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Abstract 

Procedural learning is a fundamental cognitive function that facilitates efficient processing of 

and automatic responses to environmental stimuli. Here, we examined training-dependent and 

off-line changes of two sub-processes of procedural learning: namely, sequence learning 

(acquisition of order-based associations) and statistical learning (acquisition of frequency-

based associations). Healthy young adults completed a procedural learning task, and were 

retested after a delay containing either active wakefulness, quiet rest, or daytime sleep. 

Performance in Sequence Learning increased gradually during training and during additional 

practice after the delay, while Statistical Learning plateaued early. Although, on a behavioral 

level, Sequence and Statistical Learning were similar across groups after the delay, cortical 

oscillations were associated with performance within the sleep group only. Moreover, sleep 

spindle parameters showed differential associations with Sequence and Statistical Learning. 

Our findings can contribute to a deeper understanding of the dynamic changes of parallel 

learning and consolidation processes that underlie procedural memory formation.  

 

Keywords: procedural learning, sequence learning, statistical learning, sleep, EEG, 

consolidation 
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Introduction 

Procedural learning, the development of perceptual and motor skills through extensive 

practice is a crucial ability that facilitates efficient processing of and automatic responses to 

complex environmental stimuli. Procedural learning is evidenced by enhanced performance as 

well as functional changes in the neural network underlying behavior (Howard et al., 2004; 

Fletcher et al., 2005). Learning performance does not only depend on training during 

acquisition but also on the post-learning period (Karni et al., 1998; Doyon et al., 2009; 

Durrant et al., 2011). Nevertheless, there are intensive debates questioning whether the 

acquired memories are stabilized or enhanced during post-learning, off-line periods (Maquet 

et al., 2000; Peigneux et al., 2006; Nemeth et al., 2010; Pan and Rickard, 2015). Mixed 

findings emerging in this field suggest that different processes within the procedural learning 

domain may show different trajectories during learning and off-line periods. At least two 

processes underlying procedural learning can be distinguished: sequence learning and 

statistical learning (Howard et. al., 1997, Nemeth et al., 2013). Sequence learning refers to the 

acquisition of a series of (usually 5-12) stimuli that repeatedly occur in the same order (with 

no embedded noise in deterministic sequences, or with some embedded noise in probabilistic 

sequences). In contrast, statistical learning refers to the acquisition of shorter-range 

relationships among stimuli that is primarily based on frequency information (i.e., 

differentiating between more frequent and less frequent runs (e.g., triplets) of stimuli 

(Armstrong et al. 2017; Perruchet and Pacton, 2006; Thiessen et al., 2013; Siegelman et al., 

2017). Recent studies revealed that these two parallel learning processes show distinct 

electrophysiological characteristics (Kóbor et al., under revision). Previous research has not 

directly contrasted the consolidation of these two processes. Here, we show - using a 

visuomotor probabilistic sequence learning task - that performance in sequence learning 
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compared to statistical learning (acquisition of order vs. frequency information) show marked 

practice-dependent improvements before and after off-line periods.  

Studies on sequence learning showed enhanced behavioral performance after an off-line 

period spent asleep compared to an equivalent period spent awake, especially if individuals 

acquired an explicit, abstract or complex representation of the sequence (Robertson et al., 

2004; Spencer et al., 2006; King et al., 2017). On the other hand, learning probabilistic 

sequences (Song et al., 2007a, Nemeth et al., 2010) does not seem to benefit from post-

learning sleep on the behavioral level, while on a neural level, it has been shown that post-

learning sleep is involved in the reprocessing and optimization of the acquired probabilistic 

sequential information (Peigneux et al., 2003). Importantly, in these probabilistic sequence 

learning studies the behavioral index of learning encompassed the acquisition of both order- 

and frequency-based information, thus, the consolidation of sequence learning and  statistical 

learning was not examined separately (Song et al., 2007a,  Nemeth et al., 2010). There is 

limited evidence that statistical learning in the auditory domain benefits from sleep (Durrant 

et al., 2011, 2013), however to date, no study has investigated the consolidation, and more 

specifically, the role of sleep in statistical learning in the visuomotor domain.  

Although sequence learning and statistical learning seem to require different cognitive 

mechanisms (Howard and Howard, 1997; Perruchet and Pacton, 2006; Nemeth et al., 2013; 

Thiessen et al., 2013; Siegelman et al., 2017), in everyday learning scenarios, humans might 

rely simultaneously on both forms of learning. Previous studies investigated the consolidation 

of these processes in separate task conditions. Therefore, the first aim of our study was to 

examine the consolidation of sequence learning and statistical learning simultaneously, in the 

same experimental context. Previous studies suggest that sequence learning may, whereas 

statistical learning may not benefit from post-learning sleep and sleep-specific oscillations 

(slow wave activity and spindles); however, these studies applied awake control groups 
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engaged in daytime activities during the off-line periods (King et al., 2017). Several studies 

indicate that even a daytime nap might facilitate the consolidation of procedural memories 

compared to an equivalent time spent awake. Nevertheless, in these studies the amount of 

interference within the awake control groups was not controlled either, because participants of 

the wake group can usually do their daily routines before going back to the laboratory 

(Mednick et al., 2011). As the amount of interference might influence off-line memory 

processing (Mednick et al., 2011), our second aim was to examine the off-line change of 

sequence learning and statistical learning after three different post-learning conditions: active 

wakefulness, quiet rest, and daytime sleep. We hypothesized that sequence learning would be 

enhanced after daytime sleep and quiet rest (i.e., due to low interference) compared to active 

wakefulness, whereas off-line change in statistical learning would be independent from the 

post-learning condition. Finally, in light of previous literature on the positive influence of 

slow oscillatory and sleep spindling activity on neural plasticity and memory consolidation 

(Rasch and Born, 2013) we hypothesized that enhanced sequence learning after sleep would 

be associated with these sleep-specific oscillations. 

 

Materials and methods 

Participants 

Participants (all native Hungarians) were selected from a large pool of undergraduate 

students from the Eötvös Loránd University in Budapest. The first step of the selection 

procedure consisted of the completion of an online questionnaire assessing sleep quality and 

mental health status. Sleep-related questionnaires included the Pittsburgh Sleep Quality Index 

(PSQI, Buysse et al., 1989; Takács et al., 2016), and Athens Insomnia Scale (AIS, Soldatos et 

al., 2003; Novák, 2004). Participants that showed poor sleep quality based on previous 

normative measurements were not included. The Hungarian version of the short (nine item) 
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Beck Depression Inventory (BDI, Rózsa et al., 2001) was used to exclude participants with 

signs of mild to moderate/severe depression, therefore, participants only with a score less than 

10 were included. Respondents reporting current or prior chronic somatic, psychiatric or 

neurological disorders, or the regular consumption of pills other than contraceptives were also 

excluded. In addition, individuals reporting the occurrence of any kind of extreme life event 

(e.g., accident) during the last three months that might have had an impact on their mood, 

affect and daily rhythms were not included in the study. At the first encounter with the 

assistant, participants were instructed to follow their usual sleep-wake schedules during the 

week prior to the experiment and to refrain from consuming alcohol and all kinds of 

stimulants 24 hours before the day of the experiment. Sleep schedules were monitored by 

sleep agendas, as well as by the adapted version of the Groningen Sleep Quality Scale (Simor 

et al., 2009) in order to assess individuals’ sleep quality the night before the experiment. The 

data of participants reporting poor sleep quality the night before the experiment (> 7 points) 

were not considered in the analyses.  

After the above selection procedure, 96 right-handed (28 males, Mage = 21.66±1.98) 

participants with normal or corrected-to-normal vision were included in the study. 

Participants were randomly assigned to one of three groups: an Active Wake, a Quiet Rest, or 

a Nap group. Individuals unable to fall asleep in the Nap group (n = 10) as well as those 

falling asleep in the awake groups (n = 5) were excluded from the final analyses. 

Furthermore, 3 additional participants were excluded due to the absence of learning in the 

training session. Therefore, the final behavioral analyses were based on the data of 78 

participants (20 males, Mage = 21.71±1.97), with 25, 26, and 27 participants in the Active 

Wake, Quiet Rest, and Nap group, respectively. In case of the EEG analyses, the data of 12 

participants was excluded due to technical artifacts rendering EEG recordings less reliable. 

Therefore, physiological analyses were restricted to EEG data with sufficient quality (Active 
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Wake, N = 20; Quiet Rest, N = 21, Nap = 25). All participants provided written informed 

consent before enrollment and received course credits for taking part in the experiment. The 

study was approved by the research ethics committee of the Eötvös Loránd University, 

Budapest, Hungary (201410). The study was conducted in accordance with the Declaration 

of Helsinki. 

 

Task 

Behavioral performance was measured by the explicit version of the Alternating Serial 

Reaction Time (ASRT) task (Fig. 1, Nemeth et al., 2013). In this task, a stimulus (a dog's 

head, or a penguin) appeared in one of four horizontally arranged empty circles on the screen, 

and participants had to press the corresponding button (of a response box) when it occurred. 

Participants were instructed to respond as fast and accurate as they could. The task was 

presented in blocks with 85 stimuli. A block started with five random stimuli for practice 

purposes, followed by an 8-element alternating sequence that was repeated ten times. The 

alternating sequence was composed of fixed sequence (pattern) and random elements (e.g., 2-

R-4-R-3-R-1-R, where each number represents one of the four circles on the screen and “R” 

represents a randomly selected circle out of the four possible ones). The response to stimulus 

interval was set to 120 ms (Song et al., 2007a; Nemeth et al., 2010). In the explicit ASRT task 

participants are informed about the underlying structure of the sequence, and their attention is 

drawn to the alternation of sequence and random elements by different visual cues. In our 

case, a dog always corresponded to sequence elements, and a picture of a penguin indicated 

random elements (Figure 1A). Participants were informed that penguin targets had randomly 

chosen locations whereas dog targets always followed a predetermined pattern. They were 

instructed to find the hidden pattern defined by the dog in order to improve their performance. 

For each participant, one of the six unique permutations of the four possible ASRT sequence 
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stimuli was selected in a pseudo-random manner, so that the six different sequences were used 

equally often across participants (Howard and Howard, 1997; Nemeth et al., 2010).  

The task consisted of a total of 40 blocks. Participants completed 25 blocks during the 

training phase. This was followed by a short (3 minutes long) break in order to minimize the 

fatigue effect due to massed practice (Rickard et al., 2008; Rieth et al., 2010). After the break, 

participants were tested on the task for 5 more blocks that constituted the testing phase. 

Subsequently, participants spent an approximately one-hour long off-line period in one of the 

three conditions (Active Wake, Quiet Rest, and Nap). Finally, they completed a retesting 

phase: 10 more blocks of the same task. The training phase lasted approximately 30 minutes, 

the testing phase 5 minutes, and the retesting phase 10 minutes. Awareness of the sequence 

(pattern elements) was measured after each block. Participants had to type in the regularities 

they noticed during the task using the same response buttons they used during the ASRT 

blocks. This method allowed us to determine the duration (in terms of the number of blocks) 

participants needed to learn the sequence correctly as defined by consistently reporting the 

same sequence from that point on in the remaining blocks. 
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Figure 1. The modified Alternating Serial Reaction Time (ASRT) task. A) Pattern and random trials are 

presented in an alternating fashion. Pattern trials are marked with a picture of a dog, random ones with that of a 

penguin. Pattern trials always appear in a given location with high probability. Random trials include trials that 

appear in a given location with high probability and trials that appear in a given location with low probability. B) 

As the ASRT task contains an alternating sequence structure (e.g., 2R4R3R1R, where numbers correspond to the 

four locations on the screen and the letter R represents randomly chosen locations), some runs of three 

consecutive elements (called triplets) occur more frequently than others. For subsequent analyses, we determined 

for each stimulus whether it was the last element of a high-frequency triplet (black frames) or the last element of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/216374doi: bioRxiv preprint 

https://doi.org/10.1101/216374
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deconstructing procedural memory 

9 

 

a low-frequency triplet (purple frames). C) We assessed Statistical Learning by comparing the responses for 

those random elements that were the last elements of a high frequency triplet, opposite to those that were the last 

of a low frequency triplet. In contrast, Sequence Learning was quantified as the difference between responses for 

pattern elements (which were always high frequency triplets) vs. random-high frequency triplet elements. D) 

Study Design. The training phase consisted of five epochs (25 blocks). The testing and retesting phases 

comprised one and two (that is, 5 and 10 blocks), respectively. 

 

Trial types and learning indices 

The alternating sequence of the ASRT task forms a sequence structure in which some 

of the runs of three successive elements (henceforth referred to as triplets) appear more 

frequently than others. In the above example, triplets such as 2X4, 4X3, 3X1, and 1X2 (X 

indicates the middle element of the triplet) occur frequently since the first and the third 

elements can either be pattern or random stimuli. However, 3X2 and 4X2 occur less 

frequently since the first and the third elements can only be random stimuli. Figure 1B and 1C 

illustrate this phenomenon with the triplet 2-1-4 occurring more often than other triplets such 

as 2-1-3, 2-1-1, and 2-1-2. The former triplet types are labeled as high-frequency triplets 

whereas the latter types are termed as low-frequency triplets (see Figure 1C and Nemeth et al., 

2013).  

The third element of a high-frequency triplet is highly predictable (with 62.5 % 

probability) from the first element of the triplet. In contrast, in low-frequency triplets the 

predictability of the third element is much lower (based on a probability of 12.5 %). 

According to this principle, each stimulus was categorized as either the third element of a 

high- or a low-frequency triplet. Moreover, trials are differentiated by the cues (dog and 

penguin) indicating whether the stimulus belongs to the pattern or the random elements. In 

case of pattern trials, participants can use their explicit knowledge of the sequence to predict 

the trial, thus we differentiate high-frequency triplets with the last element being a pattern 
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from those triplets in which the last one is a random element. This way, the task consists of 

three trial types: 1) elements that belong to the explicit sequence and at the same time appear 

as the last element of a high-frequency triplet are called pattern trials; 2) random elements 

that appear as the last element of a high-frequency triplet are called random high trials; and 3) 

random elements that appear as the last element of a low-frequency triplet are termed random 

low trials (see the example in Figure 1C).  

To disentangle the two key learning processes underlying performance on the explicit 

ASRT task, we differentiate Sequence Learning and Statistical Learning (Figure 1C). 

Sequence Learning is measured by the difference in reaction times (RT) between random high 

and pattern elements (the average RT for random high elements minus the average RT for 

pattern elements). These elements share the same statistical properties (both correspond to the 

third element of high-frequency triplets), but have different sequence properties (i.e., pattern 

vs. random elements). Thus, greater Sequence Learning is determined as faster responses to 

pattern in contrast to random high trials. Statistical Learning is assessed by comparing the 

responses for those random elements that were the last elements of a high-frequency triplet, 

opposite to those that were the last of a low-frequency triplet (the average RT for random low 

elements minus the average RT for random high elements). These elements share the same 

sequence properties (both are random) but differ in statistical properties (i.e., they correspond 

to the third element of a high or a low-frequency triplet). Hence, faster responses to random 

high compared to random low trials yields greater Statistical Learning. In sum, Sequence 

Learning quantifies the advantage (in terms of RT) due to the awareness of the sequential 

pattern, whereas Statistical Learning captures purely frequency-based learning (Nemeth et al., 

2013).  

 

Procedure 
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One to two weeks prior the experiment, participants were invited to the laboratory in 

order to familiarize them with the environment, and to assess their working memory and 

executive functions based on the Wisconsin Card Sorting Test (PEBL’s Berg Card Sorting 

Test; Fox et al., 2013) and the Digit Span (Racsmány et al., 2005) and Counting Span 

(Conway et al., 2005) tasks, respectively. Participants were instructed to complete sleep 

agendas reporting the schedules, duration and subjective quality of their sleep. At the day of 

the experiment, participants arrived at the laboratory at 10.00 AM. They completed the GSQS 

assessing previous nights’ sleep quality. Additionally, their subjective stress levels scored on 

a 10-point Likert scale (“On a scale from 0-10 how stressed are you feeling now?”), as well as 

the Karolinska Sleepiness Scale (KSS, Akerstedt and Gillberg, 1990) were administered. 

Subsequently, EEG caps with 64 electrodes were fitted by two assistants. Testing started at 

11.30 AM and took place in a quiet room equipped with a large computer screen, a response 

box and EEG recording device. After listening to the instructions, participants had the 

opportunity to practice the task in order to get familiar with the stimuli and the response box; 

however, all stimuli appeared in a random fashion during the practice session. This was 

followed by the explicit ASRT task composed of the training phase, testing phase, off-line 

period, and retesting phase (Figure 1D). A 3-min long break was inserted between the 

learning and the testing phases during which the fitting of the EEG caps were monitored and 

impedances were reset under 10 kΩ. The off-line period extended from 12.30 to 13.30. 

Participants assigned to the Active Wake group were instructed to watch an approximately 

one-hour long documentary. (They were allowed to select from documentaries of different 

topics such as natural sciences, nature or history). Participants of the Quiet Rest group were 

asked to sit quietly with eyes closed in a comfortable chair. They were instructed by the 

assistant to open their eyes for 1 minute, every 5 minutes or in case the EEG recording 

showed any sign of sleep onset (slow eye movements, attenuation of alpha waves and 
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presence of theta oscillations). Participants in the Nap group had the opportunity to spend a 

daytime nap in the laboratory. The off-line period took place (in all groups) at the same room 

in which learning, testing and retesting occurred, and was monitored by EEG. Before the 

retesting phase, participants were asked to complete again the KSS and the scale assessing the 

level of stress.     

 

EEG recording 

EEG activity was measured by using a 64-channel recording system (BrainAmp 

amplifier and BrainVision Recorder software, BrainProducts GmbH, Gilching, Germany). 

The Ag/AgCl sintered ring electrodes were mounted in an electrode cap (EasyCap GmbH, 

Herrsching, Germany) on the scalp according to the 10% equidistant system. During 

acquisition, electrodes were referenced to a scalp electrode placed between Fz and Cz 

electrodes. Horizontal and vertical eye movements were monitored by EOG channels. Three 

EMG electrodes to record muscle activity, and one ECG electrode to record cardiac activity 

were placed on the chin and the chest, respectively. All electrode contact impedances were 

kept below 10 kΩ. EEG data was recorded with a sampling rate of 500 Hz, band pass filtered 

between (0.3 and 70 Hz). 

In order to remove muscle and eye movement related artifact from the awake EEG 

data (Active Wake and Quiet Rest groups), EEG preprocessing was performed using the Fully 

Automated Statistical Thresholding for EEG artifact Rejection (FASTER) toolbox 

(http://sourceforge.net/projects/faster, Nolan et al., 2010) implemented in EEGLAB (Delorme 

and Makeig, 2004) under Matlab (The Mathworks). The data was first re-referenced to the Fz 

electrode, notch filtered at 50 Hz, and band-pass filtered between 0.5 – 45 Hz. Using a 

predefined z-score threshold of ±3 for each parameter, artifacts were detected and corrected 

regarding single channels, epochs, and independent components (based on the infomax 
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algorithm Bell and Sejnowski, 1995). This way, data was cleared from eye-movement, muscle 

and heartbeat artifacts. The data was then re-referenced to the average of the mastoid 

electrodes (M1 and M2). Remaining epochs containing artifacts were removed after visual 

inspection on a 4-seconds long basis. In case of the sleep recordings (Nap group), data was re-

referenced to the average of the mastoid electrodes, and sleep stages as well as conventional 

parameters of sleep macrostructure were scored according to standardized criteria (Berry et 

al., 2012) by two experienced sleep researchers. Periods of NREM sleep (Stage 2 and SWS) 

were considered for subsequent analyses. Epochs containing artifacts were visually inspected 

and removed on a 4-seconds basis.  

Spectral power and sleep spindle analyses of artifact-free segments were performed by 

a custom made software tool for EEG analysis (FerciosEEGPlus, © Ferenc Gombos 2008-

2017). Overlapping (50%), artifact-free, four-second-epochs of all EEG derivations were 

Hanning-tapered and Fourier transformed by using the FFT (Fast Fourier Transformation) 

algorithm in order to calculate the average power spectral densities. The analyzed frequencies 

spanned between 0.75-31 Hz in the Nap group, and between 1.5 - 25 Hz in the awake groups. 

Low frequencies (0.75-1.5 Hz) were not considered in the awake conditions due to the 

negligible and unreliable contribution of measurable cortical activity at this frequency range 

during wakefulness. In addition, frequencies above 25 Hz were unreliable in the awake data 

due to technical and movement-related artifacts. We summed up frequency bins to generate 

five frequency bands for the wake groups: delta (1.5-4 Hz), theta (4.25-8), alpha (8.25-13), 

sigma (13.25-16), and beta (16.25-25 Hz) frequency bands, and five frequency domains for 

the sleep group: delta (0.75-4 Hz), theta (4.25-8), alpha (8.25-13), sigma (13.25-16), and beta 

(16.25-31 Hz) frequency ranges. In order to reduce the number of parameters, we averaged 

bandwise spectral power measures of Frontal (frontal, frontocentral and frontotemporal), 
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Central (central and centrotemporal), and Posterior (parietal, parietotemporal and occipital) 

electrode derivations.  

We quantified sleep spindling activity by the Individual Adjustment Method (IAM, 

(Bódizs et al., 2009; Ujma et al., 2015) that considers individual spectral peaks to detect 

spindles in each participant. This method defines frequency boundaries for slow and fast 

spindle based on the spectral power of NREM sleep. These individualized boundaries are 

used as frequency limits for slow and fast spindle bandpass filtering (FFT-based, Gaussian 

filter, 16 s windows) of the EEGs. Thresholding of the envelopes of the band-pass filtered 

recordings are performed by individual and derivation-specific amplitude criteria (See the 

description of the method in more detail in Bódizs et al., 2009; Ujma et al., 2015). We used 

spindle density (spindles/min) and the average amplitude (μV) of slow and fasts spindles as 

different measures of spindling activity. To reduce the number of statistical comparisons, we 

averaged spindle measures of Frontal, Central, and Posterior electrode derivations similarly to 

spectral power measures. 

 

Statistical analyses 

Statistical analyses were carried out with the Statistical Package for the Social 

Sciences version 22.0 (SPSS, IBM) and R (Team, 2014). The blocks of the explicit ASRT 

task were collapsed into epochs of five blocks to facilitate data processing and to reduce intra-

individual variability. The first epoch contained blocks 1–5, the second epoch contained 

blocks 6–10, etc. We calculated median reaction times (RTs) for all correct responses, 

separately for pattern, random high and random low trials for each epoch. Note that for each 

response (n), we defined whether it was the last element of a high- or a low-frequency triplet. 

Two kinds of low-frequency triplets were eliminated: repetitions (e.g., 222, 333) and trills 

(e.g., 212, 343). Repetitions and trills corresponded to low frequency triplets for all 
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participants and individuals often show pre-existing response tendencies to such triplets 

(Howard et al., 2004). By eliminating these triplets, we attempted to ensure that differences 

between high vs. low-frequency triplet elements emerged due to learning and not to pre-

existing response tendencies.  

To show the performance trajectories of RTs for different trial types, and to explore 

their differences, we performed a mixed design analyses of variance (ANOVA) with EPOCH 

(1-8) and TRIAL TYPE (pattern, random high, random low) as within-subject factors, and 

GROUP (Active Wake, Quiet Rest, Nap) as a between-subject factor. To evaluate the effect 

of epoch and trial type we performed post-hoc comparisons (Fisher’s LSD).  

In order to examine the changes in Statistical and Sequence Learning that occur during 

the training phase, we applied a mixed-design ANOVA with EPOCH (1 -5) and LEARNING 

TYPE (Statistical Learning, Sequence Learning) as within-subject factors, and GROUP 

(Active Wake, Quiet Rest and Nap) as a between-subject factor. Post-hoc comparisons were 

applied to evaluate changes in performance during the training phase in case of Sequence and 

Statistical Learning. 

To examine offline changes occurring between testing and retesting sessions we used a 

similar mixed-design ANOVA with EPOCH (6-8) and LEARNING TYPE (Statistical 

Learning, Sequence earning) as within-subject factors, and GROUP (Active Wake, Quiet Rest 

and Nap) as a between-subject factor. Post-hoc comparisons were run to contrast 

performances of the testing phase (6th epoch) and the retesting phases (7th and 8th epochs). 

Greenhouse-Geisser epsilon (ε) correction was used if necessary. Original df values 

and corrected p values (if applicable) are reported together with partial eta-squared (ηp
2) as a 

measure of effect size.  

Finally, we aimed to examine the associations between EEG spectral power measured 

during the off-line period and change in learning performance across the testing and retesting 
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phase, in each group separately. Off-line changes in Sequence and Statistical Learning were 

defined as the difference between the learning scores of the first retesting (7th epoch) session 

and the testing session (6th epoch). Thus, a positive value indicated improvement in learning 

performance after the off-line period. Furthermore, we aimed to examine whether EEG 

spectral power measured during off-line periods predicted additional performance change 

after longer re-learning, therefore, we calculated a secondary off-line change score contrasting 

learning scores of the 8th (2nd half of the retesting session) with those of the 6th epoch (testing 

session).  

The associations between sleep spindles and off-line changes of the above measures 

were also examined (within the sleep group only). Pearson correlation coefficients or (if 

normality was violated) Spearman rank correlations were run between spectral power values 

(of each region and band) and off-line changes in learning scores. The issue of multiple 

comparisons was addressed by the False Discovery Rate correcting for type 1 error 

(Benjamini and Hochberg, 1995).  

 

Results 

Group characteristics 

Groups were matched in age, gender, working memory, executive function, and initial 

sleepiness and stress level (Table 1). However, after the one hour long offline period, the 

groups differed in sleepiness (F2,75 = 3.19, p = 0.05), post-hoc test showed that the Nap group 

scored significantly higher on the KSS (indicating lower sleepiness) than the Active Wake 

group (p = 0.02), however the difference was not significant after FDR correction. 

 

Table 1. Descriptive characteristics of groups 

 Active Wake Quiet Rest Nap group  
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Variable group 

Mean (SD) 

group 

Mean (SD) 

Mean (SD) p value 

Age (years) 22.08 (2.04) 22.00 (1.94) 21.15 (1.83) p = 0.16 

Gender (male, %) 28% 22% 27% p = 0.88 

GSQS 1.96 (1.72) 2.31(2.13) 2.33 (1.96) p = 0.75 

Stress scale 1 2.65 (2.09) 2.55 (1.43) 3.33 (1.98) p = 0.35 

Stress scale 2 2.59 (1.28) 2.00 (1.33) 1.77 (1.41) p = 0.17 

KSS 1 6.44 (1.26) 6.81 (1.13) 6.19 (1.52) p = 0.24 

KSS 2 5.64 (1.19) 5.96 (1.70) 6.62 (1.30) p = 0.05 

Digit span 6.32 (1.31) 5.88 (1.14) 6.26 (1.06) p = 0.36 

Counting span 3.91 (1.50) 3.59 (0.72) 3.48 (0.81) p = 0.33 

WCST – number of 

perseverative errors 

15.67 (9.23) 14.31 (3.23) 13.19(5.86) p = 0.40 

Note GSQS – Groningen Sleep Quality Scale, KSS - Karolinska Sleepiness Scale, WCST - Wisconsin Card 

Sorting Test 

 

 

 Sleep parameters of the Nap group are listed in Table 2. In the Nap group, only 1 

participant reached REM phase during sleep, thus we only report the characteristics of Non-

REM sleep.  

 

 

Table 2. Descriptive characteristics of sleep parameters in the Nap group 

Variable Mean (SD) 

Sleep duration (min) 41.16 (12.35) 

Sleep efficiency (%) 70.28 (16.27) 
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Wake duration (min) 16.53 (7.77) 

S1 duration (min) 6.02 (3.62) 

S2 duration (min) 17.93 (6.59) 

SWS duration (min) 16.89 (12.82) 

Note S1 – Stage 1, S2 – Stage 2, SWS – Slow Wave Sleep 

 

Awareness of the sequence in the groups 

By the end of the task all but 4 participants reported the correct sequence. The RTs 

and learning indices of these 4 participants were within 1 standard deviation from the mean, 

thus their learning did not differ from those who gained explicit knowledge of the sequence. 

There were no differences across the groups in the time needed for gaining explicit 

knowledge about the sequence during the experiment defined as the number of the block in 

which the participant could report the sequence structure (F2,73 = 1.68, p = 0.19). On average, 

participants gained explicit knowledge of the sequence after the 3rd block (M = 3.46, SD = 

4.44). 87% of participants reported the sequence during the first epoch (first 5 blocks), and 

95% reported it in the first 2 epochs (first ten blocks). 

 

Are performance trajectories of responses to different trial types different between groups? 

 Overall, participants in the different groups responded with similar RTs (main effect 

of GROUP: F2,75 = 0.80, p = 0.46, partial η2 = 0.02). Irrespectively of trial types, RTs 

significantly decreased across epochs (main effect of EPOCH: F7,525 = 175.26, p < 0.0001, 

partial η2 = 0.70), indicating general skill improvements due to practice (Figure 2). The 

GROUP x EPOCH interaction was not significant (F14,525 = 1.18 p = 0.32, partial η2 =0.03), 

suggesting that general skill improvements were similar in the groups. Furthermore, 

participants showed significant Sequence and Statistical Learning (main effect of TRIAL 

TYPE: F2,150 = 52.04, p < 0.0001, partial η2 = 0.41): they responded faster to pattern than 
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random high trials (p < 0.0001), and faster to random high compared to random low trials (p < 

0.0001). The GROUP x TRIAL TYPE interaction was not significant (F4,150 = 0.80, p = 0.46, 

partial η2 =0.02) indicating that there was no difference between the groups in performance 

for different trial types. In addition to that, the EPOCH x TRIAL TYPE interaction was 

significant (F14,1050 = 11.93, p < 0.0001, partial η2 = 0.14), indicating different learning 

trajectories in case of the three trial types (see Figure 2). Although participants became faster 

for all trial types during the course of the task, responses to pattern trials showed greater gains 

in comparison to both random trials: Average reaction times of pattern trials decreased from 

357.89 to 257.56 ms (p < 0.0001), of random high trials from 370.98 to 326.14 ms (p < 

0.0001), and of random low trials from 388.26 to 349.65 ms (p < 0.0001). Practice-dependent 

improvement in response to pattern trials was significantly higher than the improvement in 

case of random high (t77 = 4.81, p < 0.0001) and random low (t77 = 5.45, p < 0.0001) trials. 

The improvement in responses to random high and random low trials was only marginally 

different (t77 = 1.84, p = 0.07). The GROUP x EPOCH x TRIAL TYPE interaction was not 

significant (F28,1050 = 0.66, p = 0.68, partial η2 =0.02), suggesting that performance trajectories 

to the different trial types were similar among the groups.  
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Figure 2. Performance during the training, testing and retesting sessions. Mean reaction times and standard 

errors are visualized in response to pattern (P), random high (RH), and random low (RH) trials during each 

epoch.  

 

Do Sequence and Statistical Learning during training differ between groups? 

Sequence and Statistical Learning during the training phase were similar across the 

groups (main effect of GROUP: F2,75 = 1.10, p = 0.34, partial η2 = 0.03). Irrespectively of 

learning type, performance improved across epochs of training (main effect of EPOCH: F4,300 

= 10.92, p < 0.0001, partial η2 = 0.13). The GROUP x EPOCH interaction was not significant 

(F8,300 = 0.59, p = 0.68, partial η2 =0.02), suggesting that improvement during training was 

similar between the groups. In addition, the main effect of LEARNING TYPE was significant 

(F1,75 = 3.93, p = 0.05, partial η2 = 0.05): participants showed greater Sequence Learning 

compared to Statistical Learning (M = 32.50 vs. M = 19.64, p < 0.0001). The GROUP x 

LEARNING TYPE interaction was not significant (F2,75 = 0.81, p = 0.45, partial η2 =0.02), 

suggesting that the difference between Sequence and Statistical Learning were similar among 

the groups. Furthermore, a significant interaction between EPOCH and LEARNING TYPE 

emerged (F4,300 = 5.52, p = 0.002, partial η2 = 0.07): as illustrated in Figure 3, participants 

exhibited a steep increase in Sequence Learning during the training phase (the average 

learning score increased from 13.09 to 53.31 from the 1st epoch to the 5th, (p < 0.001), 

whereas Statistical learning occurred in the beginning of the task and remained unchanged by 

the end of the training phase (the average learning score increased from 17.28 to 18.64 from 

the 1st epoch to the 5th, p = 0.68). The GROUP x EPOCH x LEARNING TYPE interaction 

was not significant (F8,300 = 0.58, p = 0.72, partial η2 =0.02), suggesting that training-

dependent patterns of Sequence Learning and Statistical Learning were similar across the 

groups.  
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Figure 3. Learning and off-line changes in Sequence and Statistical Learning. Means and standard errors of 

Sequence Learning and Statistical Learning during each epoch. Sequence Learning exhibited a steep increase 

during training and additional practice after the off-line periods, whereas Statistical Learning remained 

unchanged throughout the sessions. 

 

Are off-line changes in Sequence and Statistical Learning different across the groups? 

The three groups did not show different patterns of Sequence and Statistical Learning 

from the testing to the retesting sessions, as neither the main effect of GROUP (F2,75 = 0.65, p 

= 0.53, partial η2 = 0.02), nor the interactions GROUP x EPOCH (F4,150 = 0.52, p = 0.67, 

partial η2 = 0.01), GROUP x LEARNING TYPE (F2,75 = 0.65, p = 0.53, partial η2 = 0.02), and 

GROUP x EPOCH x LEARNING TYPE (F4,150 = 0.73, p = 0.55, partial η2 = 0.02) emerged as 

significant predictors. The lack of a group effect is shown in Figure 4 that illustrates off-line 

changes (6th vs the 7th epoch) in Sequence and Statistical Learning separately for each group.  

Similarly to the training phase, participants exhibited higher scores in Sequence Learning than 

in Statistical Learning (main effect of LEARNING TYPE: F1,75 = 10.72, p = 0.002, partial η2 

= 0.13). Moreover, learning indices produced robust changes across epochs as indicated by a 

significant main effect EPOCH (F2,150 = 18.99, p < 0.0001, partial η2 = 0.20). More 

specifically, overall performances (regardless of learning type) were unchanged from the 
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testing phase (6th epoch) to the first retesting epoch (7th) (p = 0.86), but improved (p < 0.0001) 

from the testing phase to the end of the retesting session (8th epoch), and from the first 

retesting epoch to the second (7th epoch vs 8th epoch) (p < 0.0001). Furthermore, Sequence 

Learning and Statistical Learning scores showed different patterns after the off-line period 

(see Epoch 7 and 8 in Figure 3), as indicated by the significant EPOCH x LEARNING TYPE 

interaction (F2,150 = 5.31, p = 0.009, partial η2 = 0.07). Neither Sequence Learning nor 

Statistical Learning seemed to show immediate (early) gains after the off-line period. 

Sequence Learning scores did not significantly change from the testing phase to the first 

epoch of retesting (6th epoch, M = 47.02 vs. 7th epoch, M = 47.69, p = 0.85). Similarly, 

Statistical Learning remained unchanged from testing to the first retesting (6th epoch, M = 

21.39 vs. 7th epoch, M=19.96, p = 0.56).  Nevertheless, additional practice produced robust 

changes in Sequence Learning, that increased significantly from the testing phase to the 

second epoch of the retesting phase (8th epoch, M = 68.19, p = 0.001), whereas Statistical 

Learning did not show any significant changes by the end of the retesting phase (8th epoch: M 

= 23.51, p = 0.41). 
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Figure 4. Off-line changes in learning indices within the three groups. Dots show individual data points, the 

vertical line within the boxes show the medians, boxes represent the first and third quartiles, whiskers indicate 

the interquartile range of 1.5.  

 

Associations between EEG spectra and off-line changes 

Off-line changes in Sequence and Statistical Learning as indexed by the difference 

scores between the 7th (first half of retesting phase) and the 6th epochs’ (testing phase) scores 

were not associated with spectral EEG power measures in any of the three groups. Additional 

off-line-changes in Sequence Learning as indexed by the difference scores between the 8th 

(second half of retesting phase) and the 6th epochs’ (testing phase), however, showed a 

positive association with frontal theta power (r = 0.52, p= 0.008) within the nap group. 

Nevertheless, the correlation did not reach statistical significance after FDR correction of 

multiple comparisons. Since region-wise averaging of electrodes might not capture 
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associations between behavioral measures and spectral power of a more local nature, we 

examined (on an exploratory level) the associations between theta activity and off-line change 

(8th vs 6th epoch) in Sequence Learning within the nap group. As shown in Figure 5, 

associations with theta band power were prominent at frontal electrode sites, peaking at left 

frontopolar locations. Finally, we examined the associations between off-line (8th vs 6th 

epoch) change in Sequence Learning and bin-wise EEG spectral power averaged across all 

electrodes (within the Nap group). Post-sleep improvement in Sequence Learning correlated 

only with slow frequency activity between 2-7.75 Hz (all bins p < 0.01).  

 

Figure 5. Association between NREM theta power and further gains (8th vs. 6th epoch) in off-line change in case 

of Sequence Learning. The heat plot on the right indicates the magnitude of Spearman Rho correlation 

coefficients, the scatterplot on the left shows the association in a prominent (left frontal) electrode site. 

Correlation remained significant (r = 0.64, p < 0.001) after the exclusion of the outlier.  

 

Off-line change (8th vs 6th epoch) in Statistical Learning was not associated with 

spectral power measures within the nap group, and no other associations emerged within the 

Quiet Rest and Active Wake groups. 
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In sum, individual differences in off-line changes in Sequence and Statistical Learning 

assessed immediately after the long delay (6th vs. 7th epoch) were not associated with spectral 

EEG power. After extended practice, subsequent (6th vs. 8th epoch) changes in Statistical 

Learning were not associated with spectral EEG power measures, but further improvements in 

Sequence Learning were predicted by high delta and theta activity during sleep within the 

Nap group. 

 

Associations between sleep spindles and off-line changes 

Off-line change (7th vs 6th epoch) in Sequence Learning showed a negative correlation 

with slow spindle density in Frontal (r = -0.52, p = 0.008), Central (r = -0.54, p = 0.006) and 

Posterior (r = -0.53, p = 0.006) derivations. Slow spindle amplitude, fast spindle density and 

amplitude were not associated with the off-line change in Sequence Learning. Negative 

correlations between slow spindle density and off-line change in Sequence Learning remained 

significant after FDR correction. As Figure 6A indicates negative correlations of similar 

magnitude (r ≈ -0.35 – -0.6) emerged in all electrode sites, except right temporal regions.  

Off-line change in Statistical Learning was negatively correlated with fast spindle 

amplitude (Frontal: r = -0.43, p = 0.03; Central: r = -0.47, p = 0.02; Posterior: r = -0.44, p = 

0.03), but was not related either to fast spindle density or slow spindle density/amplitude. 

Correlations between fast spindle amplitude and off-line change in Statistical Learning were 

not significant after FDR correction. Regarding the topographical distribution of the 

correlations between fast spindle amplitude and off-line change in Statistical Learning, 

coefficients showed similar magnitudes (r ≈ -0.3 – -0.56), and peaked at left centro-posterior 

electrode sites (Figure 6B).  
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Figure 6. Associations between spindle parameters and off-line changes in learning indices. Scatterplots of 

prominent electrode sites and heat plots visualizing the magnitude of correlation coefficients are shown. Slow 

spindle density and fast spindle amplitude were negative correlates of off-line changes in Sequence Learning (A) 

and Statistical Learning (B), respectively. 

 

To examine whether the negative correlation between off-line changes in performance 

and spindle parameters were linked to overall Sequence/Statistical Learning ability, we 

applied partial correlations with learning performance of the training phase as a covariate. 

Learning performance here was computed as the differences in Sequence and Statistical 

learning between the 5th and the 1th epochs of the training phase. Slow spindle density 
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remained a negative correlate of off-line change in Sequence Learning even after controlling 

for this initial Sequence Learning performance (Frontal: r = -0.5, p = 0.02; Central: r = -0.52, 

p = 0.009; Posterior: r = -0.51, p = 0.01). 

Similarly, partial correlations were computed between fast spindle amplitude and off-

line change in Statistical Learning with Statistical Learning performance as a covariate. The 

correlations remained significant even after partialing out this initial Statistical Learning 

performance (Frontal: r = -0.37, p = 0.07; Central: r = -0.43, p = 0.03; Posterior: r = -0.36, p = 

0.08).   

 Additional off-line-changes in Sequence and Statistical Learning as indexed by the 

difference scores between the 8th (second half of retesting phase) and the 6th epochs’ (testing 

phase) were not associated to any of the extracted spindle parameters. 

 

Discussion   

 Our aim was to investigate performance trajectories in Sequence and Statistical 

Learning during extensive practice and after off-line periods spent in different vigilance 

states. In order to examine these processes in the same experimental context, we applied a 

paradigm that simultaneously measured sequence and statistical Learning by delineating order 

and frequency-based information. Our findings indicate that Sequence and Statistical 

Learning follow markedly different learning curves. Whereas performance in Sequence 

Learning exhibited a gradual increase during training, Statistical Learning was rapidly 

acquired but remained unchanged throughout training. After the off-line period, both forms of 

learning were preserved as no significant changes emerged in either Sequence or Statistical 

Learning. Nevertheless, Sequence Learning improved after additional practice, whereas 

Statistical Learning remained stable regardless of further training compared to the testing 

phase. Performance trajectories were similar across the groups: Performance during training 
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and after off-line periods did not differ between the Active Wake, Quiet Rest and Nap groups. 

EEG spectral power assessed during the off-line periods was not associated with off-line 

changes in Sequence and Statistical Learning in either group. Within the Nap group, slow 

spindle density was negatively associated with post-sleep improvement in Sequence Learning, 

and fast spindle amplitude was negatively associated with post-sleep improvement in 

Statistical Learning. Furthermore, within the Nap group, slow frequency oscillations (high 

delta and theta power) predicted further improvements in Sequence Learning after additional 

practice.  

  From a theoretical perspective it is important to note that sequence learning can also 

be viewed as a type of statistical learning (for overview see Thiessen et al., 2013, Peruchet 

and Pacton 2006). For example, in our experimental design sequence learning constitutes of 

learning regularities where second order transitional probability is one; thus, the next 

sequence element is predictable based on the previous sequence element with 100% certainty, 

meaning that all sequence elements will always appear in the same order over the entire 

course of the task. This is in contrast to statistical learning where the second order transitional 

probability is less than one: namely, high frequency triplets can be predicted with 

approximately 62.5% certainty compared to the 12.5% of low frequency triplets, meaning that 

these triplets (i.e., a given high frequency triplet after a given low frequency triplet, etc.) do 

not always occur in the same order during the task. Importantly, sequence learning and 

statistical learning as defined in our study show different developmental trajectories (Nemeth 

et al., 2013) and different neurophysiological background (Kóbor et al., under revision). Our 

results also indicate that sequence and statistical learning are markedly different sub-processes 

of procedural learning. The acquisition of order-based information seems to be a gradual 

process, and shows a steep improvement during training. In contrast, frequency-based 

information is acquired rapidly and remains stable irrespective of further training. This 
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finding corroborates earlier data (Nemeth et al., 2013) that showed different developmental 

trajectories of sequence and statistical learning between 11 and 40 years of age but did not 

analyze the time course of these learning types. Here, we extended this previous study by 

investigating the time course of learning from the acquisition period to the post-consolidation 

period with inserting a napping, a quiet rest or a wakeful, alert vigilance condition in-between. 

The levels that participants achieved in Sequence and Statistical Learning after extensive 

practice were unchanged following the one-hour long off-line period, regardless of state of 

vigilance.  

  We had a special focus on the off-line change and the effect of sleep on Sequence 

Learning and Statistical Learning. In order to differentiate between the specific effects of 

sleep and from the indirect effect of reduced interference during off-line periods, we included 

a quiet rest control group into the design. On the behavioral level, we found no sleep-

dependent consolidation neither in Sequence Learning nor in Statistical Learning. The lack of 

evidence for the beneficial influence of sleep on statistical learning is in line with previous 

studies that used probabilistic sequence learning tasks (Peigneux et al., 2003, 2006; Song et 

al., 2007a; Nemeth et al., 2010; Hallgató et al., 2013), however, we should note that these 

studies did not differentiate between order-based and frequency-based learning mechanisms. 

Here, we aimed to investigate the influence of sleep on pure (frequency-based) statistical 

learning in the perceptual-motor domain. Other studies examined sleep-dependent 

consolidation on statistical learning in the auditory domain (Durrant et al., 2011, 2013) and 

contrary to our results, found improved performance after sleep compared to wakefulness. 

Discrepancies between these studies and our findings might stem from methodological 

differences (overnight sleep and longer daytime naps in Durrant and colleagues’ study) as 

well as the examined modality (auditory system vs. perceptual-motor system). Nevertheless, it 
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is important to highlight that Durrant and colleagues (Durrant et al., 2011) did not include a 

quiet rest condition that might be favorable in napping studies.   

Interestingly, and contrary to our expectations sleep did not facilitate off-line 

improvement in Sequence Learning either. In case of perceptual-motor sequence learning, 

Robertson and colleagues (Robertson et al., 2004) reported sleep-dependent consolidation in 

the explicit version of the Serial Reaction Time task using deterministic sequences. 

Discrepant findings between the present and Robertson and colleagues’ study can be the result 

of different sequence structures applied in the SRT and ASRT task. In addition, other 

confounding factors, such as the effects of fatigue or reactive inhibition (Török et al., 2017) 

might have a different impact on these tasks. For instance, effects of fatigue are typical to 

occur in learning tasks (Rickard et al., 2008; Brawn et al., 2010; Pan and Rickard, 2015), 

however, ASRT learning scores seem to be relatively immune against the influence of fatigue 

(Török et al., 2017). Furthermore, recent studies raised concerns about the reliability of the 

deterministic SRT task (Stark-Inbar et al., 2017; West et al., 2017) while the ASRT proved to 

be a more reliable measure of sequence learning (Stark-Inbar et al., 2017). 

Performance in Sequence and Statistical Learning did not show off-line improvements 

immediately after the long delay period; however, performance in Sequence Learning 

exhibited further gains after additional practice. Interestingly, the extent of further, training-

dependent improvement was associated with slow oscillatory activity within the Nap group. 

This finding indicates that not sleep per se, but sleep-specific oscillations are associated with 

late performance gains after sleep and additional practice. This finding corroborates a recent 

study (Maier et al., 2017) showing that daytime sleep does not contribute to immediate 

improvements after sleep in a finger tapping task, but facilitates subsequent gains after 

additional training. Here, we extend these considerations by suggesting that slower oscillatory 

activity including the (high) delta and the theta frequency ranges (from 2 to 7.75 Hz) during 
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daytime sleep are specifically predictive of further, (late) improvements in Sequence 

Learning. Slow frequency oscillations peaking at anterior locations and spanning between 1 

Hz to 8 Hz reflect the homeostatic and restorative capacity of sleep as power in these 

frequencies is increased after prolonged wakefulness (Borbély et al., 1981; Marzano et al., 

2010) in fronto-central derivations and predict improved performance in cognitive tasks 

(Mander et al., 2010). Furthermore, the homeostatic increase in spectral power between 2-7 

Hz is state-independent (Marzano et al., 2010) making these oscillations likely candidates to 

reflect restorative processes during a daytime nap, with lower homeostatic pressure. Whether 

the association between slow frequency activity and further improvement in Sequence 

Learning reflects processes of sleep-related memory consolidation, or a non-specific effect of 

restorative sleep facilitating performance remains a question of further research. 

Sleep spindle parameters within the Nap group were negatively associated with off-

line changes in performance: slow spindle density and fast spindle amplitude showed negative 

associations with early off-line changes in Sequence Learning and Statistical Learning, 

respectively. These findings are hard to interpret as they are at odds with the majority of 

previous findings that reported a positive association between spindle parameters, general 

cognitive abilities, and off-line gains in performance in a variety of declarative and procedural 

learning tasks (see Rasch and Born, 2013 for a comprehensive review). Still, negative 

correlations were also reported to some extent although in samples including children 

(Chatburn et al., 2013), and psychiatric patients (Nishida et al., 2016). In our study, 

associations between spindle parameters and off-line changes in performance might not 

simply stem from trait-like effects, as associations were unchanged if we controlled for the 

confounding effects of training-dependent learning performance. Nevertheless, given the lack 

of baseline EEG measurements, we cannot fully discern trait- and state-like effects in the 

present study. Moreover, only the association between slow spindle density and the off-line 
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change in Sequence Learning remained significant after the correction for multiple 

comparisons, whereas previous studies mainly linked sleep-dependent cognitive benefits to 

fast spindle activity. In sum, off-line changes in Sequence Learning and Statistical Learning 

were associated with different spindle parameters, nevertheless, the relevance of these 

associations should be examined in further studies, including baseline sleep measurement 

without pre-sleep learning experience. 

      To conclude, here we were able to assess the time-course of two fundamental learning 

processes, namely Sequence Learning and Statistical Learning separately and showed that 

Statistical Learning is acquired rapidly and remains unchanged even after extended practice, 

whereas Sequence Learning is gradually developed. On the behavioral level, both sequence 

and statistical knowledge were retained and were independent of whether the offline period 

included sleep or not. On the neural level, however, measures of cortical oscillations 

(spindling and slow frequency power) assessed during the off-line period were associated 

with individual differences in performance gains within the sleep group only. Moreover, off-

line changes in Sequence Learning and Statistical Learning showed different neural 

correlates. These findings suggest that sleep has not an all-in-one-effect on memory 

consolidation, and future studies should focus on mapping systematically which learning and 

memory mechanisms might and might not benefit from sleep and sleep-specific oscillations. 

Learning and memory should be assessed on a process level (such as Sequence Learning and 

Statistical Learning in the current study) in order to characterize the time-course of these 

processes on the behavioral level as well as their neural correlates more precisely.  
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