be able to highlight the signi�cant
ones (striking a balance between �exibility and statistical ro-
bustness), and to prioritize the more relevant for downstream
analysis. Traditionally, the presence of a potential relationship
between two variables X and Y is assessed on the basis of a
certain measure of association, that is often able to reveal spe-
ci�c types of relationships, but is blind to others. Then, once
the measure is computed, its signi�cance is tested against the

null hypothesis of no association. For linear associations, the
Pearson correlation coe�cient is the natural choice, while the
Spearman’s rank coe�cient represents a more �exible alter-
native for general monotonic relationships. In the exploratory
analysis of datasets produced by modern -omics technologies
this conventional approach show its limits, because a huge
number of potential associations needs to be screened without
any a priori information on their form. In these cases, it would
be desirable to use a measure of dependence that ranks the re-
lationships according to their strength, regardless of the type
of association. A measure with this property has been de�ned
equitable [1] and a consistent mathematical framework for the
de�nition of equitability has been proposed [2, 3, 4, 5, 6]. The
second challenge faced in the unsupervised screening of large
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datasets is that the number of associations to be tested is usu-
ally huge and the statistical assessment of signi�cance has to
face well known multiplicity issues [7, 8].
Recently, a family of measures based on the concept of mu-

tual information has been proposed, and one of the most popu-
lar member of this family, theMaximal Information Coe�cient
(MIC), has been shown to satisfy the equitability requirement
[1]. Unfortunately, MIC su�ers of lack of power [9], and its
heuristic estimator, APPROX-MIC, is computationally demand-
ing [5]. These two drawbacks have severely hampered the ap-
plication of MIC to large datasets. In order to overcome these
limitations, two new MIC-based measures, the MICe— a con-
sistent estimator of theMIC population value (MIC*)— and the
related TICe (total information coe�cient) statistics have beenproposed [5]. Both quantities can be calculated more e�ciently
than APPROX-MIC and have better bias/variance properties [5].
In particular, TICe is characterized by high power, which hasbeen obtained at the expenses of equitability, while MICe per-forms better on this side, showing reduced performances in
terms of power. These two MIC-based measures, then, com-
pensate each other and their combination is extremely promis-
ing as data exploration tool. In particular, a two step proce-
dure can be applied, where TICe is used to perform e�ciently
a high throughput screening of all the possible pairwise rela-
tionships and assess their signi�cance, while MICe is used torank the subset of signi�cant associations in terms of strength
[5]. Despite the potential of this approach, an e�cient software
implementation of these two measures and of a statistical pro-
cedure to test the signi�cance of each association controlling
multiplicity issues is still lacking.
Here we present MICtools, an open-source and easy-to-use

software providing:
• an e�cient implementation of TICe and MICeestimators[10];
• a permutation-based strategy for estimating TICe empirical
p values;

• several methods for multiple testing correction, including
the Storey’s q value to control the false discovery rate (FDR);

• the MICe estimates for each association called signi�cant.

Methods

MICtools implements a multi-step procedure to identify rele-
vant associations amongst a large number of variables, assess
their statistical signi�cance and rank them according to the
strength of the relationship. Starting from M variable pairs xiand yi measured in n samples, the procedure can be broken into4 steps (Figure 1):
(i) estimating the empirical TICe null distribution by per-mutations;
(ii) computing TICe statistics and its empirical p values foreach variable pairs;
(iii) applying a multiple testing correction strategy in order
to control the family-wise error rate (FWER) or the FDR [11];
(iv) using MICe to estimate the strength of the relationshipscalled signi�cant.
The pipeline can be run as a sequence of subcommands imple-
mented into the main command mictools (Figure 1).

The empirical TICe null distribution

Since TICe depends only on the rank-order of the vectors xiand yi [1], the empirical null distribution can be estimated, fora given sample size and set of parameters, by performing R

Table 1. The default values of the α parameter vary according to thenumber of samples.
Number of samples n α parameter
n < 25 0.85
25 ≤ n < 50 0.80
50 ≤ n < 250 0.75
250 ≤ n < 500 0.70
500 ≤ n < 1000 0.65
1, 000 ≤ n < 2, 500 0.60
2, 500 ≤ n < 5, 000 0.55
5, 000 ≤ n < 10, 000 0.50
10, 000 ≤ n < 40, 000 0.45
n > 40, 000 0.40

permutations of the elements of the vectors yi and by calculat-ing the set of null TICe statistics t01 , . . . , t0R. Two parameterscontrol the estimation of the null distribution of TICe: the pa-rameter B controlling the maximal-allowed grid resolution and
the number of permutations R. In the current implementation,
B was set to the default value 9, which guarantees good perfor-
mances in terms of statistical power against independence in
most situations [12]. However, di�erent values of B can be cho-
sen: for example, B = 4 for less complex alternative hypothesis,
B = 12 for more complex associations [12]. With regards to the
number of permutations, instead, the results obtained on the
synthetic datasets (see Additional File 2, Figures A2 and A3 and
Additional File 1, Table A2) empirically indicate that 200,000
permutations represent a reasonable choice in most scenarios.

Computing the TICe and its associated empirical p val-
ues for each variable pair

The total information coe�cient is computed for each (non per-
muted) variable pair, obtaining a set of TICe values ti (with
i = {1, . . . ,M}). For each ti, the p value pi is estimated as thefraction of values of the empirical null distribution that exceeds
ti [13]:

pi = 1 + #{r: t
0
r ≥ ti, r = 1, . . . ,R}

1 + R

Multiple testing correction

Considering the large number of tests of independence per-
formed, it is necessary to correct the p values for multiplic-
ity. This can be done either by controlling the FWER or the
FDR. MICtools implements several state-of-the-art strategies
to accomplish this task. For all the examples presented here we
have used the Storey’s method for estimating the q values to
control the FDR [7]. Brie�y, setting a q-value cut-o� to 0.05,
we accept a FDR of at most 5%.

Computing the MICe on the signi�cant relationships

Finally, the strength of the associations that pass the signi�-
cance threshold is estimated using the MICe estimator. In thiscase, we de�ne the the B parameter as a function of the number
of samples n, B(n) = nα [1]. The default values are optimized
for equitability [6] and summarized in Table 1.
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Figure 1. The MICtools pipeline. Each step is implemented as a subcommand of the mictools main command. mictools null estimates the empirical TICe null
distribution of the M variable pairs (xi, yi). mictools pval computes the TICe values and estimates their p values (boxes withing the dashed line). The multiple
testing correction is performed by mictools adjust. Finally, mictools strength estimates the MICe value for the subset of signi�cant relationships. The color of
the boxes highlights the criterion used for parameter optimization.

Findings

Two synthetic datasets (SD1 and SD2) were created in order to
assess (i) the statistical power (or recall, i.e. the fraction of
non-independent relationships that were recovered at a given
signi�cance level) and (ii) the ability to control the FDR. The
analyses were performed varying the number of samples (SD1)
and the e�ect chance [14], i.e. the percentage of non indepen-
dent variable pairs (SD2). Both datasets contain a set of inde-
pendent variables and a �xed number of variable pairs X and
Y related by associations in the form Y = f(X) + η, where f(X)
is a function and η is a noise term. To characterize the perfor-
mances of MICtools in presence of associations that could not
be described by a function, a series of Madelon datasets [15, 16]
was also analyzed. Finally, the proposed pipeline was ap-
plied to the analysis of an environmental/metagenomic dataset
which has been recently made available within the Tara project,
a global-scale characterization of plankton using high through-
put metagenomic sequencing [17].

Synthetic datasets

The SD1 dataset contains 60,000 associations between variable
pairs X and Y. The e�ect chance was set to 1%. The relation-
ships between the 600 non-independent variable pairs were
randomly chosen among 6 di�erent types of functional associ-
ations, namely cubic, exponential (2x), line, parabola, sigmoid,
and spike (see Table S3 in [1]). The noise term η is a random
variable with uniform distribution in the range of f(X) mul-
tiplied by an intensity factor kη. Di�erent values of kη werechosen randomly among 18,000 values obtained joining the fol-
lowing three sequences: the �rst ranging from 0.05 to 1 (with
steps of 0.0001), the second ranging from 1 to 2 (with steps
of 0.0002), and the third ranging from 2 to 9 (with steps of
0.002). Using these values, the coe�cients of determination
(R2) between Y and the noiseless function f(X) ranges approxi-
mately from 0 to 1. The remaining 99% (59,400) associations
were de�ned with X and Y randomly generated from a uniform
distribution between 0 and 1. To characterize the e�ect of the
sample size, we created 20 replicates of SD1 for an increasing
number of samples (n ∈ {25, 50, 100, 250, 1,000}), for a total of
100 datasets. Considering that the fraction of true positive as-
sociations was known, this design of experiment allowed us to
quantify the statistical power and the performances in terms
of FDR of the proposed pipeline. The results for 2× 105 permu-
tations are summarized in Figure 2 and in the Additional File
1, Table A1. The dependence of the power and of the number
of false positives (FP) from the number of samples are shown
in Figure 2a and 2b. The power increases with the number of
samples reaching 75% for a sample size of 100. As expected,
considering that we used the Storey’s q value as a strategy to

control the FDR, also the number of false positive grows for
increasing sample size (Figure 2b) to keep the false discovery
rate constant (0.05 in this case). Figure 2c shows the observed
FDR, which is almost equal to the expected value of 0.05 for
all samples sizes. In Figure 2d we show the values of MICe asa function of the coe�cient of determination (R2) between Y
and the noiseless function f(X) for the associations that pass
the signi�cance �lter (i.e. associations with q values <0.05).
As expected, MICe and R2 were always linearly correlated, es-pecially for the larger sample sizes [5] (Figure 2d, upper panel).
Moreover, we found that, for small sample sizes, only relation-
ships with relatively high values of R2 passed the signi�cance
�lter. This e�ect decreases with increasing number of samples,
showing that the pipeline is able to identify relationships with
more noise, provided that a su�cient number of experimen-
tal points is available. This e�ect is clearly visible in Figure
2e, where we show the statistical power as a function of the
strength of the relationships for di�erent sample sizes. While
on less noisy associations (having R2 close to 1) the pipeline
shows high power also for smaller sample sizes, a high number
of samples is needed to attain high power for very noisy rela-
tionships (having R2 close to 0). Upon closer inspection, the
panel d in Figure 2 also shows that the power depends on the
form of the association. For instance, red points (correspond-
ing to cubic functional forms) are hardly visible for sample
sizes smaller than 100, while sigmoidal, linear and exponen-
tial relationships can be identi�ed for all sample sizes, albeit
with a power that depends on the amount of noise. This �nd-
ing can be easily interpreted considering that more complex
relationships (e.g. polynomials of higher order) are de�ned
by a higher number of parameters that makes them more dif-
�cult to distinguish from random associations if the number
of points is limited. A more clear representation of this phe-
nomenon is included in Additional File 2 (Figure A1). Moreover,
the downward bias in terms of equitability, especially for the
more complex relationships (Figure 2d and A1) is a result of the
core approximation algorithm EQUICHARCLUMP, which speeds
up the computation of MICe [18, 5]. The EQUICHARCLUMP pa-rameter c controls the coarseness of the discretization in the
grid search phase and by default it is set to 5, providing good
performance in most settings [12].
As already anticipated, SD1 was also used to investigate the

dependence of the performances of MICtools on the number of
independent permutations used to estimate the empirical null
distribution. Figure A2 and A3 (Additional File 2) shows the
FDR and the power as a function of the number of samples and
of the number of permutations. The plots indicate that for all
the combinations of the two parameters the measured FDR was
consistent with the expected value 0.05 (Additional File 2, Fig-
ure A2 and Additional File 1, Table A2) and that the true value is
always included in the shaded interquartile area. As expected,
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Figure 2. Analysis on SD1 dataset at the 0.05 signi�cance level. (a) Statistical power, (b) number of false positives (FP), and (c) false discovery rate (FDR) at varying
number of samples n. Each range represents the results of the 20 replicates. (d) MICe values and (e) statistical power at di�erent levels of R2, for increasing
number of samples (from 25 to 1,000, plots from left to right). Only signi�cant relationships, i.e. relationships with q < 0.05, are shown.

the variability is stronger for the smaller dataset (25 samples),
but also with such a small number of samples above 2 × 105
permutations the median measured FDR stabilizes around 0.05.
Figure A3a in the Additional File 2 shows the expected increase
of power with the number of samples, from 0.25 to almost 1.
The median values does not show a strong dependence on the
number of permutations. Figure A3b indicates that below 100
samples at least 2× 105 permutations are needed to obtain sta-
ble values of power, and that its variability is anyway larger for
small sample sets. All these evidences, however, support the
choice of 200,000 as a default value for the number of permu-
tations.

The dataset SD2 was generated to characterize how the ef-
fect chance, i.e. the fraction of non-random associations, af-
fected the performances of MICtools. Similarly to dataset SD1,
SD2 contains a subset of variable pairs X and Y related by asso-
ciations of the form Y = f(X)+η, where η was de�ned as in SD1.
The number of samples was �xed to n = 100 and the total num-
ber of associations was 60,000. For each e�ect chance value
(1%, 2%, 5%, 10%, 20% and 50%) we generated 20 indepen-
dent datasets, for a total of 120. The power, number of False
Positives (FP) and FDR as a function of the e�ect chance are
shown in Figure 3, panels a, b and c, respectively (see also Ad-
ditional File 1, Table A3). In Figure 3a, we can observe that the
statistical power grows with the e�ect chance, while the actual
FDR remains constant. In fact, an increase of e�ect chance cor-
responds to a decrease of the fraction of relationships for which
the null is true, π0 (e�ect chance = 1 – π0). Consequently, anincrease of the p-value threshold and therefore a growth of
power is expected in order to maintain the FDR cuto� constant
[7, 14].

The Madelon classi�cation dataset

The analysis of SD1 and SD2 datasets demonstrates that MIC-
tools is able to identify the relationships described by analytic
functions with additive noise. However, more general forms of
non-random associations are possible. Consider, for instance,
the presence of clusters that might indicate the presence of
subpopulations. To test the ability of MICtools to identify this
type of associations, we created 7 datasets with an increasing
number of samples n ∈ {50, 250, 500, 1,000, 2,500, 5,000}
with a structure similar to the Madelon binary classi�-
cation dataset [16, 15] (http://archive.ics.uci.edu/ml/
machine-learning-databases/madelon/Dataset.pdf) using the
datasets.make_classification() function available in the
scikit-learn library [19]. Each dataset contains 4 clusters (two
for each class), placed on the vertices of a �ve dimensional
four-sided hypercube. Each cluster was composed by normally
distributed points (σ = 1). The �ve dimensions de�ning the
hypercube constitutes the 5 “informative” features. Other 15
“redundant” features were generated as random linear combi-
nations of the informative features and added to the dataset.
Finally, 180 random variables without predictive power were
added, for a total of 200. In this type of setting, the number
of associations to be tested was 19900 = (200× 199)/2. Among
them, 190 are “real” (the relationships between the variables
belonging to the “informative” and “redundant”). Figure 4a
summarizes the results of the analysis. Panel (a) shows the
association called signi�cant (q-value cuto� set to 0.05) on a
Hive plot [20] as a functions of the number of samples. Each
branch of the Hives represents a type of variable (informative:
5 variables; redundant: 15; random: 180), the blue lines
identify true positives (associations between non-independent
variables correctly identi�ed), while false positives (incorrectly
identi�ed associations between independent variables) are
marked in red. This representation clearly shows that, as
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Figure 3. Analysis on SD2 dataset at the 0.05 signi�cance level. (a) Statistical power, (b) number of False positive (FP), and (c) False discovery rate (FDR) for
increasing e�ect chance. Each range represents 20 replicated datasets.
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Figure 4. Madelon dataset. (a) Hive plots of the detected association for in-
creasing number of samples. The variables are grouped as “informative” (5),
“redundant” (15), and “random” (180). True positives (associations between
non-independent variables passing the signi�cance test) are in blue; false pos-
itives (associations between independent variable passing the signi�cance test)
in red. (b) Number of false negatives (FN), i.e. number of non-independent
variable pairs which were not detected as signi�cant, and (c) false discovery
rate (FDR) as a function of the number of samples.

expected, the number of true positives increases with the
number of samples. A more quantitative representation of
the e�ect of the number of samples on the number of false
negatives (non-independent associations incorrectly rejected)
is shown in panel (b). Again, an increase in the number of
samples is bene�cial, because it reduces the number of false
negatives. The last panel (c) of Figure 4 shows the e�ect of n
on the FDR, which is always approximately constant and very
close to the theoretical value of 0.05.
On the bases of these results, we conclude that also with a

relatively low number of samples MICtools is able to identify
in an e�cient way non functional associations typical of clus-
ter structures. It is interesting to note that the associations
among the informative variables started to be recovered when

at least 250 samples were considered, while the associations be-
tween informative/redundant and redundant/redundant vari-
ables were signi�cant also for lower number of samples (50).
This apparently odd behavior is due to the di�erent nature
of the association among the variables. Binary associations
among informative variables are indeed characterized by the
presence of clusters, while redundant associations are con-
structed by linear combinations. In accordance to the results
discussed for SD1, the statistical power of the procedure de-
pends on the type of association and with a lower number of
samples the results are biased towards less complex association
patterns.

Identifying ecological niches: the Tara dataset

The Tara Oceans project is a large multinational e�ort for the
study of plankton at a global scale [17]. Within the project,
a large study of the microbiota of water samples from the
oceans characterized using metagenomic techniques has been
recently made available. To illustrate the added value of using
MICtools to analyze such large datasets, we downloaded the
annotated 16S mitags [21] OTU count table of 139 water sam-ples from http://ocean-microbiome.embl.de/companion.html, to-
gether with the accompanying metadata on temperature and
chemical composition [22]. MICtools was used to identify the
existence of signi�cant relationships between the environmen-
tal variables and the taxonomic composition of the microbiota.
The genus relative abundances, the environment variables and
the samples metadata are available in the Additional File 1, ta-
bles A4, A5 and A6 respectively. By using a q-value cuto�
of 0.01 we found signi�cant associations between the relative
abundances of 279 taxa with water temperature and of 287 taxa
with oxygen (Figure 5, panels b and c, respectively). To high-
light the novel information provided by MICtools, Spearman’s
rank correlation coe�cients and their associated p values were
also calculated as in [23] (the default for the cor.test() func-
tion in the R environment). By using the Spearman’s coe�-
cient alone we could identify a subset of the relations identi�ed
by MICtools, namey 194 taxa were associated with temperature
and 191 taxa were associated with oxygen concentration, re-
spectively. Conversely, almost all relationships identi�ed with
Spearman’s correlation were also identi�ed by MICtools. While
the Spearman’s coe�cient based approach identi�ed associa-
tions well described by monotonic functions (Figure 5e and 5f),
MICtools was able to highlight the presence of more complex
relationships between the taxa and the environmental param-
eters. As an example, we found a sharp increase of the Alcali-
genaceae genus at oxygen concentration of 200µmol kg–1 (Fig-
ure 5d) and a slow increase of the Sphingomonadaceae genus
as a function of the temperature. In both cases, highlighting
the samples on the bases of their speci�c aquatic layer of ref-
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erence it is possible to see that the complex aggregation pat-
terns identi�ed by MICtools are associated to speci�c ecologi-
cal niches. These results show the advantage of the use of the
proposed approach as an automatic screening tool in the data
exploration phase. The lists of the relationships identi�ed by
MICtools and by the Spearman-based procedure are available
in the Additional File 1, Tables A7 and A8, respectively.

Implementation details

MICtools is a Python-based open source software (licensed un-
der GPLv3). MICtools requires the minepy [10] (https://minepy.
readthedocs.io), Statsmodels [24] and the NumPy, SciPy, pan-
das and Matplotlib scienti�c libraries. MICtools can handle dif-
ferent types of experiments:
• given a single dataset X with variables and samples, MIC-
tools evaluates the M×(M–1)2 possible associations;

• given two datasets, X (of size M × n) and Y (of size K × n)
MICtools evaluates all the pairwise relationships between
the variables of the two datasets (for a total of M × K asso-
ciations).

• given two datasets, X (of size M × n) and Y (of size K ×
n) it evaluates all the row-wise relationships, i.e. only the
variables pairs xi and yi (for i = min(M,K)) will be tested;• moreover, for each experiment listed above, if the sample
classes are provided, the analysis will be performed within
each class independently.

For multiple testing correction MICtools makes available all
the strategies implemented in Statsmodels and a Python imple-
mentation of the Storey’s q-value method [7]. The indicative
number of relationships tested per second during the empiri-
cal null estimation (using the TICe) and the strength estima-tion (MICe) for an increasing number of samples are reportedin Additional File 2, Figure A3.
MICtools source and the documentation is available

at https://github.com/minepy/mictools. The Docker (https:
//www.docker.com/) image, containing MICtools and the
minepy library is available at https://hub.docker.com/r/minepy/
mictools/ and installable with the command docker pull
minepy/mictools.

Availability of source code and requirements

• Project name: MICtools
• Project home page: https://github.com/minepy/mictools
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: minepy, Statsmodels, NumPy, SciPy,
pandas, Matplotlib

• License: GNU GPLv3

Availability of supporting data and materials

The Tara dataset is available at http://ocean-microbiome.embl.
de/companion.html.
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