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Abstract. We present an original method to de novo call variants for Restriction site associ-
ated DNA Sequencing (RAD-Seq). RAD-Seq is a technique characterized by the sequencing of
specific loci along the genome, that is widely employed in the field of evolutionary biology since it
allows to exploit variants (mainly SNPs) information from entire populations at a reduced cost.
Common RAD dedicated tools, as STACKS or IPyRAD, are based on all-versus-all read com-
parisons, which require consequent time and computing resources. Based on the variant caller
DiscoSnp, initially designed for shotgun sequencing, DiscoSnp-RAD avoids this pitfall as variants
are detected by exploring the De Bruijn Graph built from all the read datasets. We tested the
implementation on RAD data from 259 specimens of Chiastocheta flies, morphologically assigned
to 7 species. All individuals were successfully assigned to their species using both STRUCTURE
and Maximum Likelihood phylogenetic reconstruction. Moreover, identified variants succeeded
to reveal a within species structuration and the existence of two populations linked to their ge-
ographic distributions. Furthermore, our results show that DiscoSnp-RAD is at least one order
of magnitude faster than state-of-the-art tools. The overall results show that DiscoSnp-RAD is
suitable to identify variants from RAD data, and stands out from other tools due to his com-
pletely different principle, making it significantly faster, in particular on large datasets.
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1 Introduction

Next-generation sequencing and the ability to generate thousands of genomic sequences has
opened new horizons in population genomic research. This has been made possible by the
development of cost efficient approaches to obtain sufficient homologous genomic regions, by
reproducible genome complexity reduction and multiplexing several samples within a sin-
gle sequencing run [1]. Among such methods, the most widely used over the last decade
is “Restriction-site associated DNA sequencing” (RAD-Seq). It uses restriction enzymes to
digest DNA at specific genomic sites and sequence the adjacent regions. This approach encom-
passes various methods with different intermediate steps to optimize the genome sampling,
e.g. ddRAD [15], GBS [4], 2b-RAD [22], 3RAD/RADcap [9]. These methods share basic
steps: DNA digestion by one or more restriction enzymes, ligation of sequencing adapters
and sample-specific barcodes, followed by optional fragmentation and fragment size selection,
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multiplexing samples bearing specific molecular tags, i.e. indices and barcodes, and finally
sequencing. The sequencing output is thus composed of hundreds of thousands of reads orig-
inating from all the targeted homologous loci. The bioinformatic steps consist in sample
demultiplexing, rebuilding the loci and identifying informative homologous variations. If a
reference genome exists, the most widely used strategy is to align the reads to this reference
genome and to perform a classical variant calling: Single Nucleotide Polymorphism (SNP) and
Insertion-Deletion (INDEL). However, RAD-Seq approaches are mainly used on non-model
organisms for which a reference genome does not exist. The fact that all reads sequenced from
the same locus start and finish exactly at the same position makes it easier to compare directly
reads sequenced from a same locus. To de novo build homologous genomic loci and extract in-
formative variations different methods have been developed, STACKS [2] and PyRAD [3], as
well as its derived rewritten version IPyRAD (https://github.com/dereneaton/ipyrad), being
the most commonly used in the population genomics community.

The main idea behind these approaches is to group reads by sequence similarity in clusters
representing each a distinct genomic locus. Sequence variations can then be easily identified
and a consensus sequence is built for each locus, since reads start and end at the same position.
The key challenge is therefore the clustering part. To do so the classical approach relies on all-
versus-all alignments. To reduce the number of alignments to compute, the clustering is first
performed within each sample independently, then sample consensuses are compared between
samples. Nevertheless the number of alignments to perform remains very large and increases
quadratically with the number of reads. Importantly, analysis of RAD data is highly dependent
on the chosen method, the sequencing quality and the dataset composition, such as the
presence of inter and/or intra-specific specimens or the number of individuals. Thus existing
tools allow customization of numerous parameters to fine-tune the analysis. Particularly, both
methods have parameters controlling the granularity of clustering: the number of mismatches
allowed between sequences of a same locus within and among samples for STACKS and the
percentage of similarity for PyRAD. These have a significant impact on downstream analyses.

We present here an utterly different approach to predict de novo small variants from
large RAD-Seq datasets taking advantage of the DiscoSnp++ approach [21, 14]. Initially,
DiscoSnp++ was designed for de novo prediction of SNPs and small INDELS, from shotgun
sequencing reads, typically whole genome re-sequencing data, without the need of a reference
genome. The basic idea of the method is a careful analysis of the de Bruijn graph built
from all the input read sets, to identify topological motifs, often called bubbles, generated
by polymorphisms. In this work, we propose an adaptation of the DiscoSnp++ approach to
the RAD-Seq data specificities. After a small proof-of-concept test on simulated data from
Drosophila melanogaster, we present an application of the DiscoSnp-RAD implementation on
double-digest RAD-Seq data (ddRAD) from a genus-wide sampling of parasitic flies belonging
to Chiastocheta species. Using DiscoSnp-RAD, the 259 individuals analyzed could be assigned
to their respective species. Moreover, within-species analyses focused on one of these species,
identified variants revealing population structure congruent with sample geographic origins.
Thus, the information obtained from SNPs and INDELs identified by DiscoSnp-RAD can
be successfully used for population genomic studies. The main notable difference between
DiscoSnp-RAD and concurrent algorithms stands in the execution time, as it was more than
15 times faster than STACKS run as well as IPyRAD run.
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2 Material and Methods

2.1 DiscoSnp-RAD: RAD-Seq adaptation of DiscoSnp++

Originally, DiscoSnp++ was designed for finding variants from whole genome sequencing
data. In the RAD-Seq context, DiscoSnp++ modifications affect core algorithm modification,
as well as result post-processing.

Fig. 1. Examples of bubbles generated by SNPs in a toy de Bruijn graph (with k = 4). In (a) the bubble is
complete: this corresponds to a bubble detected by DiscoSnp++. Note that DiscoSnp++ also detects more
complicated bubbles generated by short INDELs and/or containing branching nodes themselves (not shown
here). In (b), the bubble is truncated: it is composed of a branching node (“ACTG”) whose two successors
lead to two distinct paths that both have the same length and such that their last two nodes have no successor.
Graph (c) shows an example of two bubbles from the same locus.

DiscoSnp++ basic algorithm. We first recall the fundamentals of the DiscoSnp++ algorithm,
which is based on the analysis of the de Bruijn Graph (dBG) [16] which is a directed graph
where the set of vertices corresponds to the set of words of length k (k-mers) contained in the
reads, and there is an edge between two k-mers if they perfectly overlap on k− 1 nucleotides.
Small variants, such as SNPs and INDELs, generate in the dBG recognizable patterns called
“bubbles”. A bubble (Fig.1(a)) is defined by one start branching node that has, two distinct
successor nodes. From these two children nodes, two paths exist and merge in a stop branching
node, which has two predecessors.

DiscoSnp++ builds a dBG from all the input read datasets combined, and then detects
such bubbles. Sequencing errors or approximate repeats also generate such bubbles, that can
be avoided by using of a minimal read coverage threshold to keep a bubble (-c parameter),
and limiting the type of authorized branching nodes on the two paths (-b parameter).

A novel RAD-specific bubble model. In DiscoSnp++, variants distant from less than k bp from
a genomic extremity could not be detected, as associated bubbles do not open and/or close.
This effect is negligible in the whole genome sequencing context, however, in the RAD-Seq
context, sequenced genomic regions are limited to one or a few hundreds of nucleotides (the
read size), and thus a large amount of variants are likely to be located at the extremities of
the loci. For instance, with reads of length 100bp, and k = 31 (which is a classical k value),
on average 62% of the variants are located in the first or last k nucleotides of a locus and
cannot be detected by DiscoSnp++.

In the RAD-Seq context, all reads sequenced from the same locus start and end exactly at
the same position. Thus, variants located less than k bp from loci extremities generate what
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we call Symmetrically Truncated Bubbles (Fig.1(b)). Such bubbles start with a node which
diverges into two distinct paths that do not meet back, such that both of them cannot be
extended because of absence of successor and both paths have exactly the same length.

Additionally, we constrain the last 3-mer of both paths to be identical (contrary to what
is shown Fig.1). This avoids confusing an INDEL occurring near the extremity with 3 suc-
cessive substitutions. Although this prevents the detection of variants as close as 3 bp from
a locus extremity, this enables to identify correctly the type of detected variant. Note that
this issue is also present in any mapping or clustering based approaches. Detected bubbles
(truncated or not) are output as whole sequences in fasta format and all variants are reported
in vcf format, along with numerous additional information, such as read coverage, quality and
ranking information (see [21, 14]).

Post-processing and RAD-specific filtering of predicted variants. We now present how vari-
ants predicted from bubble enumerations can be exploited in the RAD-Seq context. Notably,
after variant calling, several post-processing and variant filtering steps are usually performed
to keep only reliable and informative variants for downstream population genomics analyses.
Among those, some RAD-Seq filters apply at the locus level. For instance, for population
STRUCTURE analysis input variants should not physically linked on the genomes. Another
example is the filtering of sites presenting an excess of heterozygosity in a single locus, poten-
tially resulting from artifactual loci built from several paralogous genomic regions. However,
in the DiscoSnp-RAD approach, bubble detection does not provide links between variants
from the same locus. This is why we developed a post-processing method to cluster predicted
variants per locus.

Grouping variants coming from the same locus. During the bubble detection phase, several
independent bubbles can be predicted for the same locus. For instance, Fig.1(c) shows a toy
example of a the dBG graph associated to a locus. In this case, DiscoSnp-RAD detects two
bubbles, that give no sign of connection. However, DiscoSnp-RAD is parameterized to output
bubbles together with their left and right context in the graph, which corresponds to the
paths starting from each extreme node and ending at the first ambiguity (ie. a node with not
exactly one successor).In this case, the two bubbles of Fig.1 are output as 2x2 longer sequences
(ACTGACCTAATTG/ACTGTCGTAATTG and TAATTGACCT/ TAATTGTCCT) that
share at least one k − 1-mer (here k − 1-mers TAA, AAT, ATT and TTG).

If a given locus contains several variants, each bubble of this locus should share one k−1-
mer with at least one other bubble of the same locus. We exploit this property to group all
bubbles per locus. For doing so, we create a graph in which a node is a bubble (represented by
its pair of sequences), and there is an edge between two nodes if the corresponding sequences
share at least one k − 1-mer. This is done using SRC linker [12].Finally, we partition this
graph by connected component. Each connected component contains all bubbles for a given
locus and this information is reported in the vcf file. Note that, clustering is performed only
on variants with less than 95 % of missing genotypes, since variants with too many missing
data can be numerous and are often non-informative and filtered-out later in downstream
analyses.

Various filtering options. Importantly, the cluster ID is indicated in the final vcf, in the CHR
field, enabling to apply custom filters based on cluster information, as well as any variant level
classical RAD-Seq filters (such as the minimal read depth to call a genotype or the minimal
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minor allele frequency to keep a variant). To apply these filters, we provide a catalogue of
scripts, specific to RAD-Seq context (https://github.com/GATB/DiscoSnp/tree/master/
scripts_RAD).

In particular, paralogous genomic regions represent a major issue in population genomic
analyses as DNA sections arising from duplication events can be aggregated in the same locus
and thus, might encompass alleles not deriving from coalescent events. We propose two ways
to filter out such paralog-induced variants. The first filter takes advantage of the rank value
computed for each variant. We have designed this scoring scheme and shown in previous
work [21, 14] that approximate repeats are likely to generate bubbles in the dBG but with
very low rank values (< 0.2) contrary to real SNPs. By default, DiscoSnp-RAD discards
all variants with such low rank values. The second filter is inspired by classical RAD-Seq
pipelines. It uses the clustering results. It assumes that most of the variants of a same locus
built from several paralogous sequences will show a similar pattern of excess of heterozygous
genotypes. We propose a script to filter out all the variants of a cluster showing more than
X % of variants each having more than Y % of heterozygous genotypes.

2.2 Tests on simulated datasets

Simulation protocol. We simulated RAD loci from Drosophila melanogaster genome (dm6)
by selecting 150bp on both sides of 5,000 PstI restriction sites. Each locus was duplicated in
two copies and SNPs were randomly introduced at a rate of 0.5 % in the first copy, and a subset
of them (30%) was introduced in the second copy, so that loci present both heterozygous and
homozygous SNPs. This process was done five times to mimics distinct RAD data from five
individuals, with shared SNPs between them. Finally, 37,101 genomic positions were mutated
(3.7 SNPs per locus on average). Forward 150bp reads were simulated on right and left loci,
with 1% sequencing errors, with 60X coverage per individual. All reads were exactly aligned,
as this is the case in RAD data.

Evaluation protocol. For estimating the result quality, predicted variants were localized on
the D. melanogaster genome and output in a vcf file. To do so, we used the standard protocol
of DiscoSnp++ when a reference genome is provided, using BWA-mem [11]. The predicted
vcf was compared to the vcf storing simulated variant positions to compute the amount of
common variants (true positive or TP), predicted but not simulated variants (false positive
or FP) and simulated but not predicted variants (false negative or FN). Recall is then defined
as TP

TP+FN , and precision as TP
TP+FP .

Comparison with other tools. For comparisons, STACKS and IPyRAD were run on the sim-
ulated data. Stacks were generated de novo (denovo map.pl), with a minimum of 3 reads to
consider a stack (-m 3). Parameters governing the merge of stacks (-m and -M) were fixed to
6, which is coherent with the number of simulated mutations. IPyRAD was run using default
parameters : a clustering threshold of 0.85 and a minimum depth of 5.

Then, de novo tags from STACKS and loci from IPyRAD were mapped to the D.
melanogaster genome. For STACKS, loci were mapped using GSNAP/GMAP [23]. Genomic
coordinates were incorporated in outputs using a script provided in the STACKS tools suite,
before generating a vcf file with populations module [13]. For IPyRAD, loci were mapped
to the D. melanogaster genome using BWA-mem and variant positions were transposed on
the genome positions with a custom script.
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2.3 Application to real data from Chiastocheta species

Data origin. Tests on real data were performed on ddRAD reads previously obtained for
the phylogenetic study of seed parasitic pollinators from the genus Chiastocheta (Diptera:
Anthomyiidae). The dataset corresponds to reads from 259 individuals sampled from 51 Eu-
ropean populations generated by Lausanne University, Switzerland [19] (data soon available
on zenodo.org). Quality scores of reads 2 (average base quality over reads and across samples
of 33.98 sd 1.78) were lower than those of reads 1 (average base quality over reads and across
samples of 35.15 sd 1.70), which led us to focus the analyses on reads 1. Finally, 300,637,358
reads were used for the study with an average of 1,160,762 reads per individual.

Variant prediction and filtering. DiscoSnp-RAD was run with parameters -b 1 -P 5 -D 10:
this authorizes non symmetrically branching bubbles (see [21] for details), searching for at
most five variants per bubble, and indels of size of at most 10. Variant predictions (with less
than 95% missing data) were clustered and output in vcf format as described above.

Highly heterozygous clusters were filtered out by removing those harbouring more than
50% of heterozygous SNPs in more than 10% of the individuals (filter paralogs.py). This
latter treatment of predictions is considered as the default process of DiscoSnp-RAD outputs.
Then, classical filters were applied to follow as much as possible the filters used in the Suchan
et al. [19]: a minimum genotype coverage of 6, a minimal minor allele frequency of 0.02 and
a minimum of 20 samples with a non missing genotype for each variant. These filters remove
less informative variants or alleles specific to a small subset of samples. These filters were also
applied at intraspecific level in one of the seven sampled Chiastocheta species, i.e. C. lophota,
on the same DiscoSnp++ output, the only difference being the minimum number of samples
to keep a variant set to 2, to remove sample specific variants.

Population genomic analyses. The species genetic structure was inferred using STRUCTURE
v2.3.4 [17]. This approach requires unlinked markers, thus only one variant by locus, randomly
selected, has been kept. The STRUCTURE analysis was carried out using two datasets – the
first with both SNPs and INDELs and the second with SNPs only, Simulations were performed
with genetic cluster number (K) set to 7, corresponding to the seven species described in [19].
We used 20,000 MCMC iterations after a burn-in period of 10,000. The output is the posterior
probability of each sample to belong to each of seven possible clusters.

Phylogenomic analyses. Maximum likelihood (ML) phylogenetic reconstruction was per-
formed on a whole concatenated SNP dataset using GTRGAMMA model with the acquisition
bias correction [10]. We applied rapid Bootstrap analysis with the extended majority-rule con-
sensus tree stopping criterion and search for best-scoring ML tree in one run, followed by ML
search, as implemented in RAxML v8.2.11 [18].

3 Results

3.1 Results on simulated data

DiscoSnp-RAD was first run on a simple simulated RAD-Seq dataset in order to provide a
proof of concept of the approach and to compare it with the other clustering approaches.
This simple experiment shows that DiscoSnp-RAD predictions are accurate with a good
compromise between recall and precision (85% and 93% respectively, see Table 1). Noteworthy,
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by selecting only highly scored variants (rank>0.5), almost all false positive predictions are
discarded (precision of 99%) with a minor impact on the recall. Conversely, if one favors the
recall, by relaxing all the constraints on the bubble model (branching mode -b 2), almost
all simulated SNPs are recovered (except for the ones simulated at the first and last 3 base
pairs of the loci, as explained in section 2.1), the highest reachable recall being here of 96%.
By comparison with other tools, DiscoSnp-RAD obtains similar results as STACKS but with
twice less missing genotypes, and can achieve the level of precision of IPyRAD but with a
much better recall (note that we used IPyRAD with default parameters, which may include
some filters that tune the results towards highly precise ones). Importantly, the number of
clusters obtained with DiscoSnp-RAD is very close to the number of simulated loci (10,000),
suggesting that predicted variants are well clustered by loci.

# SNP predictions Missing
loci Prec. (%) Rec. (%) genotypes (%)

DiscoSnp++ default 10,040 93.3 84.8 9.4
DiscoSnp++ high recall 9,881 91.4 92.6 12.7

DiscoSnp++ high precision 9,844 99.3 82.2 9.4

STACKS 9,845 91.1 88.4 23.4
IPyRAD 7.098 99.6 65.0 0.02

Table 1. RAD-Seq simulated results. “Rec.” stands for “Recall”, “Prec.” stands for “Precision”.Results are
shown for three parameter sets of DiscoSnp-RAD: 1/ default mode (note that variants with rank<0.2 are
discarded by default for RAD-Seq), 2/ in high recall mode with option -b 2 instead of -b 1, and 3/ in high
precision with a more stringent filter on the rank (rank>0.5).

3.2 Results on real data

In this section, we present an application of the DiscoSnp-RAD implementation on ddRAD
sequences obtained from the anthomyiid flies from the Chiastocheta genus. In this genus,
classical mitochondrial markers are not suitable for discriminating the morphologically de-
scribed species [5]. Although RAD-sequencing dataset phylogenies supported the species as-
signment [19], the interspecific relationships between the taxa could not be resolved with high
confidence due to high levels of incongruences in gene trees [7, 19]. The dataset is composed
of 259 sequenced individuals from 7 species. Results obtained on DiscoSnp-RAD were com-
pared to the prior work of Suchan and colleagues, based on pyRAD analysis [19]. In addition,
we provide a performance benchmark of STACKS, IPyRAD and DiscoSnp-RAD ran on this
dataset.

Recovering all Chiastocheta species. Variant calling was run on the read1 files of the 259
Chiastocheta samples with DiscoSnp-RAD. Before the filtering, 115,920 SNPs and 34,703
INDELs were identified. After filtering, 2,553 SNPs and 1,838 INDELs, located in 1,314
clusters, were retained and are usable for population genomic approaches. This number of
clusters, obtained on the reads 1, is coherent with the 1,672 loci from Suchan et al. [19],
obtained on reads 1 and 2, but with markedly lower amount of missing data (23.5% as
compared with 84% for pyRAD). Then, following the requirements of the STRUCTURE
algorithm, only one variant per cluster was retained, resulting in a dataset composed of 1,314
variants including 861 SNPs. STRUCTURE successfully assigned samples to the seven species,
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Fig. 2. a. RAxML phylogeny realized on all variants predicted by DiscoSnp-RAD. STRUCTURE results ob-
tained with SNP only and all variants on the seven Chiastocheta species. c. C. lophota sample structuration
and their geographic distribution

both using SNPs and INDELs and SNPs only, consistent with the morphological species
assignment and previously published results [19] (Fig.2). The assignment values represent
the probability with which STRUCTURE assigns a sample to a cluster, depending on the
information carried by the variants. Theoretically and in an extreme case, if all variants of
a sample are completely differentiated, different from the others and specific to a cluster or
species, the assignment will be 1. Using SNPs only, the assignment values are high with an
average of 0.990 (sd 0.026) across samples and a minimum assignment of 0.779. These values
are comparable to the assignment values obtained by Suchan et al. [19] with an average
of 0.977 (sd 0.042) and a minimum of 0.685. INDELs increase the number of markers and
increases slightly the average sample assignment with an average of 0.991 (sd 0.024). The
phylogeny realized with RAxML on the 2,553 SNPs obtained after filtering, is congruent with
the one obtained by Suchan and colleagues [19] (Fig.2). The internal branches separating the
seven species are well supported by high bootstrap values.

Recovering phylogeographic patterns. To assess the utility of DiscoSnp-RAD dataset for in-
vestigating the intra-specific structuration, we focused the analysis on 40 samples from C.
lophota species and adapted filters to extract informative variants at this evolutionary level.
We obtained 822 SNPs and 2,141 INDELs by selecting one variant by locus extracted from
7,672 variants identified in this species. The STRUCTURE analysis of this dataset identi-
fied two populations and assigned 31 samples to one of them and 9 to the other (Fig.2).
The assignment values are high with an average of 0.940 (sd 0.093). This structuration in
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two populations and the sample distribution within them is congruent with the geographic
distribution which is the most frequent structuration factor observed in population genetics.

Time
(mn)

Memory
(MB)

STACKS 3,789‡ 15,264

IPyRAD 4,529‡ 18,950
DiscoSnp-RAD 252 8,114

Table 2. RAD-Seq tool performance comparison on real
data. ‡STACKS and IPyRAD run-times are shown for one
parameter value, in practice several parameter values should
be tested. For instance in [19], IPyRAD had to be run five
times to determine parameters, the total time would be
≈ 22, 000mn, that is more than 15 days. All experiments
were performed on a 20 cores cluster with 250GB of RAM.

Breakthrough in running time. DiscoSnp-RAD run on the 259 Chiastocheta samples (30,063
Mbp overall) took about 4 hours. This comprises the whole process from building the dBG to
obtaining the final filtered vcf file with for instance 1 SNP per locus. To compare the DiscoSnp-
RAD performances with STACKS and IPyRAD on real data, we ran each of these tools on the
259 Chiastocheta samples (read 1 only) and measured running time and maximum memory
usage. The difference is remarkable, DiscoSnp-RAD took more than 15 times less time than
STACKS and IPyRAD to do the whole process (Table 2). Moreover, contrary to DiscoSnp-
RAD, STACKS and IPyRAD should be run several times to explore the parameters which
represent a considerable amount of time and memory. For instance, in Suchan et al. [19],
IPyRAD was run with 5 different values of parameter, DiscoSnp-RAD being thus 89 times
faster.

4 Discussion

DiscoSnp-RAD efficiency. DiscoSnp-RAD produced relevant results on ddRAD data from
Chiastocheta species. Variants identified, SNPs and INDELs, allowed us to successfully i)
distinguish the seven species based on the STRUCTURE algorithm, and ii) reconstruct the
phylogenetic tree of the genus, congruent with the previously published one [19]. Moreover,
on the intraspecific scale, we obtained geographically meaningful results within C. lophota
species. The variants identified by DiscoSnp-RAD can be used to study the species or pop-
ulation structuration and could be used to investigate deeper the mechanisms at the origin
of this structuration such as potential gene flow between populations or their demographic
histories. Furthermore, the use of DiscoSnp-RAD presented considerable advantages in the
run-time, and parameters choice, compared to other common de novo RAD analysis tools, as
described below.

Run-time. The use of DiscoSnp-RAD dramatically decreased the overall time for discovering
and selecting relevant variants, as compared to other tools. Moreover, DiscoSnp-RAD speed
is less dependant on the number of reads and is not expected to increase quadratically with
dataset size, as it is the case for pair-wise alignment based tools such as STACKS and PyRAD.
This suggests that DiscoSnp-RAD will more easily scale to very large datasets, generated using
high frequency cutting enzymes to obtain a dense genome screening, a deep sequencing to
compensate sequencing variation or a large number of samples.
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Easy parameter choice. Another substantial advantage of using DiscoSnp-RAD is the fact
that parameters are not directly linked to the level of expected divergence of the compared
samples. In fact, they impact the number and type of detected variants, but are not related
to the subsequent clustering step. As a result, same parameters can be used whatever the
type of analysis (for example, intra or inter-specific), contrasting with classical tools in which
parameters govern loci recovering. Indeed, in STACKS, the parameters governing the merge
of the stacks can compromise the detection of relevant variants if they are not adapted to the
dataset used. Therefore, the authors recommend to perform an exploration of the parameter
space before downstream analyses [13]. This is extremely time consuming, and may not always
result in interpretable conclusions. In IPyRAD, the similarity parameter for clustering also
impacts variant detection, and usually several values have to be tested to choose the best, as
as exemplified by Suchan and colleagues who tested five different values [19].

By-locus assembly. DiscoSnp-RAD output is a vcf file including pseudo-loci information, that
allows the application of standard variant filtering pipelines. One next objective is to recover
loci consensus sequences, that could be used for phylogenetic analysis based on full locus
sequences. This could be achieved by performing local assemblies per individual, from all
bubbles contained in a cluster.

Potential applications. In many RAD-Seq studies using paired-end sequencing, the second
read, i.e. the half of the sequencing effort, is only used to remove PCR duplicates and not
exploited to detect variants. For example, current stable version of STACKS does not allow
to exploit read 2 information in paired-end reads from experiments were fragments have been
subjected to random shearing. Indeed, in such cases reads 2 do not start and finish at the same
position, properly recovery of loci is therefore not possible. This problem does not exist when
using DiscoSnp-RAD, and variants present in reads 2 can be called just like those present in
read 1. In fact, whatever quality or INDELs or variations in coverage, all sequence information
present in the reads is reflected in the dBG.

This ability of DiscoSnp-RAD to handle reads that do not necessary start at the same
genomic position makes it particularly well suited to analyze the datasets produced by an-
other group of genome-reduction techniques, namely sequence capture approaches [8]. In
these techniques, DNA shotgun libraries are subject to enrichment using short commercially-
synthesized [6] or in-house made [20] DNA or RNA fragments acting as ’molecular baits’,
that hybridize and allow separation of homologous fragments from genomic libraries. One
of such promising approaches is HyRAD, a RAD approach combining the molecular probes
generated using ddRAD technique and targeted capture sequencing, designed for studying old
and/or poor quality DNA, likely to be too fragmented for RAD-sequencing [20]. In HyRAD,
capturing randomly fragmented DNA results in reads not strictly aligned and covering larger
genomic regions than RAD-Seq. Therefore RAD tools can not be used to reconstruct such
loci, and the current analysis consists in building loci consensuses from reads, and then call-
ing variants by mapping back the reads on it. The use of DiscoSnp-RAD should simplify this
process in a single de novo calling step.
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