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Figure 2. Analysis on SD1 dataset at the 0.05 signi�cance level. (a) Statistical power, (b) number of false positives (FP), and (c) false discovery rate (FDR) at varying
number of samples n. Each range represents the results of the 20 replicates. (d) MICe values and (e) statistical power at di�erent levels of R2, for increasing
number of samples (from 25 to 1,000, plots from left to right). Only signi�cant relationships, i.e. relationships with q < 0.05, are shown.

the variability is stronger for the smaller dataset (25 samples),
but also with such a small number of samples above 2 × 105
permutations the median measured FDR stabilizes around 0.05.
Figure A3a in the Additional File 2 shows the expected increase
of power with the number of samples, from 0.25 to almost 1.
The median values does not show a strong dependence on the
number of permutations. Figure A3b indicates that below 100
samples at least 2× 105 permutations are needed to obtain sta-
ble values of power, and that its variability is anyway larger for
small sample sets. All these evidences, however, support the
choice of 200,000 as a default value for the number of permu-
tations.

The dataset SD2 was generated to characterize how the ef-
fect chance, i.e. the fraction of non-random associations, af-
fected the performances of MICtools. Similarly to dataset SD1,
SD2 contains a subset of variable pairs X and Y related by asso-
ciations of the form Y = f(X)+ �, where � was de�ned as in SD1.
The number of samples was �xed to n = 100 and the total num-
ber of associations was 60,000. For each e�ect chance value
(1%, 2%, 5%, 10%, 20% and 50%) we generated 20 indepen-
dent datasets, for a total of 120. The power, number of False
Positives (FP) and FDR as a function of the e�ect chance are
shown in Figure 3, panels a, b and c, respectively (see also Ad-
ditional File 1, Table A3). In Figure 3a, we can observe that the
statistical power grows with the e�ect chance, while the actual
FDR remains constant. In fact, an increase of e�ect chance cor-
responds to a decrease of the fraction of relationships for which
the null is true, � 0 (e�ect chance = 1 – � 0). Consequently, anincrease of the p-value threshold and therefore a growth of
power is expected in order to maintain the FDR cuto� constant
[7, 14].

The Madelon classi�cation dataset

The analysis of SD1 and SD2 datasets demonstrates that MIC-
tools is able to identify the relationships described by analytic
functions with additive noise. However, more general forms of
non-random associations are possible. Consider, for instance,
the presence of clusters that might indicate the presence of
subpopulations. To test the ability of MICtools to identify this
type of associations, we created 7 datasets with an increasing
number of samples n ∈ {50, 250, 500, 1,000, 2,500, 5,000}
with a structure similar to the Madelon binary classi�-
cation dataset [16, 15] (http://archive.ics.uci.edu/ml/
machine-learning-databases/madelon/Dataset.pdf) using the
datasets.make_classification() function available in the
scikit-learn library [19]. Each dataset contains 4 clusters (two
for each class), placed on the vertices of a �ve dimensional
four-sided hypercube. Each cluster was composed by normally
distributed points (� = 1). The �ve dimensions de�ning the
hypercube constitutes the 5 “informative” features. Other 15
“redundant” features were generated as random linear combi-
nations of the informative features and added to the dataset.
Finally, 180 random variables without predictive power were
added, for a total of 200. In this type of setting, the number
of associations to be tested was 19900 = (200× 199)/2. Among
them, 190 are “real” (the relationships between the variables
belonging to the “informative” and “redundant”). Figure 4a
summarizes the results of the analysis. Panel (a) shows the
association called signi�cant (q-value cuto� set to 0.05) on a
Hive plot [20] as a functions of the number of samples. Each
branch of the Hives represents a type of variable (informative:
5 variables; redundant: 15; random: 180), the blue lines
identify true positives (associations between non-independent
variables correctly identi�ed), while false positives (incorrectly
identi�ed associations between independent variables) are
marked in red. This representation clearly shows that, as
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Figure 3. Analysis on SD2 dataset at the 0.05 signi�cance level. (a) Statistical power, (b) number of False positive (FP), and (c) False discovery rate (FDR) for
increasing e�ect chance. Each range represents 20 replicated datasets.
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Figure 4. Madelon dataset. (a) Hive plots of the detected association for in-
creasing number of samples. The variables are grouped as “informative” (5),
“redundant” (15), and “random” (180). True positives (associations between
non-independent variables passing the signi�cance test) are in blue; false pos-
itives (associations between independent variable passing the signi�cance test)
in red. (b) Number of false negatives (FN), i.e. number of non-independent
variable pairs which were not detected as signi�cant, and (c) false discovery
rate (FDR) as a function of the number of samples.

expected, the number of true positives increases with the
number of samples. A more quantitative representation of
the e�ect of the number of samples on the number of false
negatives (non-independent associations incorrectly rejected)
is shown in panel (b). Again, an increase in the number of
samples is bene�cial, because it reduces the number of false
negatives. The last panel (c) of Figure 4 shows the e�ect of n
on the FDR, which is always approximately constant and very
close to the theoretical value of 0.05.
On the bases of these results, we conclude that also with a

relatively low number of samples MICtools is able to identify
in an e�cient way non functional associations typical of clus-
ter structures. It is interesting to note that the associations
among the informative variables started to be recovered when

at least 250 samples were considered, while the associations be-
tween informative/redundant and redundant/redundant vari-
ables were signi�cant also for lower number of samples (50).
This apparently odd behavior is due to the di�erent nature
of the association among the variables. Binary associations
among informative variables are indeed characterized by the
presence of clusters, while redundant associations are con-
structed by linear combinations. In accordance to the results
discussed for SD1, the statistical power of the procedure de-
pends on the type of association and with a lower number of
samples the results are biased towards less complex association
patterns.

Identifying ecological niches: the Tara dataset

The Tara Oceans project is a large multinational e�ort for the
study of plankton at a global scale [17]. Within the project,
a large study of the microbiota of water samples from the
oceans characterized using metagenomic techniques has been
recently made available. To illustrate the added value of using
MICtools to analyze such large datasets, we downloaded the
annotated 16S mitags [21] OTU count table of 139 water sam-ples from http://ocean-microbiome.embl.de/companion.html, to-
gether with the accompanying metadata on temperature and
chemical composition [22]. MICtools was used to identify the
existence of signi�cant relationships between the environmen-
tal variables and the taxonomic composition of the microbiota.
The genus relative abundances, the environment variables and
the samples metadata are available in the Additional File 1, ta-
bles A4, A5 and A6 respectively. By using a q-value cuto�
of 0.01 we found signi�cant associations between the relative
abundances of 279 taxa with water temperature and of 287 taxa
with oxygen (Figure 5, panels b and c, respectively). To high-
light the novel information provided by MICtools, Spearman’s
rank correlation coe�cients and their associated p values were
also calculated as in [23] (the default for the cor.test() func-
tion in the R environment). By using the Spearman’s coe�-
cient alone we could identify a subset of the relations identi�ed
by MICtools, namey 194 taxa were associated with temperature
and 191 taxa were associated with oxygen concentration, re-
spectively. Conversely, almost all relationships identi�ed with
Spearman’s correlation were also identi�ed by MICtools. While
the Spearman’s coe�cient based approach identi�ed associa-
tions well described by monotonic functions (Figure 5e and 5f),
MICtools was able to highlight the presence of more complex
relationships between the taxa and the environmental param-
eters. As an example, we found a sharp increase of the Alcali-
genaceae genus at oxygen concentration of 200µmol kg–1 (Fig-
ure 5d) and a slow increase of the Sphingomonadaceae genus
as a function of the temperature. In both cases, highlighting
the samples on the bases of their speci�c aquatic layer of ref-
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Figure 5. Tara dataset: venn diagrams of the signi�cant relationships between the genus-level relative abundances and two environmental variables, temperature
(b) and oxygen (c) identi�ed by MICtools and the Spearman-based procedure (q < 0.01). (a, d): the relationships between the OM43 clade and the temperature and
between the MWH-UniP1 aquatic group are detected only by MICtools. (e, f): two monotonic relationships identi�ed by both methods. Abbreviations: DCM, deep
chlorophyll maximum layer; MES, mesopelagic zone; MIX, subsurface epipelagic mixed layer; SRF, surface water layer.

erence it is possible to see that the complex aggregation pat-
terns identi�ed by MICtools are associated to speci�c ecologi-
cal niches. These results show the advantage of the use of the
proposed approach as an automatic screening tool in the data
exploration phase. The lists of the relationships identi�ed by
MICtools and by the Spearman-based procedure are available
in the Additional File 1, Tables A7 and A8, respectively.

Implementation details

MICtools is a Python-based open source software (licensed un-
der GPLv3). MICtools requires the minepy [10] (https://minepy.
readthedocs.io), Statsmodels [24] and the NumPy, SciPy, pan-
das and Matplotlib scienti�c libraries. MICtools can handle dif-
ferent types of experiments:
• given a single dataset X with variables and samples, MIC-
tools evaluates the M×(M–1)2 possible associations;

• given two datasets, X (of size M × n) and Y (of size K × n)
MICtools evaluates all the pairwise relationships between
the variables of the two datasets (for a total of M × K asso-
ciations).

• given two datasets, X (of size M × n) and Y (of size K ×
n) it evaluates all the row-wise relationships, i.e. only the
variables pairs xi and yi (for i = min(M,K)) will be tested;• moreover, for each experiment listed above, if the sample
classes are provided, the analysis will be performed within
each class independently.

For multiple testing correction MICtools makes available all
the strategies implemented in Statsmodels and a Python imple-
mentation of the Storey’s q-value method [7]. The indicative
number of relationships tested per second during the empiri-
cal null estimation (using the TICe) and the strength estima-tion (MICe) for an increasing number of samples are reportedin Additional File 2, Figure A3.
MICtools source and the documentation is available

at https://github.com/minepy/mictools. The Docker (https:
//www.docker.com/) image, containing MICtools and the
minepy library is available at https://hub.docker.com/r/minepy/
mictools/ and installable with the command docker pull
minepy/mictools.

Availability of source code and requirements

• Project name: MICtools
• Project home page: https://github.com/minepy/mictools
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: minepy, Statsmodels, NumPy, SciPy,
pandas, Matplotlib

• License: GNU GPLv3

Availability of supporting data and materials

The Tara dataset is available at http://ocean-microbiome.embl.
de/companion.html.
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