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Abstract
Fluorescence microscopy has enabled imaging of
key subcellular structures in living cells; how-
ever, the use of fluorescent dyes and proteins is
often expensive, time-consuming, and damaging
to cells. Here, we present a tool for the prediction
of fluorescently labeled structures in live cells
solely from 3D brightfield microscopy images.
We show the utility of this approach in predict-
ing several structures of interest from the same
static 3D brightfield image, and show that the
same tool can prospectively be used to predict the
spatiotemporal position of these structures from a
bright-field time series. This approach could also
be useful in a variety of application areas, such as
cross-modal image registration, quantification of
live cell imaging, and determination of cell state
changes.

Figure 1. Transmitted light modality images contain information
related to alternate imaging modalities. In the above example, we
illustrate the need for a to predict a Hoechst staining pattern (for
DNA) from a bright-field image.

1. Introduction
A grand challenge of modern cell biology is to understand
and model living cells as integrated systems. A critical first
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step is to determine the localization of key subcellular struc-
tures and other functional protein assemblies in living cells.
While a variety of microscopy modalities are being used
to elucidate the details of cellular organization, they come
with trade-offs with respect to expense, spatio-temporal res-
olution, and cell health. This is particularly acute using
fluorescence microscopy, the current method of choice for
live cell imaging, wherein samples are subject to photo-
toxicity and photobleaching, limiting both the quality and
time scale of acquisition. Additionally, the number of fluo-
rophores that may be used simultaneously is limited by the
number of useful colors, probe perturbation, and spectrum
saturation and also requires expensive instrumentation and
sample preparation.

In contrast, transmitted light microscopy, e.g., bright field,
phase, DIC, etc., is a low-cost alternative modality that
greatly reduces phototoxicity and sample preparation com-
plexity. It convolves refractive index differences into a com-
plex image and therefore lacks the readily accessible, or-
ganelle identifying advantages of fluorescence microscopy.
There exists, however, non-trivial relationships between
complimentary modalities that have not yet been exploited.
Given spatially registered cross-modal image pairs (i.e.
transmitted light and fluorescence microscopy), it may be
possible to learn the relationships between the two modali-
ties directly from the images themselves. This knowledge, in
turn, can then be applied to new images of the first modality,
to predict images of the second. This is particularly attrac-
tive when the first image type is inexpensive, less invasive
and easy to obtain, as is transmitted light; and the second
modality is more costly and complex, e.g., fluorescence mi-
croscopy.

Predicting fluorescence microscopy from transmitted light
images is a task ideally suited to a subclass of learnable,
nonlinear functions known as convolutional neural networks
(CNNs). In recent years, they have been used in biomedical
imaging for a wide range of tasks, including image clas-
sification, object segmentation, and estimation of image
transformations. In this study, we first present a tool, based
on a widely applied U-Net architecture (Ronneberger et al.,
2015), that models cross-modal relationships between dif-
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ferent imaging modalities (Figure 1). We demonstrate the
utility of this tool for the prediction of 3D fluorescence
microscopy images, including detailed labeled structure lo-
calization patterns, from 3D transmitted light microscopy
images. We do this by quantifying the relationship between
transmitted light images and images of the localization of
a range of dye and GFP-labeled structures in live cell im-
ages. We also demonstrate that the model performs well on
3D time lapse images, and can be used to predict the spa-
tiotemporal position of many subcellular structures from
transmitted light images.

Figure 2. Overview of model. There is no ReLU on the output
layer.

2. Methods
2.1. Model description

We employed a network based on various U-Net/V-Net/3D
U-Net architectures (Ronneberger et al., 2015; Milletari
et al., 2016; Çiçek et al., 2016), first applied towards seg-
mentation tasks in electron microscopy and tissue culture
images, due to demonstrated performance in a variety of
learning tasks. In practice, it is likely that there exist mul-
tiple image-to-image networks that could perform well; a
diagram of the model is shown in Figure 2.

Our model uses a fully-convolutional architecture, and is
therefore capable of processing input of variable size. This
allows us to train a model using multiple small inputs (see
2.3), and perform prediction tasks using full-size images.

The networkmodels a relationship between twomicroscopy
imaging modalities, learned from training on paired, spa-
tially registered images of the same field of cells. Given
an input image from one imaging modality, the model out-
puts a corresponding, predicted, image in the target imag-
ing modality. In this study, we have specifically applied the
model to transmitted light microscopy cell images (bright-
field and DIC) to predict corresponding fluorescence im-

ages, which can then be used e.g. to examine subcellular
structures of interest in these cells. However, its use is gen-
eral and should be readily applicable to other transmitted
light modalities, e.g., phase, polarization, reflectance, etc.

Figure 3. Predicted Hoechst fluorescence image from bright-field
input image. Left column shows z-slices of a 3D bright-field im-
age at 1.5µm intervals moving top to bottom of the z-stack (input
image). Middle column shows z-slices from the corresponding ob-
served Hoechst fluorescence image (target image). Right column
shows the model-predicted Hoechst fluorescence image (output
image). Scale bar is 20 µm.

2.2. Data collection and preprocessing

Our data were derived from a collection of four-channel,
3D z-stacks of human induced pluripotent stem (hiPS)
cells from spinning-disk confocal microscopy openly avail-
able on the Allen Institute for Cell Science website (al-
lencell.org). The collection consists of high replicate 3D
z-stacks of genome-edited hiPS cell lines, in each of which
a particular subcellular structure was endogenously tagged
with a molecule fused to GFP (Roberts et al., 2017). The 4
channels include: (1) a transmitted light modality image (ei-
ther bright-field or DIC) and fluorescence images of either
(2) a fluorescent dye that labels the cell membrane (Cell-
Mask), (3) a fluorescent dye that labels DNA (Hoechst), and
(4) the endogeously mEGFP-tagged subcellular structure.

For static z-stacks, we created paired-image data sets by
pairing the transmitted light image (channel 1) with a cor-
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responding fluorescence channel (channels 3 or 4). These
were then used to train the CNN to learn the relationship be-
tween the transmitted light images and fluorescence images
of a particular subcellular structure.

For time series experiments, we generated new time lapse
z-stacks of the same field of cells taken every 35 seconds
at a magnification of 0.065µ/px (lateral scale), and used
the model to predict the location of the structure. A full
summary of the data sets used to train and test the models
are in Table 1.

All input and target images (see 2.3) were pre-processed
by z-scoring pixel intensities across each image. We do not
perform any data augmentation procedures on our training
data, including padding, flipping, or warping.

2.3. Training procedure and implementation

We trained a model for each collection of input-target image
pairs (Table 1). This resulted in 13 independent models. We
used 30 image-pairs for the training set and allocated all of
the remaining image pairs to the test set. The images were
resized such that each voxel corresponds to a 0.3x0.3x0.3um
cube.Due to currentmemory constraints associatedwith 3D
convolution and our current GPU computing configuration,
we were not able to train the model directly on the full-sized
images.

Considering these practical constraints, we trained the
model on batches of 3D patches, subsampled uniformly
(both across all training images as well as spatially within
an image) from training images at random. The training
procedure takes place in a feed-forward fashion typical of
these methods, as described in Algorithm 1. See our soft-
ware repository (4) for further details.

We can interpret the models’ generalization error as an
estimate of the relationship between input and target images.
We report this error as the L2 loss between a predicted image
and its target image, normalized such that the prediction of a
blank (all pixel intensities zero) image would yield an error
of 1.0.

Our model training pipeline was implemented in PyTorch
(http://pytorch.org). Each model was trained using
the Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.001 for 50,000 mini-batch iterations of size 24. R
unning on a Pascal Titan X, each model completed training
in approximately 16 hours.

Algorithm 1 Training procedure
θ ← initialize parameters
repeat

X,Y ← random mini-batch from training images
Ŷ ← f(X ; θ)
L ← MSE(Ŷ,Y )
θ
+
← ∇θL

until convergence
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Figure 4. (a) Example input images (left column; showing mid-
dle slice), target images (middle column) and predicted images
(right column). (b) Train and test set errors for the complete image
collection.
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3. Results
3.1. Relationship between input images and predicted

fluorescence images

Figure 3 demonstrates the application of our model to a
3D bright-field image to predict a 3D fluorescence image
of Hoechst dye localizing to DNA. The predicted images
demonstrate good qualitative correspondence with target
fluorescence images in all z-slices. The individual nuclear
regions are well-formed and separated in the predicted im-
age, and it is possible to distinguish between the DNA of
mitotic and non-mitotic cells. Lamin B1, a nuclear marker,
also tags the nuclear region as well and reorganizes dur-
ing mitosis (Figure S2). Other example predictions include
bright-field to fibrillarin, bright-field to Tom20, and DIC
to LaminB1 (Figure 4a). Predictions for all the labels used
in this manuscript are shown in supplementary figures S1
to S12.

We have assessed performance of the models by a normal-
ized training loss function as described above (2.3); corre-
sponding errors for training and test sets for all 13 mod-
els are shown in Figure 4b) This estimated performance
depends on the target subcellular structure; for example,
nuclear structures (fibrillarin, Lamin B1, and Hoechst) per-
form comparatively well, while e.g. the desmoplakin model
performs relatively poorly, likely due to a lack of contrast-
ing features in the bright field image and perhaps the poor
signal to noise (Figure S1); tubulin (microtubules, S3) also
did not perform well in the model probably also because of
the absence appropriate features in the bright field image.

3.2. Combined, multiple-structure predictions

We tested the feasibility of using conjoining models to gen-
erate multi-structure predicted images. In Figure 5a, we ap-
plied an identical input image to each of the trained structure
prediction models in the collection and combined the out-
puts into a single, multi-structure predicted image. In Figure
5b, we show the multi-structure result: predicted fluores-
cence images from top-performing models given the same
input bright-field image (bright-field to Hoechst, Lamin B1,
Sec61, fibrillarin, and Tom20). The model outputs can then
be combined into a single, multi-structure visualization, as
well as potentially combined with actual fluorescence data,
to augment the effective number of available channels (Fig-
ure 5b) in an imaging experiment.

3.3. Time series

We also asked whether the trained model collection could
be used to predict the dynamics of a temporal fluorescence
image sequence. We did this by first applying each frame
of a 3D bright-field time series to the model collection and
then combining these outputs into video. The results suggest

(a)

(b)

Figure 5. (a) Multiple structure prediction models are applied to
the same input image, resulting in an output image per model.
Those are combined to form a multi-color image. (b) Example
input image (showing middle slice) and corresponding predicted
structures are merged.

that models of this type, trained only on a sequence of static
image pairs, can be used to predicting time-series for which
no fluorescence imaging target is available. Center slices of
serial time points are shown in Figure 6. The corresponding
video is available at https://youtu.be/wObyJASI574.

This proof-of-concept demonstrates potential model utility
for prediction on input images acquired in a variable fashion
to those images on which the models are trained. Specifi-
cally, in this case, the time series images were acquired at a
different magnification: 0.065 /px for the time-series versus
0.108 /px for all static training image data sets, and there-
fore possess a different lateral resolution. Nevertheless, the
predicted time series images were of sufficient quality to
visualize multiple cellular structures from live cells over a
long period of time, implying potential model robustness.

4. Discussion
We have introduced a method for cross-modality mi-
croscopy image prediction based on an 3D convolutional
neural network architecture. We have shown how, once
trained on paired image sets, this tool can successfully
predict 3D fluorescence images from transmitted light mi-
croscopy images. While much remains to be done to extend
and further validate the tool, these initial observations are
very promising. Of course, biological samples in a typical
research imaging setting may have significant sample and
image variability. However, the model appears robust as
seen in its performance with time-series data, which pre-
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Figure 6. Combined structure predictions on time-series image
set. Each row is a separate time point with an interval of 280
seconds between time points. Time advances from top to bottom.
Left column: single z-slices from the input bright-field z-stacks.
Right column: merged corresponding predicted fluorescence im-
ages from Hoechst, Fibrillarin, Lamin B1, Sec61, and TOM20
models. Scale bar is 20 µm.

dicted time lapse fluorescence from input data of different
resolution, modality, and timing than that on which the
model was trained. In summary, the presented tool offers
the potential for biologists to take advantage of fluores-
cence techniques via prediction, while chiefly producing
only resource-friendly transmitted light images. Moreover,
direct modeling - mapping one image modality to another -
paves the way for evaluation of the organization of several
subcellular structures, simultaneously, effectively offering
multi-channel fluorescence results from a single transmit-
ted light image.

Despite the potential advances introduced by this tool, the
method still presents several limitations. Even given train-
ing images that are of high quality and a model of sufficient
power, the currentmethodwill perform poorly if the features
in the transmitted light image do not provide sufficient infor-
mation for a correlative, learnable relationship between the
input and target images. In this context, the model does well
with membranous structures (ER, mitochondria, nucleus)
and larger aggregates (DNA, nucleoli), it does not appear to
do as well as structures like desmosomes or microtubules.
Additionally, the model may be limited in its ability to pre-
dict relationships for which there are few or no examples in
the training data. For example, early experiments with our
model failed to accurately predict DNA localization during
mitosis, as initial training images included fewmitotic cells.

Model performance may be further optimized by applying a
variety of model architectures, and/or tuning model hyper-
parameters, as is common in neural network development,
though we have not focused on these detailed engineering
aspects here. There are also multiple potential sources of
model error. The most apparent is the quality of the imaging
used to train and apply the model. Camera noise is one
example; for example, in the case of Hoechst prediction
(see Figure 3), the output image seems to be an "average",
de-noised version of the target image. It should be noted that
we were able to achieve good generalization performance
with the handful of training images used. The quantity of
data used here is much less than is typical in deep network
training applications, and our generalization performance is
likely to improve with more data.

While our methodology can be used to directly evaluate
relationships among imaging modalities, to predict images
of one modality from another, and to subsequently visual-
ize localization patterns as described above, it may also be
suitable for a variety of other tasks. One straightforward ap-
plication is to integrate model fluorescent label predictions
into pre-existing fluorophore-dependent image processing
pipelines to perform tasks such as dense 3D cell segmen-
tation or cross-modality image registration. With model-
predicted images of sufficient quality, it may be possible to
reduce or even eliminate the need to routinely capture fluo-
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rescence images in imaging pipelines, permitting the same
throughput in a far more cost-effective and efficient manner.
Furthermore, other transmitted light modalities, like polar-
ization, may reveal new, learnable features. Finally, when
trained with fluorescent proteins that reveal details within
an organelle like the nucleus, for example, it may be possible
to see changes in activities that accompany that accompany
cell state transitions.

Software and Data
Sofware for training and using models is avail-
able at https://github.com/AllenCellModeling/
pytorch_fnet. The data used to train the model is avail-
able at http://www.allencell.org.
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Tables

Input Fluorophore Labeled structure

bright-field Hoechst DNA
bright-field CellMask plasma membrane
DIC CellMask plasma membrane
bright-field mEGFP α-tubulin microtubules
bright-field mEGFP β-actin actin filaments
bright-field mEGFP Desmoplakin desmosomes
bright-field mEGFP Fibrillarin nucleoli
bright-field mEGFP Lamin B1 nuclear membrane
DIC mEGFP Lamin B1 nuclear membrane
bright-field mEGFP Myosin IIB Actomyosin bundles
bright-field mEGFP Sec61β endoplasmic reticulum
bright-field mEGFP TOM20 mitochondria
bright-field mEGFP ZO1 tight junctions

Table 1. Summary of image pairs used in this manuscript.
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Figure S1. Predicted Desmoplakin fluorescence image from
bright-field input image. Left column: z-slices of an input 3D
image at 1.5 µm intervals from top to bottom of the z-stack (input
image). Middle column: z-slices from the corresponding observed
target fluorescence image. Right column: z-slices from the model-
predicted fluorescence image. Scale bar is 20 µm.

Figure S2. Predicted Lamin B1 fluorescence image from bright-
field input image. See figure S1 caption for column descriptions.
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Figure S3. Predicted α-tubulin fluorescence image from bright-
field input image. See figure S1 caption for column descriptions.

Figure S4. Predicted β-actin fluorescence image from bright-field
input image. See figure S1 caption for column descriptions.
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Figure S5. Predicted Lamin B1 fluorescence image from DIC in-
put image. See figure S1 caption for column descriptions.

Figure S6. PredictedCellMaskfluorescence image fromDIC input
image. See figure S1 caption for column descriptions.
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Figure S7. Predicted CellMask fluorescence image from bright-
field input image. See figure S1 caption for column descriptions.

Figure S8. Predicted Fibrillarin fluorescence image from bright-
field input image. See figure S1 caption for column descriptions.
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Figure S9. Predicted Myosin IIB fluorescence image from bright-
field input image. See figure S1 caption for column descriptions.

Figure S10. Predicted Sec61 βfluorescence image from bright-
field input image. See figure S1 caption for column descriptions.
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Figure S11. Predicted Tom20 fluorescence image from bright-
field input image. See figure S1 caption for column descriptions.

Figure S12. Predicted ZO1 fluorescence image from bright-field
input image. See figure S1 caption for column descriptions.
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