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SIGNIFICANCE STATEMENT 

Neuronal networks are highly dynamic structures: cellular morphology and synaptic strength is 

changing as information is processed and stored. This means that the demand for mitochondrial 

supply is changing in space and time in neurons. Since the architecture ultimately determines 

the output performance of these organelles, we hypothesized that the ultrastructure of axonal 

mitochondria could well be a major parameter of adjusting their performance to the actual 

energetic needs of the synapse. Our results – describing a cell-type independent and synapse-

specific correlation between mitochondrial ultrastructure, mitochondrial molecular fingerprints 

and synaptic performance – highlight the importance of activity-dependent ultrastructural 

plasticity of these organelles in neurons, and suggest an even more prominent role for 

mitochondria in neuroplasticity, than it was thought previously. 
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ABSTRACT 

Mitochondrial function in neurons is tightly linked with metabolic and signalling mechanisms 

that ultimately determine neuronal performance. The subcellular distribution of these organelles 

is dynamically regulated as they are directed to axonal release sites on demand, but whether 

mitochondrial internal ultrastructure and molecular properties would reflect the actual 

performance requirements in a synapse-specific manner, remains to be established. Here, we 

examined performance-determining ultrastructural features of presynaptic mitochondria in 

GABAergic and glutamatergic axons of mice and human. Using electron-tomography and 

super-resolution microscopy we found, that these features were coupled to synaptic strength: 

mitochondria in boutons with high synaptic activity exhibited an ultrastructure optimized for 

high rate metabolism and contained higher levels of the respiratory chain protein cytochrome-c 

than mitochondria in boutons with lower activity. The strong, cell-type independent correlation 

between mitochondrial ultrastructure, molecular fingerprints and synaptic performance suggests 

that changes in synaptic activity could trigger ultrastructural plasticity of presynaptic 

mitochondria, likely to adjust their performance to the actual metabolic demand. 

 

INTRODUCTION 

About one-tenth of total grey matter volume is occupied by mitochondria, the powerhouses 

of cells (Toussaint and Kugler, 1989). These organelles form a rapidly changing, dynamic 

network in neurons (Barnhart, 2016). As primary energy generators, precise regulation of 

mitochondrial performance is fundamental for proper functioning of the central nervous system 

(CNS), due to the exceptionally high ATP-consumption of neuronal tissue. Mitochondria are 

also key regulators of intracellular calcium levels (Gunter et al., 2000; Hall et al., 2012) and 

contribute to signalling processes, the regulation of cell proliferation, migration, neuronal 

morphology and cell viability (Chandel, 2014). Since the main energy consumer in the CNS is 

synaptic transmission (Harris et al., 2012), intact mitochondrial ATP-production – together with 

calcium-regulation – is crucial for proper synaptic function and neuroplasticity (Billups and 

Forsythe, 2002; Gazit et al., 2016; Smith et al., 2016; Verstreken et al., 2005). Furthermore, the 

availability of presynaptic mitochondria at axonal release sites directly influences synaptic 

function (Rangaraju et al., 2014; Smith et al., 2016; Sun et al., 2013). 

 In highly dynamic neuronal networks cellular morphology  and synaptic strength is 

changing in an activity dependent manner (Muller et al., 2002), resulting in altered neuronal 

demand for mitochondrial supply in space and time. Recent data also suggest that mitochondrial 

distribution within neurons is dynamically regulated to match the actual needs. In vitro studies 

confirmed, that motile mitochondria in dendrites as well as in axons are recruited and anchored 

to synapses whenever the local need for mitochondrial performance increases (Li et al., 2004; 

Sheng, 2014). It has also been shown in non-neuronal tissues that the inner ultrastructure of 

mitochondria determines their output performance. The surface area of crista-membrane (CM) 

in a given mitochondrial volume strongly correlates with mitochondrial oxygen consumption 

and cytochrome-oxidase activity (Else et al., 2004; Perkins et al., 2012, 2003; Sood et al., 2014). 

In addition to CM-density, the shape of cristae has also been shown to directly regulate 

mitochondrial performance output (Cogliati et al., 2013), and influence mitochondrial Ca2+-

dynamics (Mannella et al., 2013).  

Based on these data, we hypothesized that the ultrastructure of these organelles may be 

shaped to match the actual local needs in neurons. To test this idea with high-resolution imaging, 

we performed electron tomography and STORM super-resolution microscopy studies on mouse 
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brain tissues, combined with serial-section transmission electron microscopy studies on post-

mortem human tissue samples. We examined presynaptic mitochondria in GABAergic and 

glutamatergic axons of the hippocampal formation. We found that CM-density, crista 

lamellarity and cytochrome-c density was higher in presynaptic mitochondria of the highly 

active fast-spiking parvalbumin-positive (PV) basket cells than in the mitochondria of the slow 

firing type-1 cannabinoid receptor-positive (CB1R) basket cells, which are the well-

characterized archetypes of high-activity and low-activity interneurons, respectively. We also 

examined presynaptic mitochondria in the glutamatergic boutons of the perforant-path 

terminating zone in the dentate gyrus, and found a strong, cell-type independent correlation 

between mitochondrial volume, CM-density, crista lamellarity, cytochrome-c density and 

synaptic strength. The results from human post-mortem tissue also confirmed that this 

phenomenon is evolutionally conserved. Our data provide evidence for the logical assumption, 

that “stronger synapses use stronger mitochondria”, and point out the possibility of the activity-

dependent ultrastructural plasticity of these organelles. 

 

MATERIALS AND METHODS 

Samples and tissue preparation 

 All experimental procedures were in accordance with the guidelines set by the European 

Communities Council Directive (86/609 EEC) and the Hungarian Act of Animal Care and 

Experimentation (1998; XXVIII, section 243/1998), approved by the Animal Care and Use 

Committee of the IEM HAS. 6 male C57BL/6 (RRID:IMSR_JAX:000664) mice and 4 CB1R 

knockout (CB1R-KO, Zimmer et al., 1999) mice (30-42 days old) were anesthetized with 

inhalation of isoflurane, followed by intraperitoneal injection of 0.05-0.1 ml of an anaesthetic 

mixture (containing 8.3mg/ml ketamine, 1.7 mg/ml xylazin-hydrochloride, 0.8 mg/ml 

promethazinium-chloride). Transcardial perfusions were performed in three different ways, 

depending on the type of experiment that followed. Animals used for immunofluorescent 

reactions (2 WT and 2 CB1R-KO mice for confocal scanning laser microscopy and STORM 

super-resolution microscopy) were perfused with 0.9% NaCl solution for 1 minute, followed by 

4% freshly depolymerized paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB) pH 7.4 for 

40 minutes, and finally with 0.1 M PB for 10 minutes to wash the fixative out. For the 

immunogold reactions, we perfused other 2 WT and 2 CB1R-KO mice with saline for 1 minute, 

followed by 2% PFA and 1% glutar-aldehyde (GA) in 0.1 M Na-acetate buffer (pH=6) for 3 

minutes, and then 2% PFA plus 1% GA in 0.1 M Borax-buffer (pH 8.5) for 40 minutes. In this 

case, the fixative was not washed out, but brains were removed, and postfixed overnight in the 

same fixative at 4 °C. For the experiments without immunostaining, we perfused 2 WT animals 

with saline for 1 minute, followed by 2% PFA and 2% GA in 0.1 M Na-acetate buffer (pH=6) 

for 3 minutes, and then 2% PFA plus 2% GA in 0.1 M Borax-buffer (pH 8.5) for 60 minutes. In 

this case again, the fixative was not washed out, but brains were removed and postfixed 

overnight in the same fixative at 4 °C. Blocks containing the dorsal hippocampi were dissected 

and coronal sections were prepared on a vibratome (VT1200S, Leica, Germany) at 20 µm 

thickness for STORM experiments, 50 µm thickness for immunofluorescent experiments, and 

60 µm thickness for electron microscopy and electron tomography. Control human hippocampal 

tissue was obtained from one female (59-years-old) and one male (55-years-old) subject who 

died from causes not linked to brain diseases, and did not have a history of neurological 

disorders. The subjects were processed for autopsy in St. Borbála Hospital, Tatabánya, 

Department of Pathology. Informed consent was obtained for the use of brain tissue and for 

access to medical records for research purposes. Tissue was obtained and used in a manner 

compliant with the Declaration of Helsinki. All procedures were approved by the Regional and 
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Institutional Committee of Science and Research Ethics of Scientific Council of Health (ETT 

TUKEB 31443/2011/EKU (518/PI/11)). Brains were removed 4-5 h after death. The internal 

carotid and the vertebral arteries were cannulated, and the brain was perfused first with 

physiological saline (using a volume of 1.5 L in 30 min) containing heparin (5 ml), followed by 

a fixative solution containing 4% paraformaldehyde, 0.05% glutaraldehyde and 0.2% picric acid 

(vol/vol) in 0.1 M PB, pH 7.4 (4–5 L in 1.5–2 h). The hippocampus was removed from the brain 

after perfusion, and was postfixed overnight in the same fixative solution, except for 

glutaraldehyde, which was excluded. Blocks were dissected, and 60 µm thick sections were 

prepared on a vibratome (VT1200S, Leica, Germany). 

 

Primary antibodies  

To detect CB1Rs, we used either a goat polyclonal antibody or a rabbit polyclonal antibody 

(gifts from Prof. Ken Mackie). For the staining of parvalbumin (PV), we used a rabbit polyclonal 

antibody (PV27, Swant, RRID:AB_2631173). The specificity of this antibody was tested on 

PV-KO tissue (Swant). To label GABAergic boutons, we used a KO-verified guinea-pig anti-

vesicular GABA Transporter (vGAT) antibody (131004, Synaptic Systems, 

RRID:AB_887873). To visualize cytochrome-c (CytC), we used a mouse monoclonal antibody 

(clone 6H2.B4, 612302, Biolegend, RRID:AB_315775). The specificity of this antibody has 

been previously tested and described (Gulyás et al., 2006). To detect TOM20, we used a rabbit 

polyclonal antibody (Santa Cruz Biotechnology, cat. no. s-11415, RRID:AB_2207533, Barna 

et al., 2016). To label glutamatergic presynaptic boutons, we used a polyclonal guinea-pig 

antibody, raised against a synthetic peptide from rat vGluT1 (VG1), which peptide does not 

overlap with the sequence of vGluT2; (Millipore, AB5905, RRID:AB_2301751). The 

specificity of this antibody has also been described, and it gave identical staining with a well-

characterized rabbit anti- VG1 antibody (Melone et al., 2005). A rabbit polyclonal antibody 

(Synaptic Systems, 160003, RRID:AB_887730), raised against the 1-186 amino-acid residues 

of Homer1 was used to label the postsynaptic density of glutamatergic synapses. This antibody 

stains selectively the postsynaptic density of glutamatergic synapses (Andreska et al., 2014). 

 All antibodies gave the previously described and thus expected staining patterns for their 

respective epitopes. For further control of our stainings, we extensively tested the possible cross-

reactivity of the fluorescent secondary antibodies used in multiple labeling experiments. No 

cross-reactivity was found in any of the cases. Selective labeling, resembling that obtained with 

the specific antibodies, could not be detected if primary antibodies were omitted. 

 

Immunofluorescent labeling and confocal laser-scanning microscopy 

 Before the immunofluorescent staining, the 50 µm thick sections were washed in PB 

and Tris-buffered saline (TBS, 0,05 M Tris, 0,9% NaCl, pH=7.4). This was followed by 

blocking for 1 hour in 1% human serum albumin (HSA) and 0.1% Triton X-100 dissolved in 

TBS. After this, sections were incubated in mixtures of primary antibodies 1.) rabbit and goat 

anti-CB1R, both diluted in TBS 1:500; or 2.) rabbit anti-parvalbumin, 1:2000; goat anti-CB1R, 

1:500; and guinea-pig anti-vGAT, 1:2000; overnight at room temperature. After incubation, 

sections were washed in TBS, and sections were incubated overnight at 4 °C in the mixture of 

1.) Alexa488 conjugated donkey-anti-rabbit, (1:500, Life Technologies) and Alexa594 

conjugated donkey-anti-goat (1:500, Invitrogen) antibodies; or 2.) Alexa488 conjugated 

donkey-anti-rabbit, (1:500, Life Technologies), Alexa594 conjugated donkey-anti-goat (1:500, 

Invitrogen) and Alexa647 conjugated donkey-anti-guinea-pig, (1:500, Jackson Immuno 

Research), all diluted in TBS. Secondary antibody incubation was followed by washes in TBS, 

PB, and the sections were treated with DAPI for 1.5 hours (1:10000, in PB). Finally, we washed 

the sections, mounted them onto glass slides, and coverslipped with Aqua-Poly/Mount 
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(Polysciences). Immunofluorescence was analyzed using a Nikon Eclipse Ti-E inverted 

microscope (Nikon Instruments Europe B.V., Amsterdam, The Netherlands), with a CFI Plan 

Apochromat VC 60XH oil immersion objective (numerical aperture: 1.4) and an A1R laser 

confocal system. We used 405, 488, 561 and 642 nm lasers (CVI Melles Griot), and scanning 

was done in line serial mode. Image stacks were obtained with NIS-Elements AR software, and 

deconvolved using Huygens Professional software (www.svi.nl). 

 

STORM super-resolution microscopy 

 Before the immunofluorescent staining for the super-resolution experiments, the 20 µm 

thick sections were washed in PB and TBS. This was followed by blocking for 1 hour in 1% 

HSA dissolved in TBS. After this, sections were incubated in mixtures of primary antibodies 

1.) goat anti-CB1R, 1:500; rabbit anti-PV, 1:2000; and mouse anti-CytC, 1:3000; 2.) rabbit anti-

TOM20, 1:500 and mouse anti-CytC, 1:3000; or 3.) guinea-pig anti-VG1, 1:5000; rabbit anti-

Homer1, 1:2000 and mouse anti-CytC, 1:3000; overnight at room temperature. After incubation, 

sections were washed in TBS, and sections were incubated overnight at 4 °C in the mixtures of 

secondary antibodies 1.) DyLight405 conjugated donkey-anti-goat, (1:500, Jackson), Alexa488 

conjugated donkey-anti-rabbit, (1:500, Life Technologies), and Alexa647 conjugated donkey-

anti-mouse, (1:500, Jackson); CF568 conjugated donkey-anti-rabbit (1:500, Jackson) and A647 

conjugated donkey-anti-mouse (1:500, Jackson); or 3.) DyLight405 conjugated donkey-anti-

guinea-pig, (1:500, Jackson), Alexa488 conjugated donkey-anti-rabbit, (1:500, Life 

Technologies) and Alexa647 conjugated donkey-anti-mouse, (1:500, Jackson). Secondary 

antibody incubation was followed by washes in TBS, PB, and hippocampi were cut out with 

scalpels under buffer, sections were dried on clean coverslips, and stored for maximum 3 weeks 

at room temperature in a dry environment before imaging. Imaging medium was mixed from 80 

μl DPBS, 10 μl MEA solution, 10 μl 50% glucose solution, and 1 μl GLOX solution. Coverslips 

with the dried sections were mounted onto microscope slides with 25 μl of freshly prepared 

imaging medium, and sealed with nail-polish. 3D direct-STORM (dSTORM) acquisition 

protocol was used as described before (Barna et al., 2016). The imaging setup was built around 

a Nikon Ti-E inverted microscope equipped with a Perfect Focus System, with an Andor iXon 

Ultra 897 EMCCD camera, a C2 confocal head, 405, and 488 nm lasers (Melles Griot 

56RCS/S2780, Coherent Sapphire), and a high power 647 nm laser (300 mW, MPB 

Communications VFL-P-300-647). A high NA 100x oil immersion objective (Nikon CFI SR 

Apochromat TIRF 100x oil, 1.49 NA) was used for imaging. Emitted light was let through a 

670/760 nm bandpass filter to reach the detector. We used the NIS-Elements AR 4.3 with N-

STORM 3.4 software for acquisition and analysis. After selecting the region of interest, confocal 

image stacks were acquired containing 10 focal planes with 80 x 80 x 150 nm voxel size in x, y 

and z, respectively. This was followed by bleaching the fluorophores in the STORM channels 

(561 and 647) with high intensity laser illumination, and running dSTORM acquisition using 

oblique (near-TIRF) illumination. Acquisition in the two channels was done in sequential mode. 

Confocal stacks were deconvolved (Huygens Professional), and – together with the STORM 

molecule lists – processed for further analysis in VividSTORM software (see „Analysis”). 

Imaging was performed with identical parameters (depth in the section, laser intensities, etc.) 

for all samples. 

 

Pre-embedding immunoelectron-microscopy 

 For the immunogold-labeling of CB1Rs, sections were washed in PB, treated with 0.5% 

sodium-borohydride for 13 minutes, and further washed in PB and TBS. After this, we incubated 

the sections in 1% HSA diluted in TBS. Then the sections were incubated for 48 hours in rabbit 

anti-CB1R primary antibody diluted in TBS (1:500). After repeated washes in TBS, sections 
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were treated with blocking solution (Gel-BS) containing 0.5% cold water fish skin gelatin 

(Aurion, Netherlands) and 0.5% HSA in TBS for 1 h. This was followed by 24 h incubation in 

1.4 nm gold conjugated goat anti-rabbit Fab-fragment (1:200, NanoProbes) diluted in Gel-BS. 

After intensive washes in TBS and 0.1 M PB sections were treated with 2% glutar-aldehyde in 

0.1 M PB for 15 minutes to fix the gold particles into the tissue. This was followed by further 

washes in 0.1 M PB and enhancement conditioning solution (ECS, Aurion), gold particles were 

intensified using the silver enhancement solution (SE-EM, Aurion) for 40-60 minutes at room 

temperature. After subsequent washes, sections were treated with 0.5 % osmium-tetroxide in 

PB for 20 minutes on ice. Then sections were dehydrated in ascending ethanol series and 

acetonitrile, and embedded in epoxy resin (Durcupan, ACM, Fluka, Buchs, Switzerland). 

During dehydration sections were treated with 1% uranyl-acetate in 70% ethanol for 20 minutes. 

After polymerization, 60 or 200 nm thick sections were cut using a Leica EM UC6 

ultramicrotome (Nussloch, Germany), and picked up on formvar-coated single-slot copper 

grids. 60 nm thick sections were examined using a Hitachi H-7100 electron microscope (Tokyo, 

Japan) and a side-mounted Veleta CCD camera (Olympus Soft Imaging Solutions), while 200 

nm thick sections were used for electron tomographic examinations. 

 

Serial-section electron-microscopy of human samples 

 After washing the 60 µm thick sections in 0.1 M PB, sections were treated with 0.5 % 

osmium-tetroxide in PB for 20 minutes on ice. Then sections were dehydrated in ascending 

ethanol series and acetonitrile, and embedded in epoxy resin (Durcupan, ACM, Fluka, Buchs, 

Switzerland). During dehydration sections were treated with 1% uranyl-acetate in 70% ethanol 

for 20 minutes. After polymerization, 60 or 200 nm thick sections were cut using a Leica EM 

UC6 ultramicrotome (Nussloch, Germany), and picked up on formvar-coated single-slot copper 

grids. 60 nm thick sections were examined using a Hitachi H-7100 electron microscope (Tokyo, 

Japan) and a side-mounted Veleta CCD camera (Olympus Soft Imaging Solutions). Serial 

sections were examined, and mitochondria-containing glutamatergic boutons establishing 

asymmetric synapses were collected in the CA1 area, and reconstructed from long, serial 

sections. Measurement of synaptic areas and mitochondrial volumes were performed with 

Fiji/ImageJ software. 

 

Electron tomography 

 For the electron tomographic investigation, we used either 200 nm thick sections from 

the hippocampal CA1 region from the anti-CB1R immunogold stained material (see: “Pre-

embedding immunoelectron-microscopy”), or 100 nm thick sections of unstained tissue from 

the dentate gyrus. In the latter case the sections were washed thoroughly in PB after postfixation 

(see “Samples and tissue preparation”), and treated with 0.5 % osmium-tetroxide in PB for 20 

minutes on ice. Then sections were dehydrated in ascending ethanol series and acetonitrile, and 

embedded in epoxy resin (Durcupan). During dehydration sections were treated with 1% uranyl-

acetate in 70% ethanol for 20 minutes. Before electron tomography, serial sections on single-

slot copper grids were photographed with a Hitachi H-7100 electron microscope and a Veleta 

CCD camera. Serial sections were examined at lower magnification, and mitochondria-

containing perisomatic synaptic boutons from the CA1 area, or mitochondria-containing 

glutamatergic synaptic boutons from the outer two-thirds of DG molecular layer were selected. 

At this magnification inner mitochondrial ultrastructure could not be observed on the TEM 

images from 100 and 200 nm thick sections, securing the unbiasedness of sampling. In the CA1 

experiments, CB1R immunogold staining was examined at higher magnification, and boutons 

were divided into CB1R+ and CB1R- (PV) categories. In the DG experiments, the boutons were 

reconstructed from the serial TEM image series, synapse sizes and mitochondrial volumes were 
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measured. For each bouton, the section containing the largest mitochondrial cross section was 

chosen for electron tomography. After this, grids were put on drops of 10% HSA in TBS for 10 

minutes, dipped in distilled water (DW), put on drops of 10 nm gold conjugated Protein-A in 

DW (1:3), and washed in DW. Finally, we deposited 5-5 nm thick layers of carbon on both sides 

of the grids. Electron tomography was performed using a Tecnai T12 BioTwin electron 

microscope equipped with a computer-controlled precision stage (CompuStage, FEI). 

Acquisition was controlled via the Xplore3D software (FEI). Regions of interest were pre-

illuminated for 6 minutes to minimize further shrinkage. Dual-axis tilt series were collected at 

2-degree increment steps between -65 and +65 degrees at 120 kV acceleration voltage and 

23000x magnification with -1.6 – -2 µm objective lens defocus. Reconstruction was performed 

using the weighted backprojection algorithm in the IMOD software package 

(RRID:SCR_003297, Kremer et al., 1996). Isotropic voxel size was 0.49 nm in the reconstructed 

volumes. After combining the reconstructed tomograms from the two axes, the nonlinear 

anisotropic diffusion (NAD) filtering algorithm was applied to the volumes. Segmentation of 

mitochondrial volumes has been performed on the virtual sections using the 3Dmod software, 

and measurements were done on the scaled 3D models. 

 

Methodological considerations 

 Electron tomography has become the primary method for studying biological structures 

in their native environment with the highest resolution. For these type of studies, it is critical to 

use tissue preparation techniques that most reliably preserve the physiological state. Throughout 

the last decades, transcardial perfusion with aldehydes has become the gold standard method of 

electron microscopic tissue preparation when cryo-fixation is not an option (as in the case of 

intact brains). However, this technique is known to introduce some structural artefacts 

(decreased extracellular volume, decreased number of docked synaptic vesicles) into the sample 

when compared with rapid cryo-fixation (Korogod et al., 2015). Because of this, one needs to 

consider whether their results and the interpretation of these results are affected by these 

differences, or not.  

In our case, there are two main reasons for being convinced, that our results are unaffected by 

this problem. Firstly, the parameters we set out to explore – namely the surface area and 

architecture of mitochondrial crista-membranes – have been described to be unaffected by 

perfusion and aldehyde fixation when compared with rapid cryo-fixation and cryo-electron 

tomography (Nicastro et al., 2000; Perkins et al., 1998). Secondly, we always made comparisons 

within one system, and compared mitochondria that were sampled equally for each group from 

the same tissue volumes, meaning that they must have been affected identically, if anyhow. 

These arguments validate our approach, and enable us to draw biologically relevant conclusions 

from our data. 

 

Controls 

To validate the specificity and sensitivity of our labeling approach, we performed 

immunofluorescent reactions with two different CB1R antibodies in wild-type (WT) and CB1R-

knockout (KO) mice (Fig. 1-1. A, B). The two antibodies showed completely overlapping 

staining in the WT animals, but were totally absent in the KO animals (n=2 WT and 2 KO mice). 

For the electron tomographic examinations, we performed immunogold labeling against CB1R 

(Fig. 1. B), and quantified labeling density in WT and CB1R-KO animals (Fig. 1. C). It was 

found to be 4.87 particle/µm on presynaptic CB1R+ boutons in WT, and 0.00 particle/µm in 

KO animals (tested along 38.6 µm membrane in 2 WT, and tested along 74.8 µm presynaptic 

bouton membrane in 2 KO animals). This would correspond to an average of 12 gold particles 

on a single electron microscopic (EM) section of a CB1R+ bouton in WT animals, reflecting 
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the exceptionally high specificity and sensitivity of CB1R labeling, and confirming that this 

method can reliably distinguish between the two perisomatic bouton populations on serial EM 

images. To estimate the necessary pre-irradiaton of plastic embedded sections before electron 

tomography, we measured the dynamics of tissue shrinkage on 100 and 200 nm thick sections. 

Shrinking happened mainly in the first 2 minutes of sample irradiation, and decreased to a 

negligible rate after 4-5 minutes (Fig. 1-1. C). After these measurements, we set a uniform pre-

irradiation time of 6 minutes in our experiments. 

 

Analysis and statistics 

 In the immunogold experiments the gold particles were considered to be membrane-

associated, if they were not further away from the membrane than 40 nm, because the epitope 

(the C-terminus of the CB1R) is located a few nanometers intracellularly, and the length of the 

primary and secondary IgG antibody molecules are ∼15 nm each.  

During segmentation of tomographic volumes, z-scaling was calculated from the thickness 

difference of the reconstructed volume and the original section thickness, and applied to the 3D 

models to compensate for z-shrinkage. Mesh surface areas and volumes inside meshed objects 

were measured with the “imodinfo” program. To measure synaptic area in the serial TEM 

images, the length between the edges of anatomically defined synapses was measured on 

subsequent images of the sampled synapses, and the sum of the measured lengths from each 

synapse was multiplied by the section thickness. 

 In the confocal triple labeling experiments to visualize VG1-Homer-CytC signals, 

segmentation was performed separately for each channel to ensure unbiasedness. 

 STORM analysis was performed in the VividSTORM open source software (Barna et 

al., 2016). Localisation points exceeding a given photon count were counted as specific SLPs. 

Molecule lists were exported from NIS in txt format, and the 3 image planes of the ics-ids file 

pairs from the deconvolved confocal stacks matching the STORM-volume were converted to 

the ome-tiff format using Fiji software. Confocal and corresponding STORM images were fitted 

in VividSTORM. Convex 2D hulls were automatically constructed around individual (not in 

fission or in fusion) mitochondria in both channels (568-TOM20 and 647-CytC), and organelle 

areas were correlated. During the examination of mitochondria in perisomatic boutons, the 

identity (CB1R+ vs. PV+) of the boutons with mitochondria was determined in the confocal 

channels, and a convex 2D hull was constructed around the corresponding SLP cluster. The 

number of CytC SLPs was divided by the area of this convex hull to calculate the SLP-density 

within mitochondria. During the examination of mitochondria in perforant pathway boutons, 

VG1+ boutons were identified with presynaptic mitochondria, and the size of the corresponding 

active zone was determined by 3D-reconstruction of the Homer confocal signal. CytC SLP-

density was determined as described above. 

 When data populations did not have a Gaussian distribution according to the Shapiro-

Wilks W test, we reported non-parametric statistical features (median, interquartile range), 

compared two independent groups with the Mann-Whitney U-test, and Spearman correlation 

coefficients were calculated. When data populations showed normal distribution, correlations 

were assessed using linear regression fit to the data (R indicates Pearson’s correlation 

coefficient). Statistical analysis was performed with the Statistica 13.1 package 

(RRID:SCR_014213, Dell), differences with p<0.05 were considered significant throughout 

this study. Since data from different animals belonging to the same group were not statistically 

different in any case, they were pooled. 
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RESULTS 

Electron tomography reveals robust ultrastructural differences between presynaptic 

mitochondria of fast-spiking and regular-spiking GABAergic neurons 

In order to test whether any correlation exists between synaptic performance and 

mitochondrial ultrastructure, we defined a “low performance” and a “high performance” group 

within hippocampal GABAergic as well as glutamatergic synaptic populations, based on the 

level of their activity. In the hippocampal CA1 area, the perisomatic GABAergic inputs of 

principal cells can be divided into two, morphologically and functionally well-characterized 

populations: the CB1R-positive, regular-spiking interneurons show low level of synaptic 

activity, whereas the PV-positive, fast-spiking interneurons are capable of performing 

exceptionally high synaptic activity. In fact, these GABAergic populations are the two well-

known archetypes of the slow/modulatory, and the highly energized/fast “clockwork” type 

interneurons, respectively (Gulyás et al., 2006; Kann et al., 2014; Klausberger et al., 2005). The 

average in vivo firing frequency of the CB1R+ interneurons in the hippocampus is 2-10 Hz, 

whereas the PV+ interneurons can fire bursts up to 150 Hz during ripples (Klausberger et al., 

2005; Lapray et al., 2012), making these two populations ideal candidates for “low 

performance” (LP) and “high performance” (HP)  GABAergic boutons, respectively. Since the 

perisomatic synaptic boutons contacting pyramidal cells in the hippocampal CA1 region 

originate exclusively (99%) from these two cell types (Takács et al., 2015), labeling one of them 

is sufficient to reliably identify both types. To verify the exclusive and non-overlapping 

contribution of the two populations with our antibodies as well, we performed 

immunofluorescent labeling of GABAergic varicosities for vesicular GABA transporter 

(vGAT), the two bouton-populations for CB1R and PV, and cell nuclei with DAPI (Fig. 1., A). 

We found, that 54.5% of all GABAergic boutons on pyramidal cell somata were PV+, 45% 

CB1R+ and only 0.5 % were double-negative (n=200 boutons in 2 mice), which numbers are in 

a very good agreement with previous data (Takács et al., 2015). For the electron tomographic 

examinations, we performed immunogold labeling against CB1R (Fig. 1. B). Once the 

mitochondrion-containing boutons from both populations were sampled, the presence of a 

synapse was confirmed for each bouton (Fig. 1. D, F). The sections containing the largest cross-

sections of mitochondria were processed for dual-axis electron tomography and reconstruction, 

which revealed robust ultrastructural differences between these organelles, depending on which 

population they belonged to (Fig. 1. E, G, Fig 1-2.). Crista-membrane density (surface area of 

crista membrane/mitochondrial volume) was significantly higher (by 79.7%) in mitochondria 

of PV boutons (median: 0.0408 nm-1, interquartile range: 0.0389-0.0519) than in those from 

CB1R+ boutons (median: 0.0227 nm-1, interquartile range: 0.0218-0.0256, Mann-Whitney U-

test, p=0.0002, n=20 mitochondria from 2 mice, Fig. 1. H). When we multiplied these crista 

membrane density values with the median volume of presynaptic mitochondria (119x106 nm3 

in PV+ and 73.4 x106 nm3 in CB1R+ boutons from Takács et al., 2015) we found a striking 

difference, showing that the average PV+ bouton possesses 2.9 times more mitochondrial crista 

membrane surface than the average CB1R+ bouton. The organisation of the cristae also differed, 

since these structures were significantly more lamellar in mitochondria of PV-boutons than in 

those from CB1R+ boutons, as verified by the 22%-higher crista shape factor values (surface 

area of crista membrane/crista lumen volume, referred to as lamellarity throughout the paper), 

PV median: 0.233 nm-1, interquartile range: 0.218-0.251, CB1R median: 0.191 nm-1, 

interquartile range: 0.147-0.220, Mann-Whitney U-test, p=0.0090, n=20 mitochondria from 2 

mice, Fig. 1. I). These results suggest a possible correlation between the ultrastructure of 

presynaptic mitochondria and the performance of the synapses. 
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Figure 1. Electron tomo-

graphy reveals robust 

ultrastructural differences 

between axonal mitochond-

ria of fast-spiking and 

regular-spiking basket 

cells. (A) Confocal images 

show that perisomatic 

synaptic boutons are either 

PV- or CB1R-positive in the 

hippocampal CA1 region. 

Pyramidal cell nuclei are 

labeled with DAPI (blue), 

vGAT-immuno-reactive 

puncta represent GABAergic 

vesicle pools (cyan), PV-

labeling is green and CB1R-

labeling is magenta. (B) 

Transmission electron 

micrograph shows that CB1R-immunogold labeling reliably differentiates the two perisomatic bouton populations. 

Black granules are the silver-intensified CB1R-immunogold particles, white arrowheads mark a synapse. 

Pseudocolors: CB1R+ bouton – magenta, PV bouton – green, pyramidal cell cytoplasm – yellow and nucleus – 

blue. (C) CB1R-immunogold labeling was absent in CB1R-KO animals (tested membrane length: 38 µm in two 

WT, and 74.8 µm in two CB1R-KO mice). (D, F) Representative 3D-models of serial EM reconstructed segments 

from a synaptic CB1R+ bouton (D), and a synaptic PV bouton. Bouton membrane is magenta for CB1R-bouton, 

green for PV-bouton, synapses are vivid-green, mitochondria are blue, red belts represent those sections of the 

organelles that were reconstructed through electron tomography. (E) 1.5 nm thick electron tomographic section 

and 3D-model of the reconstructed mitochondrion from the bouton depicted in D (mitochondrial outer membrane 

is red, inner boundary membrane is cyan, crista membrane is green). (G) 1.5 nm thick electron tomographic section 

and 3D-model of the reconstructed mitochondrion from the bouton depicted in F. (H) Crista-membrane density is 

significantly higher in mitochondria of PV-boutons than in those from CB1R+ boutons (Mann-Whitney U-test, 

p=0.0002, n=20 mitochondria from 2 mice). (I) Cristae are significantly more lamellar in mitochondria of PV-

boutons than in those from CB1R+ boutons, as verified by the higher crista shape factor values (Mann-Whitney U-

test, p=0.0090, n=20 mitochondria from 2 mice). (H, I) Blue dots represent values from individual mitochondria, 

magenta rectangles represent interquartile ranges, deep-magenta lines mark median values. Scale bars are 6 µm in 

A, 500 nm in B and 100 nm in G and for E. The 3D models on E and G are not displayed on the same scale. See 

also Figures 1-1 and 1-2. 

 

STORM super-resolution microscopy confirms higher mitochondrial cytochrome-c 

density in boutons of fast-spiking basket cells than in regular-spiking ones 

 To assess whether the observed ultrastructural differences are accompanied by any 

changes in respiratory chain protein expression, we turned to a combined stochastic optical 

reconstruction microscopy (STORM) and confocal laser-scanning microscopy (CLSM) method, 

and performed precise quantitative assessment of cytochrome-c (CytC) levels in mitochondria. 

This protein is an indispensable element of the electron-transport chain, as it carries electrons 

to the cytochrome-c oxidase enzyme. CytC expression directly controls oxidative 

phosphorylation (Wilson et al., 2014), and its levels are indicative of mitochondrial performance 

and show good correlation with neuronal activity (Gulyás et al., 2006; Kann et al., 2014).  To 

take advantage of the unprecedented 20-30 nm lateral localisation precision and qunatitative 

nature of the STORM super-resolution technique (Huang et al., 2008) and delineate 

mitochondrial borders with high fidelity, we performed double labeling experiments. If the 

distribution of CytC is homogenous within individual mitochondria, then the CytC super-

resolution localisation point (SLP) clusters would designate the borders of these organelles in a 
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reliable way. In this case, one could measure the sizes of these clusters and compare the SLP-

density values between different mitochondria. To test this, we stained for TOM20 (central 

component of the translocase of outer membrane receptor complex) and CytC (Fig. 2. A). The 

measured sizes of individual mitochondria in the two STORM channels showed a very strong 

correlation (R=0.98, n=48 mitochondria from 2 mice, Fig. 2. B), excluding the non-homogenous 

sub-organelle distribution of CytC labeling. The median number of CytC SLPs labeling a single 

mitochondrion was 217 (interquartile range: 97-330). These results confirmed, that the CytC-

labeling and STORM imaging can be used to delineate the borders of mitochondria in a precise 

and reliable way. Next, we performed a multi-color immunofluorescent labeling for PV, CB1R 

and CytC, and imaged the samples using correlated confocal and STORM super-resolution 

microscopy (Fig. 2. C-G). The CytC-labeling was recorded with the STORM system as well. 

The STORM SLP-s were overlayed the confocal images with the VividSTORM software (Fig. 

2. D, F).  The analysis showed, that mitochondria in the PV+ boutons were larger than those in 

the CB1R+ boutons, as the 2D areas of the convex hulls – fitted around SLP-clusters – were 

75.4% larger in the former group (median: 0.287 µm2, interquartile range: 0.158-0.368) than in 

the latter (median: 0.164 µm2, interquartile range: 0.098-0.203, Mann-Whitney U-test, 

p=0.0085, n=57 mitochondria from 2 mice, Fig. 2. H). More importantly we found, that 

mitochondria in the PV+ boutons contained CytC SLPs in a 22.7% higher density (median: 

565.7 SLP/µm2, interquartile range: 434.8-725.7) than those in the CB1R+ boutons (median: 

461.1 SLP/µm2, interquartile range: 378.8-612.0, Mann-Whitney U-test, p=0.0384, n=57 

mitochondria from 2 mice, Fig. 2. I). These results confirm that the internal structural 

differences between mitochondria in the two bouton populations are accompanied by 

quantitative differences in molecular fingerprints as reflected by the levels of the respiratory 

chain protein cytochrome-c. 

Figure 2. Axonal 

mitochondria of fast-

spiking basket cells express 

higher levels of cyto-

chrome-c than those of 

regular-spiking basket 

cells’. (A) STORM super-

resolution imaging confirms 

a near-complete overlap 

between TOM20 and 

cytochrome-c labeled areas. 

(B) Scatterplot shows a 

strong correlation (R=0.98, 

n=48 mitochondria from 2 

mice) between the measured 

areas in the two channels of 

individual mitochondria. 

Each dot corresponds to a single mitochondrion. (C) Confocal image shows a CB1R+ (blue) and a PV+ (yellow) 

perisomatic bouton, both containing a mitochondrion, labeled for cytochrome-c (magenta). (D) CB1R+ bouton 

enlarged from C with overlaid STORM cytochrome-c localisation points (cyan). (E) Confocal and STORM image 

of mitochondrion enlarged from D. (F) PV+ bouton enlarged from C with overlaid STORM cytochrome-c 

localisation points. (G) Confocal and STORM image of mitochondrion enlarged from D. Red lines in E and G 

mark the 2D convex hulls generated around the localisation points. (H) Mitochondria in the PV+ boutons are larger 

than those in the CB1R+ boutons, as the 2D areas of the convex hulls are significantly larger in the former group 

(Mann-Whitney U-test, p=0.0085, n=57 mitochondria from 2 mice). (I) Mitochondria in the PV+ boutons contain 

cytochrome-c in a higher density than those in the CB1R+ boutons (Mann-Whitney U-test, p=0.0384, n=57 

mitochondria from 2 mice). Blue dots represent values from individual mitochondria, magenta rectangles represent 

interquartile ranges, deep-magenta lines mark median values. Scale bar in A is 800 nm for upper-left 

mitochondrion, 400 for all others; scale bar in C is 1 µm, 600 nm for D and F and 170 nm for E and G. 
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Ultrastructural parameters of presynaptic mitochondria in glutamatergic boutons are 

coupled to synaptic strength 

 To confirm that the observed correlations between molecular and structural 

mitochondrial properties and synaptic features are independent of the cell types examined, we 

investigated glutamatergic synaptic boutons in the dentate gyrus. One of the best characterized 

structure-function correlations in neuroscience is that synaptic strength is strictly and faithfully 

linked to morphological/ultrastructural parameters (Bourne and Harris, 2012; Buchs and Muller, 

1996; Cheetham et al., 2014; Desmond and Levy, 1988; Holtmaat and Svoboda, 2009). The 

release probability of synapses scales linearly with the size of the active zone (Holderith et al., 

2012), and long-term potentiation leads to an increase in the size of synaptic active zone, the 

number of perforated synapses and also in the number of boutons with multiple active zones 

(Geinisman, 2000; Popov et al., 2004). Based on this fundamental morpho-functional 

correlation, the strength of glutamatergic synapses can be determined purely by morphological 

criteria in a very reliable way, enabling us to define a “low performance” and a “high 

performance” group within a specific glutamatergic synaptic bouton population. We randomly 

collected samples from the outer two-thirds of the dentate gyrus molecular layer, where the vast 

majority of glutamatergic contacts are made by perforant path axons (Amaral et al., 2007), and 

reconstructed synaptic boutons from serial EM sections together with the postsynaptic neuronal 

processes (Fig. 3. A, C). The median active zone area was found to be 0.070 µm2 (0.042-0.123 

µm2 interquartile range, n=35 synaptic boutons in 2 mice, Fig. 3-1. A). About half of these 

boutons contained mitochondria, and the active zone area in this group did not differ 

significantly from the previous group, as it was found to be 0.093 µm2 (0.048-0.171 µm2 

interquartile range, Mann-Whitney U-test, p=0.267; n=19 synaptic boutons in 2 mice, Fig. 3-1. 

A). Based on these data and the strict correlation between synaptic ultrastructure and 

performance, we grouped the reconstructed mitochondria-containing varicosities as follows: 

boutons were considered to be “low performance” (LP), if they had a single, non-perforated 

active zone with an area less than 0.09 µm2, and boutons were considered to be „high 

performance” (HP), if they had multiple and/or peforated active zone(s) with an area larger than 

0.09 µm2 (Fig. 3-1. A). We measured the mitochondrial volumes in the 3D-models, and found 

that presynaptic mitochondria in HP-boutons were significantly larger than those in LP-boutons 

(HP-median: 41.8x106 nm3, 25x106-46.5x106 interquartile range, LP-median: 18.9x106 nm3, 

13x106-27.6x106 interquartile range, 121.6% difference, Mann-Whitney U-test, p=0.0199, n=19 

boutons from two mice; Fig. 3. E). The sections containing the largest cross-sections of 

presynaptic mitochondria of these boutons were processed for dual-axis electron tomography 

and reconstruction, which revealed robust ultrastructural differences between these organelles, 

depending on which population they belonged to (Fig. 3. B, D, Fig. 3-2.). Crista-membrane 

density (surface area of crista membrane/mitochondrial volume) was significantly higher (by 

110.1%) in mitochondria of HP-boutons (median: 0.0552 nm-1, interquartile range: 0.0509-

0.0587) than in those from LP-boutons (median: 0.0262 nm-1, interquartile range: 0.0258-

0.0290, Mann-Whitney U-test, p=0.0009, n=19 mitochondria from 2 mice, Fig. 3. F). We then 

multiplied these crista membrane density values with the median volume of presynaptic 

mitochondria (41.8x106 nm3 in HP and 18.9x106 nm3 in LP boutons), and found a striking 

difference, showing that the average HP bouton possesses 4.67 times more mitochondrial crista 

membrane surface than the average LP bouton. The organisation of the cristae also differed 

significantly, since these structures were more lamellar in mitochondria of HP-boutons than in 

those from LP-boutons, as verified by the 37.8% higher crista shape factor values (surface area 

of crista membrane/crista lumen volume) in the former group (median: 0.268, interquartile 

range: 0.237-0.301), than in the latter (median: 0.195, interquartile range: 0.190-0.219, Mann-
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Whitney U-test, p=0.0080, n=19 mitochondria from 2 mice, Fig. 3. G). To verify the robustness 

of our results, we pooled data from HP and LP boutons, and examined whether the different 

ultrastructural features correlated with the size of the synaptic active zone. We found that the 

volume, crista-membrane density and crista shape factor of presynaptic mitochondria are all 

strongly and significantly correlated with synapse size, (R=0.71, p=0.0005; R=0.77, p=0.0001; 

and R=0.65, p=0.0026, respectively; Pearson correlation, n=19 mitochondria from 2 mice, Fig. 

3-1. B). We also tested our findings on post-mortem human tissue. We collected a random 

sample of mitochondria-containing presynaptic glutamatergic axon segments from the stratum 

radiatum of the hippocampal CA1 region, reconstructed them from serial sections (Fig. 3. H), 

and found a strong and significant correlation between the active zone area and the volume of 

individual presynaptic mitochondria (R=0.86, p<0.0001, n=31 mitochondria from 2 patients, 

Fig. 3. I, J), confirming the results from mouse studies. In summary, our results reveal for the 

first time that the ultrastructure of presynaptic mitochondria is coupled to synaptic performance 

in the brain, in a cell-type independent manner. 

Figure 3. Mitochondrial 

ultrastructure is coupled to 

synaptic performance in a 

cell-type independent 

manner at glutamatergic 

synapses. (A) 3D-model of a 

serial EM reconstructed 

segment of a „low 

performance” glutamatergic 

bouton from the dentate-

gyrus. Bouton membranes are 

semi-transparent cyan, 

postsynaptic profiles are 

semi-transparent magenta, 

synapse are yellow, 

mitochondria are blue, red 

belts mark those sections of 

the organelles that were 

reconstructed through 

electron tomography. (B) 1.5 

nm thick electron 

tomographic section and 3D-

model of the reconstructed 

mitochondrion from the 

bouton depicted in A 

(mitochondrial outer 

membrane is red, inner 

boundary membrane is cyan, 

crista membrane is green). (C) 3D-model of a serial EM reconstructed segment of a „high performance” 

glutamatergic bouton from the dentate-gyrus (colors same as in A). (D) 1.5 nm thick electron tomographic section 

and 3D-model of the reconstructed mitochondrion from the bouton depicted in C. (E) Mitochondria are 

significantly larger in „high performance”-boutons than in „low performance”-boutons (Mann-Whitney U-test, 

p=0.0199, n=19 mitochondria from 2 mice). (F) Crista-membrane density is significantly higher in mitochondria 

of „high performance”-boutons than in those from „low performance”-boutons (Mann-Whitney U-test, p=0.0009, 

n=19 mitochondria from 2 mice). (G) Cristae are significantly more lamellar in mitochondria of „high 

performance”-boutons than in those from „low performance”-boutons, as verified by the higher crista shape factor 

values (Mann-Whitney U-test, p=0.0080, n=19 mitochondria from 2 mice). (H-J) The volume of individual 

presynaptic mitochondria correlates with active zone area in the human hippocampus. (H) Transmission electron 

micrographs of two presynaptic mitochondria from human samples, and their 3D-reconstructions from serial 

images. (I) 3D-model of an axonal segment from human tissue, giving two synapses, each with an associated 

presynaptic mitochondrion. Axons are red, mitochondria green, spines blue and active zones yellow. (J) The 
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volume of presynaptic mitochondria shows a strong correlation with active zone area in human axons (R=0.86, 

p<0.0001, n=31 mitochondria from 2 patients). (E-G, J) Blue dots represent values from individual mitochondria, 

magenta rectangles represent interquartile ranges, deep-magenta lines mark median values. Scale bar is 110 nm in 

B and for D, 200 nm on H. The 3D models on B, D and H are not displayed on the same scale. See also Figures 3-

1 and 3-2. 

 

Cytochrome-c density in presynaptic mitochondria of glutamatergic boutons scales with 

synaptic strength  

 To examine whether the observed cell-type independent coupling between 

mitochondrial ultrastructure and synaptic performance is accompanied also by changes in 

respiratory chain protein expression levels, we tested the density of CytC-labeling in 

mitochondria of „low-performance” (LP) and „high-performance” (HP) glutamatergic synaptic 

boutons, using correlated confocal and STORM super-resolution microscopy, taking advantage 

of the near-molecular resolution capability of this method. We labeled glutamategic boutons 

against vesicular glutamate transporter 1 (VG1), mitochondria with CytC, and postsynaptic 

densities with Homer1 (Fig. 4. A, C). We sampled mitochondria-containing synaptic boutons 

from the outer two-thirds of DG molecular layer, and reconstructed them from the deconvolved 

confocal stacks (Fig. 4. B, D). The volumes of Homer labeling belonging to each bouton were 

measured on the 3D models, and the median value was found to be 0.0265 µm3 (0.011-0.0518 

interquartile range, Fig. 3-1. C). These values correspond to the size of the active zone in each 

bouton, meaning that this distribution indirectly reflects the output performance distribution of 

the examined boutons. Based on these data, we split the population at the median value, and 

sorted boutons with a lower Homer volume into the LP-group, and boutons with higher values 

into the HP-group (Fig. 3-1. C). We found that presynaptic mitochondria in HP-boutons were 

significantly larger than those in LP-boutons (HP-median: 0.0365 µm3, 0.0282-0.0578 

interquartile range, LP-median: 0.0162 µm3, 0.0150-0.0265 interquartile range, 128.8% 

difference, Mann-Whitney U-test, p=0.0003, n=42 boutons from two mice; Fig. 4. G), and this 

observed difference is congruent with our serial EM data (128.8% vs. 121.6% difference). The 

CytC-labeling was recorded not only in the confocal channel, but also in the correlated STORM 

modality. The STORM SLP-s were overlayed the confocal images (Fig. 4. C, F).  

Figure 4. Cytochrome-c content 

of presynaptic mitochondria scales 

with synaptic performance at 

glutamatergic synapses (A) 

Confocal image shows a 

glutamatergic bouton (VG1, blue), 

containing a mitochondrion (Cyt-

C, red), and its synapse (Homer1a, 

green). (B) The 3D-model of the 

bouton from A was reconstructed 

from the confocal stack. (C) 

Confocal and STORM image of mitochondrion enlarged from the same bouton (Cyt-C confocal in magenta, Cyt-

C localisation points in cyan, 2D convex hull in red). (D-F) Another bouton depicted as in A-C. Mitochondria-

containing synaptic boutons were divided into „low-performance” (LP) and „high-performance” (HP) groups, 

based on the corresponding Homer volumes. Bouton in A-C represents a LP, bouton in D-F represents a HP bouton. 

(G) Mitochondria in the HP-boutons are larger than those in the LP-boutons, as the CytC-volumes are significantly 

larger in the former group (Mann-Whitney U-test, p=0.00032, n=42 mitochondria from 2 mice). (H) Mitochondria 

in the HP-boutons contain cytochrome-c in a higher density than those in the HP-boutons (Mann-Whitney U-test, 

p=0.00016, n=42 mitochondria from 2 mice). Blue dots represent values from individual mitochondria, magenta 

rectangles represent interquartile ranges, deep-magenta lines mark median values. Scale bar is 800 nm for A and 

D, and 200 nm for C and F. The 3D models on B and E are not displayed on the same scale. See also Figure 3-1. 
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We found that the CytC SLP density was 61% higher in mitochondria of HP-boutons than in 

those of LP-boutons (HP-median: 598.5 SLP/ µm2, 455.6-822 interquartile range, LP-median: 

370.8, 296.3-440.7 interquartile range, Mann-Whitney U-test, p=0.0001, n=42 boutons from 

two mice; Fig. 4. H). To verify the strength of our results, we pooled data from HP and LP 

boutons, and examined whether the investigated features correlated with the size of the synaptic 

active zone. We found, that the CytC-labeled volume and SLP-density are both strongly 

correlated to synapse size, (R=0.77, p<0.00001; R=0.60, p=0.00002, respectively; Spearman’s 

correlation, n=42 mitochondria from 2 mice, Fig. 3-1. D). Taken all these together, our results 

confirm that not only the mitochondrial ultrastructure is coupled to synaptic performance in a 

cell-type independent manner, but also the expression levels of the respiratory chain protein 

cytochrome-c. 

 

DISCUSSION 

Mitochondrial and synaptic performance are coupled via ultrastructure 

The first observations suggesting a connection between mitochondrial crista-structure 

and function were obtained on ex vivo isolated mitochondria (Hackenbrock, 1966). Although 

those specific results have not been verified under physiological conditions, causal correlation 

between mitochondrial ultrastructure and output performance in non-neuronal cells has been 

confirmed in recent studies (Cogliati et al., 2016). The amount and density of cristae membrane 

as well as the lamellarity of cristae directly determine respiratory performance and efficiency 

(Cogliati et al., 2013; Else et al., 2004), and these ultrastructural features were also shown to 

influence performance at the level of the complete organism (Strohm and Daniels, 2003). On 

the other hand, aberrant morphology, dilatation or loss of mitochondrial cristae have been 

observed in a variety of pathological conditions (Choi et al., 2014; Daum et al., 2013), while 

genetic manipulations ameliorating damaged crista-structure have been shown to restore normal 

crista density/lamellarity and respiratory chain activity (Civiletto et al., 2015). Furthermore, 

modelling studies also confirmed, that crista-membrane density and lamellarity are key 

determinants of mitochondrial electrochemical potential and ATP-generating capacity (Song et 

al., 2013). There are several points explaining the correlation between mitochondrial 

ultrastructure and performance: larger crista-membrane surface can accommodate a higher 

amount of respiratory chain and ATP-synthase proteins, leading to a higher respiratory and 

ATP-generating capacity, whilst more lamellar cristae structure is beneficial for respiratory 

chain supercomplex assembly, resulting in a higher respiratory efficiency (Cogliati et al., 2013). 

Furthermore, more lamellar cristae – independently from changes in respiratory efficacy – result 

in an increased proton motive force, leading to higher ATP-producing capacity (Song et al., 

2013). Finally, ATP-synthase molecules tend to be enriched and dimerize at curved cristae-rims, 

making the dense and tight packing of these membranes more effective to produce ATP (Davies 

et al., 2011). 

Mitochondria are critically important for proper synaptic function, due to their central 

role in ATP-production, Ca2+-regulation and other major signalling mechanisms. In particular, 

presynaptic function has been shown to rely directly on activity-driven ATP synthesis 

(Rangaraju et al., 2014). The demand for mitochondrial function is reasonably coupled to 

neuronal activity (Gulyás et al., 2006; Kann et al., 2014) and also directly correlated with 

synaptic strength (Ivannikov et al., 2013; Smith et al., 2016; Sun et al., 2013; Verstreken et al., 

2005). Our results demonstrate that increased synaptic performance is coupled to higher 

organelle volume, crista density, crista lamellarity and cytochrome-c levels at axonal release 
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sites, suggesting that ultrastructure and molecular composition of presynaptic mitochondria are 

associated with synaptic performance. 

 

Performance coupling between mitochondria and synapses suggests a possible role for 

the activity dependent ultrastructural remodelling of mitochondria in neuroplasticity 

Neuronal mitostasis - the maintenance of an appropriately distributed pool of healthy 

mitochondria – is fundamental for proper neuronal function (reviewed by Misgeld and Schwarz, 

2017). Our observations verified the presence of a cell-type independent coupling between 

presynaptic mitochondrial ultrastructure and synaptic strength. This coupling – responsible for 

local demand matching – could be achieved either by a coordinated long-range 

retrograde/anterograde axonal trafficking of mitochondria, or by local plasticity mechanisms, 

that lead to adaptation at the level of single organelles. 

During synaptic plasticity, the energetic demand of a potentiated synapse will increase. 

In case of the first mechanism – organelle trafficking – the mitochondrion from the potentiated 

bouton would need to be withdrawn, transported away – possibly back to the soma – and 

another, stronger mitochondrion would be sent out to replace it. The coordination of this 

process, together with the evident gap in energy supply during the change is more than 

problematic. On the other hand, the large number of papers dealing with mitochondrial motility 

and redistribution performed mainly in vitro experiments, however, recent in vivo two-photon 

imaging studies suggest that mitochondrial motility is way much smaller, and also quite 

independent from neuronal activity (Lewis et al., 2016; Smit-Rigter et al., 2016). This suggests 

that this mechanism alone is not sufficient to account for local demand matching. The other 

possible mechanism is locally regulated ultrastructural plasticity. In fact, in non-neuronal 

tissues, an overwhelming body of evidence confirms that dynamic ultrastructural remodeling of 

mitochondria takes place as a response to altered energetic demand (Cogliati et al., 2016). 

Mitochondrial inner membrane architecture has been shown to undergo substantial 

remodelling after exercise, under hypoxic conditions or during starvation (Gomes et al., 2011; 

Hambrecht et al., 1997; Nielsen et al., 2016; Perkins et al., 2012), suggesting that the local 

demand for mitochondrial performance is communicated to these organelles, prompting their 

activity-dependent ultrastructural plasticity. The common response to an increased energetic 

demand was an increased crista-membrane density and lamellarity in all of these cases. The idea 

of mitochondrial ultrastructural adaptation is also supported by a study, confirming that crista 

remodelling can happen on the timescale of minutes (Dikov and Bereiter-Hahn, 2013). In  recent 

years, various mechanisms have been described to regulate mitochondrial ultrastructure, such 

as mitochondrial dynamin like GTPase (OPA1), mitochondrial contact site and cristae 

organizing system (MICOS), ATP-synthase dimerisation and the inner-membrane protein 

Pantagruelian Mitochondrion I (Gomes et al., 2011; Hahn et al., 2016; Harner et al., 2011; 

Macchi et al., 2013; Neupert, 2012). Substrate dependent changes in OPA1 oligomer levels 

(Patten et al., 2014; Sood et al., 2014), or activity-dependent ATP-synthase clustering (Jimenez 

et al., 2014) are known to contribute to mitochondrial ultrastructural plasticity. Synaptic 

mitochondria possess a specific proteome (Völgyi et al., 2015), and local axonal protein 

synthesis has also been shown to be required for the maintenance of mitochondrial function 

(Aschrafi et al., 2008; Gale et al., 2017; Hillefors et al., 2007). Thus, it is very likely that local 

presynaptic signalling mechanisms regulate the expression of mitochondrial proteins in axons, 

thereby controlling mitochondrial ultrastructure and performance.  

All these findings – together with our results – suggest that the primary way of adjusting 

mitochondrial performance to the actual demand at synapses could be the activity-dependent 
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ultrastructural plasticity of these organelles. Furthermore, our results – confirming a cell-type 

independent coupling between synaptic performance and mitochondrial ultrastructure – indicate 

that these changes in mitochondrial ultrastructure and molecular fingerprints could contribute 

to neuroplasticity at the level of individual synapses. 
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EXTENDED DATA 

 

Figure 1-1. Staining with two 

anti-CB1R antibodies is 

overlapping in WT, but totally 

absent from CB1RKO mice; 

rate of tissue shrinkage due to 

electron beam irradiation. 

A Triple-color confocal images 

show CB1R staining in the 

hippocampal CA1 region of a 

wild-type mouse with a rabbit 

(green) and a goat (magenta) 

antibody. Cell nuclei are stained 

with DAPI (blue). B Staining with 

both antibodies are completely 

absent in CB1R-KO mice. Scale 

bar is 100 µm for the upper and 30 

µm for the lower panels. C Rates 

of tissue shrinkage on 100 (left) and 200 nm thick sections (right) under 15 minutes of electron beam irradiation. 

Black bars represent interquartile ranges, black dots mark median values. 
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Figure 1-2. 3D models of 

the reconstructed 

mitochondrial volumes 

from the hippocampal 

CA1 region. Top three 

rows show presynaptic 

mitochondria from regular 

spiking basket cell 

boutons, while the bottom 

three rows from fast-

spiking basket-cell 

boutons. Mitochondrial 

outer membrane is red, 

inner boundary membrane 

is turquise, crista 

membrane is green. 

CM/MV: crista membrane 

area/mitochondrial 

volume, CSF: crista shape 

factor. The models are not 

displayed on the same 

magnification. 
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Figure 3-1. Distribution of active zone sizes of the glutamatergic boutons in the tomographic and STORM 

measurements, and correlations of performance-determining mitochondrial features with synapse size. A 

Active zone area distribution of the glutamatergic boutons examined with serial electron microscopy and electron 

tomography. B The volume, crista-membrane density and crista shape factor of presynaptic mitochondria are all 

strongly correlated to synapse size, (R=0.71, p=0.0005; R=0.77, p=0.0001; and R=0.65, p=0.0026, respectively). 

Blue dots represent values from individual mitochondria, regression lines are red. C Active zone area distribution 

of the glutamatergic boutons examined with confocal laser scanning microscopy and STORM super-resolution 

microscopy. (All syn.: all examined synaptic boutons, Mito. syn.: synaptic boutons with mitochondria, LP syn.: 

low performance synaptic boutons, HP syn.: high performance synaptic boutons). Blue dots represent values from 

individual boutons, magenta rectangles represent interquartile ranges, deep-magenta lines mark median values. 

Red lines show values dividing HP and LP synaptic boutons. D The cytochrome-c labeled volume and SLP-density 

are both strongly correlated to synapse size, (R=0.77, p<0.00001; R=0.60, p=0.00002, respectively). Blue dots 

represent values from individual mitochondria, regression lines are red. 
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Figure 3-2. 3D models 

of the reconstructed 

mitochondrial volumes 

from the dentate gyrus. 

Top three rows show 

presynaptic 

mitochondria from „low 

performance” 

glutamatergic boutons, 

while the bottom three 

rows from „high 

performance” ones. 

Mitochondrial outer 

membrane is red, inner 

boundary membrane is 

turquise, crista 

membrane is green. 

CM/MV: crista 

membrane 

area/mitochondrial 

volume, CSF: crista 

shape factor. The 

models are not displayed 

on the same 

magnification. 
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