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Abstract 
The availability of increasing volumes of multi-omics profiles across many cancers promises to 
improve our understanding of the regulatory mechanisms underlying cancer. The main challenge is to 
integrate these multiple levels of omics profiles and especially to analyze them across many cancers. 
Here we present AMARETTO, an algorithm that addresses both challenges in three steps. First, 
AMARETTO identifies potential cancer driver genes through integration of copy number, DNA 
methylation and gene expression data. Then AMARETTO connects these driver genes with co-
expressed target genes that they control, defined as regulatory modules. Thirdly, we connect 
AMARETTO modules identified from different cancer sites into a pancancer network to identify 
cancer driver genes. Here we applied AMARETTO in a pancancer study comprising eleven cancer 
sites and confirmed that AMARETTO captures hallmarks of cancer. We also demonstrated that 
AMARETTO enables the identification of novel pancancer driver genes. In particular, our analysis 
led to the identification of pancancer driver genes of smoking-induced cancers and ‘antiviral’ 
interferon-modulated innate immune response. 
 
 
Software availability:  
AMARETTO is available as an R package at https://bitbucket.org/gevaertlab/pancanceramaretto 
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Highlights: 

• We present an algorithm for pancancer identification of cancer driver genes based on multi-
omics data fusion 

• GPX2 is a novel driver gene in smoking induced cancers and validated using knockdown of 
GPX2 in the A549 cell line. 

• OAS2 is a novel driver gene defining cancers with an antiviral signature supported by 
increased infiltration of tumor-associated macrophages.  

 
 
Research in context: 
We present an algorithm that combines multiple sources of molecular data to identify novel genes 
that are involved in cancer development. We applied this algorithm on multiple cancers in a 
combined fashion and identified a network of pancancer driver genes. We highlighted two genes in 
detail GPX2 and OAS2. We showed that GPX2 is an important cancer gene in smoking induced 
cancers, and validated our predictions using experimental data where GPX2 was inactivated in a lung 
cancer cell line. Similarly we showed that OAS2 is an important cancer driver gene in cancers that 
show an antiviral signature. 
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Introduction 
In the last two decades, advances in high-throughput experimental technologies have produced an 
abundance of molecular data. An increasing number of large multi-omics projects have launched and 
provide millions of data points for thousands of biological samples. For example, The Cancer 
Genome Atlas (TCGA) project 1-3 was launched to improve our ability to diagnose, treat and prevent 
cancer and has produced an enormous amount of multi-omics data. Interpreting these high 
dimensional datasets to identify novel cancer driver genes represents an outstanding challenge. True 
cancer driver genes are those whose perturbation pushes a cell towards a malignant phenotype. 
Within this study, we define cancer driver genes as genes that fulfill all of the following criteria: (1) 
genes that are genetically and/or epigenetically deregulated in cancer, (2) genes whose genetic and 
epigenetic aberrations have a direct impact on their own functional gene expression levels, and (3) 
genes that are predicted to play regulatory roles high in the causal hierarchy of the origin of tumors. 
These include, for example, transcription factors, cell cycle genes or epigenetic modifying enzymes, 
whose altered state in cancer results in deregulation of downstream target genes; as well as upstream 
signaling molecules. They typically hide amongst a large number of passenger genes that are only by 
chance genetically or epigenetically altered 4.  
Previously, several computational methods have been developed to integrate multi-omics data.  For 
example, Ciriello et al. used a method based on mutual exclusivity of copy number and mutation 
events to identify driver genes in glioblastoma 5. Similarly, Vandin et al. developed a method to 
identify driver genes in cancer, but focused on finding pathways with a significant enrichment of 
mutually exclusive genes 6. In addition, Akavia et al. built further on this work and used copy number 
data to identify potential cancer driver genes in a modified Bayesian module network analysis called 
CONEXIC 7. More recently, other groups are focusing on identifying driver genes through network 
analysis of copy number data to identify potential drivers using a Bayesian module network analysis 8. 
We have previously developed AMARETTO, an algorithm that integrates copy number, DNA 
methylation and gene expression data to identify a set of driver genes altered by DNA methylation or 
DNA copy number alterations, and constructs a gene expression network to connect them to clusters 
of co-expressed genes, defined as modules 9, 10. These gene expression modules are subsequently 
ascribed biological pathways using gene set enrichment analysis (GSEA), revealing the pathways 
affected by cancer driver gene regulation. AMARETTO is thus a data driven pathway approach, 
using genomic, epigenomics and transcriptomics data as inputs, and produces modules and cancer 
driver genes associated with these modules as output. Integration of epigenomics data is essential to 
comprehensive analysis of cancer genomic analysis, as DNA methylation is a major mechanism of 
transcriptional deregulation in virtually all cancers. For example, cancer driver genes such as BRCA1 
and MLH1, which are often altered by mutation in cancer, are also frequently deregulated by DNA 
methylation in other patients, with similar downstream consequences 11-13. Our data-driven pathway 
approach contrasts with previous work that relies upon use of known cancer pathways and networks 
such as PARADIGM, an algorithm that uses human-curated pathways and estimates their activity 
using DNA copy number and mRNA expression data 14.  
Here, we present an extension of AMARETTO to a pancancer application using multi-omics data of 
eleven cancer sites from TCGA. We show that AMARETTO captures modules enriched in major 
pathways of cancers and modules that accurately predict molecular subtypes. Next, we connect the 
modules of co-expressed genes in a pancancer module network. We show that this allows the 
identification of major oncogenic pathways and cancer driver genes involved in multiple cancers. 
More specifically, we identified a pancancer driver gene that is involved in smoking induced cancers 
and a pancancer driver gene that is involved in antiviral IFN modulated immune response. Overall, 
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our results show the potential of pancancer multi-omics data fusion to identify cancer drivers that are 
high within the causal hierarchy of cancer development and associated with common pathways across 
different types of tumors that eventually can lead to the identification of pancancer drug targets. The 
AMARETTO algorithm and its pancancer application are publicly available.  
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Materials and Methods 
Data preprocessing 
We used gene expression, copy number and DNA methylation data from TCGA for 11 cancer sites, 
namely bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon and rectal 
adenocarcinoma (COADREAD), glioblastoma (GBM), head and neck squamous cell carcinoma 
(HNSC), clear cell renal carcinoma (KIRC), acute myeloid leukemia (LAML), lung adenocarcinoma 
(LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV) and 
uterine corpus endometrial carcinoma (UCEC) (Table 1). All data sets are available at the TCGA data 
portals. 
The gene expression data were produced using Agilent microarrays for GBM and OV cancers, and 
RNA sequencing for all other cancer sites. Preprocessing was done by log-transformation and 
quantile normalization of the arrays. The DNA methylation data were generated using the Illumina 
Infinium Human Methylation 27 Bead Chip. DNA methylation was quantified using β-values ranging 
from 0 to 1 according to the DNA methylation levels. We removed CpG sites with more than 10% of 
missing values in all samples. We used the 15-K nearest neighbor algorithm to estimate the remaining 
missing values in the data set 15. Finally, the copy number data we used are produced by the Agilent 
Sure Print G3 Human CGH Microarray Kit 1Mx1M platform. This platform has high redundancy at 
the gene level, but we observed high correlation between probes matching the same gene. Therefore, 
probes matching the same gene were merged by taking the average. For all data sources, gene 
annotation was translated to official gene symbols based on the HUGO Gene Nomenclature 
Committee (version August 2012). TCGA samples are analyzed in batches and significant batch 
effects were observed based on a one-way analysis of variance in most data modes. We applied 
Combat to adjust for these effects 16.	
	
AMARETTO: multi-omics data fusion 
Our approach for analyzing TCGA cancer data is based on AMARETTO, a novel algorithm devoted 
to construct modules of co-expressed genes through the integration of multi-omics data 9, 10. More 
precisely, AMARETTO is a three-step algorithm that (i) identifies tumor specific DNA copy number 
or DNA methylation changes, (ii) identifies a set of potential cancer driver genes by integrating DNA 
copy number, DNA methylation and gene expression data, (iii) connects these cancer driver genes to 
modules of co-expressed target genes that they control using a penalized regulatory program. 
AMARETTO, consists of three steps (Figure 1):  
Step 1: Identification of candidate cancer driver genes with tumor-specific DNA copy number or 
DNA methylation alterations compared to normal tissue: we first restrict the list of candidates to 
genes that have either copy number or DNA methylation alterations. These alterations are detected 
using the GISTIC 17, 18 and MethylMix 19, 20 algorithms for copy number and DNA methylation data 
respectively. GISTIC separately models arm-level and focal alterations, identifying amplified and 
deleted genes. Modeling DNA methylation aberrations in cancer is less well studied. We recently 
developed MethylMix, a method that identifies hypo and hypermethylated genes by (i) detecting 
methylation states of each gene with univariate beta mixture models, (ii) comparing them with the 
DNA methylation levels of normal tissue samples. We used GISTIC to identify significantly and 
recurrently deleted or amplified regions in the genome 18. Similarly, we used MethylMix to identify 
recurrently hyper-or hypomethylated genes 19.  
Step 2: Modeling effect of candidate driver genes on gene expression: a given gene is considered as a 
candidate driver gene if its expression can be explained by genomic events. Our rationale is that 
genes driven by multiple genomic events in a significant subset of samples are unlikely to be 
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randomly deregulated. To establish a list of cancer driver genes, we thus investigate the linear effects 
of copy number and DNA methylation on gene expression through a linear regression model 
performed on each gene independently: 
 

ExpressionGene!=! !!MethylationGene! + !!Copy NumberGene! . 
 

We used the R2 statistic to evaluate whether copy number has a significant positive effect (!! > 0) 
and DNA methylation a significant negative effect !! < 0  on gene expression.  
Step 3: Associating candidate driver genes with their downstream targets: given the cancer driver 
genes identified in Step 1, Step 2 aims at connecting them to their regulated targets to construct the 
regulatory module network. First, the filtered data are clustered in modules of co-expressed genes 
using a k-means algorithm with 100 clusters. Then, we learn the regulatory programs for each of the 
modules as a linear combination of cancer driver genes that together explain each module’s mean 
expression: 
 

ExpressionModule! = ! !!Driver! +⋯+ !!Driver! . 
 
In order to induce sparseness, we use an L!-penalty on the regression weights 21. The modules are 
further optimized by running iteratively over the two following steps: (i) reassigning genes based on 
the closest match to the updated regulatory programs, (ii) updating the regulatory programs based on 
the new gene assignments 22. These two steps are repeated until less than 1% of the cancer driver 
genes are assigned to new modules. 
 
Pancancer module network 
After running AMARETTO on each cancer site individually, the modules are connected in a 
pancancer network. Specifically, we evaluate whether there is a significant association between all 
pairs of modules through a hyper-geometric test. We correct for multiple hypothesis testing using the 
false discovery rate 23. We consider the association to be significant if both of the following 
conditions are satisfied: (i) the adjusted p-value is smaller than 0.05 and (ii) the overlap between two 
modules is larger than 5 genes. This defines a module network where each edge is scored based on 
the negative log-transformed adjusted p-value. 
We cluster the weighted module network to identify significantly connected subnetworks using the 
Girvan-Newman algorithm  24. This algorithm is a divisive method, which aims at detecting 
subnetworks by progressively removing edges from the module network according to a score. The 
original proposed score is based on the betweenness of edges, where betweenness is a measure that 
favors edges that are between subnetworks, and thus responsible for connecting many pairs of others.  
We used the igraph R package to visualize the network and the edge.betweenness.community 
function (implementation of the Girvan-Newman algorithm) to detect subnetworks. We only focus on 
subnetworks that satisfy the following conditions: number of nodes larger than the 1% of the total 
number of nodes in the network, number of represented cancers larger than the 10% of the 
subnetwork size (and at least, larger than 2) and finally, ratio between edges inside/outside the 
subnetwork larger than ½.  
 
Gene set enrichment analysis 
To assign biological meaning to these subnetworks of modules, we perform gene set enrichment 
analysis based on the databases GeneSetDB 25 and MSigDB 26. For the latter, we restrict the 
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enrichment to hallmark (H), curated (C2), GO (C5), oncogenic (C6) and immunologic signatures 
(C7) gene sets, which include the gene sets most relevant to cancer gene expression profiles. The 
enrichment is evaluated by performing a hyper-geometric test, corrected for multiple testing using the 
FDR 23. We used averaged p-values to combine p-values of the pathway enrichment for modules 
within a subnetwork. We used the following cutoffs: p-value smaller than 0.05, overlap with one 
module larger than 5 and gene set size smaller than 500. As a negative control we compared the 
enrichment of the actual modules for each cancer with 100 random permutations of the gene to 
module assignments. We then counted for each permutation the average number of significant gene 
sets per module, over all modules using the same cutoffs as the actual enrichment results.  
 
Prediction performances 
After running AMARETTO on the provided data sets, we computed the prediction performances by 
comparing the observed module expression data matrix with its predicted value. We reported the 
averaged mean squared error (MSE) and the R-square taken across all modules. 
 
Smoking signatures 
To investigate the role played by GPX2 on smoking related pathways of different cancer sites, we 
first used an oxidative gene signature from the Gene Ontology (Supplementary Table 6a). We defined 
an associated score by taking the average expression of these genes. We then used a Pearson test to 
measure the correlation with GPX2 expression. We did the same for a second GO signature 
associated to xenobiotic metabolism (Supplementary Table 6a). 
 
Correlation with smoking data 
We investigated whether GPX2 expression is correlated with smoking. We used clinical data from 
TCGA containing 743 characteristics (e.g. ethnicity, gender, tumor size…). We restrict our study to 
clinical variables that are related to smoking (profile, started smoking year, stopping smoking year 
and pack years). We obtained a significant number of clinical data for only 4 of the 11 cancer sites, 
namely BLCA, HNSC, LUAD and LUSC. For each of these cancer sites, correlation coefficients 
between the associated clinical variables and GPX2 expression are calculated through the Spearman 
test for continuous variables, and the Wilcoxon test, or Kendall test for discrete variables with two or 
more than two groups respectively. In addition, we drew boxplots representing the association 
between smoking profile and GPX2 expression. 
 
Experimental validation using GPX2 knockdown experiments  
We extracted GPX2 perturbation experiments from the LINCS database 27, 28. GPX2 perturbation 
experiments were available for the lung adenocarcinoma A549 cell line that best resembles the 
LUAD cancer site, while no matching cell lines were available for the 4 other cancer sites, i.e., LUSC, 
BLCA, HNSC and UCEC. Four perturbation experiments measuring experimental targets of GPX2 
knockdown in the A549 cell line were available in LINCS, including three shRNA experiments and a 
consensus signature derived from these three experiments. In one of these four experiments, a 
positive differential expression z-score for GPX2 was measured, and we therefore removed this 
experiment from the analysis since successful GPX2 knockdown is expected to result in a negative z-
score. We used the “preranked” Gene Set Enrichment Analysis (GSEA) (GSEA) 29 tool to test for 
enrichment of the target genes of modules regulated by GPX2 in the genome-wide differential 
expression z-score profiles of the three GPX2 knockdown experiments. We restricted our analysis to 
the landmark genes (measured on the L1000 platform) and bing genes (inferred with high confidence), 
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and we collapsed multiple probes to unique genes by selecting the probe with the most reliable 
(landmark over bing) and the highest absolute z-score value. GSEA enrichments were estimated 
using the normalized enrichment score (NES) and significance of the enrichments was assessed at the 
FDR<0.25 level as well as p-value<0.05 and FDR<0.25 levels.  
 
Correlation with PDL1-PDL2 expression 
To investigate the role played by OAS2 on immune response pathways of different cancer sites, we 
correlated OAS2 expression with CD274, more commonly known as PDL1, and PDCD1LG2 
expressions, more commonly known as PDL2, using a Pearson test. 
 
Inference of tumor associated leukocyte levels using CIBERSORT 
CIBERSORT 30, 31 is a computational method that characterizes cell composition of complex tissues 
from their expression profiles. We applied CIBERSORT to TCGA gene expression data to infer 
leukocyte representation in the 11 considered cancer sites. More precisely, we used expression 
profiles for 22 distinct leukocyte subsets (TALs). Only patients for whom estimated p-values are less 
than 0.05 (indicating high confidence TAL estimation) were included in downstream analyses. 
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Results 
AMARETTO is an algorithm that allows the integration of multi-omics data to identify cancer drivers 
and associate them to their downstream targets. Here, we present a pancancer application of 
AMARETTO on eleven different cancer sites (Figure 1, Table 1). 
 
AMARETTO captures major hallmarks of cancer  
AMARETTO modules capture the major oncogenic pathways whereas randomly permuted modules 
do not result in significant gene sets in all cancer sites (Figure 2, Supplementary Table 1). We found 
22 modules enriched in cell cycle pathways. Four of these modules are regulated by CHEK1, a well-
known cell cycle gene required for checkpoint-mediated cell cycle arrest in response to DNA damage 
32, 33. Next, we found that 43 modules are highly enriched with genes related to angiogenesis. The 
most common cancer driver gene, FSTL1, regulates 8 of the 43 enriched modules, representing a 
potential cancer driver gene that regulates angiogenesis. This gene has been shown to be involved in 
proliferation, migration and invasion 34-36 and was recently linked with angiogenesis in post-
myocardial infarction rats 37. Twelve modules are enriched in epithelial-to-mesenchymal transition 
(EMT) pathways. The cancer driver genes of EMT modules include TGFB3, a member of the TGF 
beta pathway known to regulate EMT 38-41, and NUAK, which has been implicated in several cancers 
42-44. In addition, NUAK1 is involved in EMT in ovarian cancer 45 and is part of two ovarian cancer 
modules identified by AMARETTO that are enriched in EMT-related genes 38. Next, 100 modules 
are enriched in immune response pathways, with the inflammatory chemokine CCL5 regulating 14 of 
these modules 46. Overall, AMARETTO enabled us to find modules enriched in many major 
hallmarks of cancers, including hypoxia, apoptosis, metastases, integrin and epidermal growth factor 
receptor (EGFR) signaling demonstrating the validity of our approach (Figure 2, Supplementary 
Table 1).  
 
Methylation driven genes are more predictive of downstream expression than DNA copy 
number driver genes 
The module networks for each of the 11 cancer types contain on average 408 cancer driver genes and 
7.67 cancer driver genes per module. The top cancer driver genes across all histologies include 45 
genes that regulate more than 15 modules across an average number of 4.9 cancer sites per gene 
(Supplementary Table 2). Interestingly, for all cancers, a higher proportion of selected drivers are 
DNA methylation driven compared to DNA copy number driven genes (Supplementary Figure 1). 
Over 90% of cancer driver genes present aberrant DNA methylation patterns, highlighting the 
importance of DNA methylation-mediated deregulation. Moreover, using methylation data with or 
without copy number data considerably increases the predictive performance of cognate gene 
expression relative to copy number alone (Supplementary Figure 2, Supplementary Table 3). We 
found that adding methylation driver genes led to an averaged R-squared increase of between 6% for 
LUSC up to 16% for BRCA when predicting cognate gene expression (Figure 3, Supplementary 
Figure 2).  
 
Connecting AMARETTO modules reveals pancancer driver genes 
To identify pancancer driver genes, we connected AMARETTO modules across 11 cancer sites in a 
network and identified significantly connected subnetworks. Our results show a module network with 
2,693 edges between 713 modules (Supplementary Figure 3). Given this network, we detected 20 
subnetworks containing between 9 and 74 modules (Figure 4, Supplementary Table 4). Among these 
subnetworks, seven represent all 11 cancer sites. The most heterogeneous one is Subnetwork 17, 
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consisting of 11 modules each representing a different cancer. The least represented cancer site is 
LAML, with only 26 modules. It is also absent from 7 subnetworks reflecting most likely the 
difference between hematological and epithelial cancers. On the contrary, HNSC, LUSC, LUAD and 
BLCA, which are part of 19 subnetworks, are over-represented with more than 60 modules.  Next, we 
focused on subnetworks that show high degrees of overlapping cancer driver genes in an effort to 
identify pancancer driver genes of important biological pathways. For example we identified a 
pancancer subnetwork enriched in cell cycle pathways (Figure 4, dark blue subnetwork, 
Supplementary note). Next, we describe two subnetworks that led to the identification of two novel 
pancancer driver genes: a subnetwork involved in smoking induced cancers and a subnetwork 
involved in ‘antiviral’ interferon-modulated innate immune response.  
 
GPX2 is a driver of smoking induced cancers 
We found a subnetwork containing 15 modules representing 8 different cancers that is significantly 
enriched in smoking induced pathways (Figure 4, blue subnetwork). Two smoking associated cancer 
sites, LUSC and HNSC, have three modules each in this subnetwork. This subnetwork contains one 
cancer driver gene GPX2, a glutathione peroxidase from the GPx family of genes, that is part of 8 
modules across multiple cancer sites (Supplementary Table 5). GPX2 is hypo-methylated gene in all 
of the 11 cancers, except in HNSC where it is hyper or hypo-methylated in different patient 
subgroups. We found that several modules of the subnetwork are enriched in three smoking-related 
pathways (Supplementary Table 5). These particularly include genes involved in protection against 
chronic inflammation and asthma in lung cancers, as well as smoking-related gene expression 
signatures 47-49.  
To verify the smoking association of this subnetwork, we used two gene signatures reflecting 
smoking damage, a xenobiotic metabolism signature, and an oxidative stress gene signature 
(Supplementary Table 6a). This analysis showed a significant correlation between GPX2 expression 
and xenobiotic metabolism for all cancers (p-value < 0.001, Figure 5a, Supplementary Figure 4, 
Supplementary Table 6a) and a significant correlation with oxidative stress for six cancer sites in this 
subnetwork (p-value < 0.001, Supplementary Figure 5, Supplementary Table 6a), suggesting a role of 
GPX2 in meditating cellular response to carcinogens in tobacco smoke 50, 51. 
Next, we correlated GPX2 expression with smoking data, available for BLCA, HNSC, LUAD and 
LUSC. Even in the presence of significant missing clinical data (Supplementary Table 6b), we found 
significant correlations with the number of smoked years (p-value = 0.011, corr=0.26) and pack years 
(p-value=0.003, corr=0.21) for HNSC (Supplementary Table 6b). We also found a significant 
association with GPX2 expression and smoking profile for HNSC (p-value < 0.001, Supplementary 
Figure 6), the most represented cancer within the subnetwork, and a borderline significant correlation 
for BLCA (p-value=0.05, Supplementary Figure 6). 
To experimentally validate GPX2 as a driver of the smoking subnetwork, we interrogated the target 
genes of the 8 modules learned in the 5 cancer sites against publicly available genetic perturbation 
studies of GPX2 in the Library of Integrated Network-Based Cellular Signatures (LINCS) database 28, 

52. We used Gene Set Enrichment Analysis (GSEA) to test for enrichment of the target genes of these 
modules in GPX2 knockdown experiments performed in the lung adenocarcinoma A549 cell line 29, 53. 
We observed that the target genes of these modules that are activated by induced GPX2 expression 
are significantly repressed upon knockdown of GPX2 in the A549 cell line. This expected behavior 
was observed in LUAD, and also consistent in the four other cancer sites, i.e., LUSC, BLCA, HNSC 
and UCEC (Figure 5, Supplementary Table 7), which confirmed our hypothesis that GPX2 is a 
causative driver of these smoking-related modules. 
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OAS2 is a driver of ‘antiviral’ interferon-modulated innate immune response	
We found a second intriguing pancancer subnetwork, Subnetwork 12, containing 15 modules 
representing 10 different cancers and enriched in interferon-inducible antiviral response pathways 
(Figure 4, red subnetwork). After ranking the 65 cancer driver genes in this subnetwork based on 
overlap, we identified one gene, OAS2, regulating 10 modules, and TRIM22 regulating 6 modules, 6 
genes regulating 4 modules and 8 genes overlapping 4 modules (Supplementary Table 8). OAS2 is an 
interferon (IFN)-inducible enzyme that senses of double-stranded RNA (dsRNA) produced by viruses 
and subsequently activates RNAse L to destroy viruses54. Next, TRIM22 is also an interferon-
inducible motif family antiviral protein, though its mechanism of viral repression is less clear55, 56. 
Interestingly, almost all of the cancer driver genes of this subnetwork present aberrant methylation 
patterns. 
Using enrichment analysis, we found that the subnetwork is enriched by 21 different gene sets, most 
of which represented antiviral response and/or interferon inducible pathways (Supplementary Table 
8). These included genes up or down-regulated in T-cells 57, dendritic cells 58, and other blood cell 
types 59. A strong enrichment was also found with an IFN gamma response gene set from the 
hallmark gene collection 26 and other IFN response gene sets were highly enriched 60. Using the IFNs 
database Interferome as a reference 61, we confirmed that pancancer driver genes of the immune 
subnetwork were related to response to IFNs, including all three IFN classes (Supplementary Figure 
7). Despite its role in antiviral response, OAS2 was not differentially expressed between cancers 
harboring oncogenic viruses and those without detectable viruses, based on data for detection of viral 
transcripts in TCGA cancers provided 62 (data not shown).  
Immune gene expression signatures in cancer can reflect the profile of mixed infiltrating tumor 
associated leukocyte (TAL) cell types within the tumor. To determine the TAL types associated with 
the IFN responsive signature, we inferred the levels of 22 TAL types in all TCGA cases using 
CIBERSORT 30, and tested the correlation of pancancer driver genes OAS2 and TRIM22 with each 
TAL type. Both OAS2 and TRIM22 were strongly correlated with M1 macrophage levels across all 
cancer types. This is consistent with the fact that these pro-inflammatory M1 tumor associated 
macrophages (TAMs) are activated by IFNγ in response to pathogen infection or cancer, and that M1 
macrophage activation or ‘polarization’ coincides with upregulation of IFN-responsive genes 63. 
Interestingly, SP110, a pancancer driver gene of the IFN response subnetwork, is known to regulate 
macrophage gene expression and differentiation 64, 65. 
We have recently reported that a molecular subtype of HNSC with high levels of M1 TAMs 
overexpresses CD274, the gene encoding PD-L1, a ligand for the CD8+ T cell-expressed immune 
checkpoint receptor PD-1 66. This suggests that M1 TAM expression of PD-L1 may contribute to 
evasion of CD8+ T cell-mediated anti-cancer immunity, as previously reported 63. To investigate this 
further, we tested the correlation of OAS2, as a marker of the IFN-responsive/M1 TAM signature, 
with both ligands for the immune checkpoint receptor PD-1: CD274, the gene encoding PD-L1, and 
PDCD1LG2, encoding PD-L2. We observed a significant correlation for both genes and all cancer 
sites (p-values < 0.001, Supplementary Figure 8, Supplementary Table 9).  
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Discussion 
Here, we present a pancancer analysis using AMARETTO, an algorithm that addresses the challenge 
of integrating and interpreting multi-omics cancer data. AMARETTO first identifies cancer drivers, 
by considering genes with either DNA copy number or DNA methylation aberrations that have an 
effect on gene expression. AMARETTO then connects these cancer driver genes with target genes in 
the form of modules. Modules are subsequently associated with known biological pathways. We have 
shown that AMARETTO captures major biological pathways and reveals pancancer driver genes 
through network analysis.  
AMARETTO focuses on DNA copy number and DNA methylation altered genes and their effect on 
gene expression, and does not model DNA somatic mutations for several reasons. First, somatic 
mutations do not necessarily affect gene expression, and additional data are required to be able to 
model the effect of a somatic mutation on expression, the key idea behind AMARETTO. Secondly, 
for each cancer site, besides the most significant mutated genes, many sequencing projects show that 
many genes are mutated in less than 5% of the cohort. These long tails create very sparse mutation 
data that do not add any predictive power in AMARETTO (data not shown). Future algorithmic work 
is needed to investigate how sparse somatic mutations can be integrated in a multi-omics framework 
like AMARETTO. Overall, AMARETTO is a complementary technique to identify cancer driver 
genes alongside methods focusing on distinguishing driver mutations from passenger mutations from 
DNA sequencing data such as MutSig 67. 
Other computational methods have focused on identifying cancer driver genes using transcriptomics 
and multi-omics data. For example, ARACNE is a method that uses gene expression and a mutual 
information statistic to identify cancer driver genes through connecting transcription factors to their 
targets 68, 69. ARACNE is thus focused solely on gene expression data. CONEXIC is the most similar 
method to AMARETTO and uses a Bayesian strategy to connect cancer driver genes to their targets 7. 
We argue however that AMARETTO significantly improves upon CONEXIC. First, CONEXIC only 
takes into account DNA copy number changes, and does not model DNA methylation data. Our 
results show that DNA methylation driven genes are more predictive of transcription.  Secondly, in a 
large benchmark, a previous comparison between AMARETTO and CONEXIC showed that in terms 
of R-square AMARETTO outperforms CONEXIC when predicting gene expression on unseen data 70. 
Thirdly, CONEXIC involves a large number of parameters and is more computationally demanding 
for large data sets 70.  
In our results, we focused particularly on the biological implications of the two novel pancancer 
driver genes: GPX2 related to smoking and OAS2 related to IFN response. Regarding the former 
subnetwork, previous work has shown the importance of GPX2 in lung cancer. The GPX genes, 
glutathione peroxidases, are involved in protection of cells against oxidative stress and have been 
shown to be regulated by the Nrf2-pathway in lung. Activation of the Nrf2-pathway plays an 
important role in resistance to oxidant stress and its deregulation is one of the major causes of lung 
cancers 71, 72. Among the 5 GPX genes, expression of GPX2 has been shown to be related to smoking 
response, induced by Nrf2 activation in the lungs 73. GPX2 inhibits apoptosis in response to oxidative 
stress 74, such as may be caused by smoking. This subnetwork discovered by pancancer AMARETTO 
analysis indicates a key role for GPX2 in regulating gene expression in smoking-related cancers 
(LUAD, LUSC, HNSC, BLCA), and surprisingly, in UCEC, for which smoking is a protective factor. 
That GPX2 may block oxidative stress-induced apoptosis suggests that its inhibition may restore 
apoptosis, making it a potential drug target.  
Next, the interferon response subnetwork showed that all of its predicted cancer driver genes 
represent genes that are expressed in response to IFNs. IFNs are cytokines that protect against cancer 
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by activating innate immune inflammatory response to pathogens or cancer, triggering cancer cell 
death 75. We found that OAS2, overexpressed due to DNA hypo-methylation, was a major driver of 
IFN/immune related modules. While OAS2 is primarily implicated in mediating immune response to 
viruses 76, 77, most of the cancers overexpressing the IFN module do not have detectable oncogenic 
viruses 62. This is consistent with previous reports of an ‘antiviral’ gene expression profile marked by 
expression of OAS2 and other IFN responsive genes, in non-virus-related cancers 78. A similar 
‘interferon-inducible antiviral response’ gene expression signature (Featuring OAS2, OAS1, IRF7, 
MX2 and ISG20, regulators of our IFN response subnetwork) was associated with response to 
expression of dsRNA derived from human endogenous retroviruses (HERVs) in ovarian and 
colorectal cancer cell lines, upon loss of DNA methylation-mediated repression of HERVs 79, 80. 
Given that OAS2 is a viral dsRNA sensor, and all of the IFN response subnetwork regulators were 
abnormally methylated, it is plausible that expression of this subnetwork reflects response to 
reactivation of HERVs, a frequent event in, and potential cause of, many cancers 81.  
The IFN-response subnetwork was associated with levels of M1 TAMs across cancer types. TAMs 
include both pro-inflammatory M1 TAMs and anti-inflammatory M2 TAMs, both of which derive 
from M0 mature macrophages. M1 macrophage activation is stimulated by IFNγ, and is associated 
with expression of IFN-responsive genes such including OAS2 63, 82, 83. Therefore, expression of IFN-
response subnetwork genes may reflect infiltration of M1 TAMs, as part of innate response to cancer. 
Such inflammatory responses are generally considered to be anti-tumorigenic, indeed, stimulation of 
inflammatory response by treatment with IFNα is used therapeutically to stimulate anti-cancer 
immune response 63, 84. The current paradigm asserts that M2 TAMs are immunosuppressive and their 
levels are generally associated with poor prognosis in cancer, as they promote invasion, metastasis 
and therapy resistance. Conversely M1 TAMs that kill tumor cells are associated with prolonged 
survival 85-87. On the other hand, tumors can modulate TAMs to express pro-oncogenic factors. We 
observed that OAS2 expression is correlated with expression of CD274, the gene encoding PD-L1, a 
ligand for the CD8+ T cell-expressed immune checkpoint receptor PD-1 that suppresses CD8+ T cell-
mediated anti-cancer immunity. Indeed, IFN induces expression of PD-L1 during chronic 
inflammation or viral infections, dampening CD8+ T cell response 88, 89. PD-L1 is expressed by 
TAMs as well as tumor cells, and emerging evidence indicates that tumors modulate TAMs to 
express high levels of PD-L1 63, 90.  Our findings indicate that PD-L1 expression is particularly 
correlated with M1 TAMs, as opposed to M0 or M2 TAMs, indicating a novel immunosuppressive 
role of M1 TAMs.  
Monoclonal antibodies targeting PD-L1 or PD-1 can restore CD8+ T cell cytotoxic anti-cancer 
immunity, suggesting a potential therapeutic opportunity for patients displaying the IFN signature. 
Indeed, an IFN signature has recently been shown to be favorably predictive of response to PD-1 
blockade 91, 92 and recent experimental evidence indicates that IFN signaling, particularly IFN gamma 
signaling upregulates PD-L1 and PD-L2 expression in cancer, both in vitro and in vivo 93. A cancer 
driver gene such as OAS2 or TRIM22 may help to distinguish between patients that will benefit for 
PD-1/PD-L1 immunotherapy, and those for whom ineffective treatment may cause autoimmune side 
effects 94. AMARETTO has hereby enabled us to identify OAS2 and TRIM22 as epigenetically 
deregulated cancer driver genes within a pan-cancer IFN responsive pathway that provides novel 
biological insight into tumor-immune interactions that may have implications for immunotherapy. 
 
In summary, pancancer AMARETTO allows identifying cancer driver genes for major hallmark 
cancer pathways, a pancancer driver gene involved in smoking induced cancers and a pancancer 
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driver gene of immune response. AMARETTO thus provides a computational method for cancer 
driver gene identification in a multi-omics setting and might lead to novel drug targets. 
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 Table 1 

 
  Gene Expression GISTIC MethylMix 

TCGA cancer site TCGA cancer code Samples Genes Samples Genes1 Samples Genes2 
Bladder urothelial carcinoma BLCA 181 15.432 178 1.974 123 472 
Breast invasive carcinoma BRCA 985 16.02 968 1.523 887 890 
Colon and rectum adenocarcinoma COADREAD 589 15.533 578 2.523 570 522 
Glioblastoma multiforme GBM 501 17.811 481 1.561 321 395 
Head and neck squamous cell carcinoma HNSC 371 15.828 365 2.184 308 753 
Kidney renal clear cell carcinoma KIRC 509 16.123 501 3.052 497 567 
Acute myeloid leukemia LAML 173 14.296 166 1.681 170 613 
Lung adenocarcinoma LUAD 489 16.092 487 3.585 367 678 
Lung squamous cell carcinoma LUSC 490 16.219 487 2.592 355 679 
Ovarian serous cystadenocarcinoma OV 541 17.814 528 1.499 540 510 
Uterine corpus endometrial carcinoma UCEC 508 15.706 500 2.074 496 821 

        1 Number of significant genes found after running GISTIC (data available in the TCGA data 
portal). 

   2 Number of genes with significant methylation patterns identified using 
MethylMix. 

     
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2017. ; https://doi.org/10.1101/216754doi: bioRxiv preprint 

https://doi.org/10.1101/216754
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 
Figure 1: Workflow of pancancer AMARETTO analysis. AMARETTO generates a list of candidate 
cancer driver genes by investigating significant correlations between methylation, copy number and 
gene expression data for each putative driver gene separately, and connects them with their 
downstream targets by constructing a module network. We then identify modules that capture major 
hallmarks of cancers. We finally detect subnetworks of modules across all cancers. 
Figure 2: Heatmap representing the enrichment between modules of all cancer sites (in rows) and 
gene sets associated with major hallmarks of cancers (in columns): angiogenesis, hypoxia, epithelial 
mesenchymal transition (EMT), cell cycle, immune response, apoptosis, metastases, integrin and 
epidermal growth factor receptor (EGFR). 
Figure 3: Boxplots representing the prediction performances of cancer driver genes predicting their 
target genes measured in two ways: R-square and mean squared error (MSE) obtained after running 
AMARETTO in three ways using only copy number data, only DNA methylation data and with both 
copy number and methylation data, shown for four cancer sites. 
Figure 4: (a) Network representing all pancancer modules and 20 subnetworks. One node corresponds 
to one module from one cancer site. An edge between two modules represents a significant 
association between the module genes. The identified subnetworks are highlighted using different 
colors. (b) Three subnetworks are highlighted: the blue subnetwork is related to smoking, the red 
subnetwork captures immune response and the dark blue subnetwork captures the cell cycle. 
Figure 5: (a) Correlation between GPX2 expression and the averaged expression of a xenobiotic 
response gene signature showing significant correlation. (b) Heatmap showing the enrichments of the 
target genes of the 8 modules regulated by GPX2 derived from the 5 cancer sites (columns organized 
by cancer sites in following order: LUAD, LUSC, BLCA, HNSC, UCEC) in the three GPX2 
knockdown experiments measured in the lung adenocarcinoma A549 cell line (rows: shRNA1, 
shRNA2, and consensus). Enrichments are represented by the GSEA normalized enrichment scores 
(NES). Only significant enrichments (top panel: p-value<0.05 and FDR<0.25; bottom panel: 
FDR<0.25) are shown (red: induced; blue: repressed; grey: not significant). The bottom panel shows 
the modules that contain at least 10 target genes or at least 50% of the target genes in LINCS. 
 
Supplementary Figures 
Supplementary Figure 1: Number of regulator genes (genes that regulate at least one module from 
one cancer type) identified in AMARETTO by only copy number, only DNA methylation or both. 
Supplementary Figure 2: Boxplots representing the prediction performances (mean squared error 
MSE and R-square) obtained after running AMARETTO using copy number data only, methylation 
only or both copy number and methylation on the 11 cancer sites. 
Supplementary Figure 3: Overview of the module network (upper figure), the pancancer module 
network (on the bottom, left) and a zoomed view of intriguing subnetworks. The nodes of the graph 
are all the modules across all cancers sites. Their size depends on the node degree (number of incident 
edges). An edge between two modules stands for a significant association between them (measured 
through the minus log-transformation of the adjusted p-value, which also defines the edge thickness). 
For the top figure, the node color depends on the associated cancer site, for the two bottom figures, 
the node color depends on the subnetwork it belongs to. 
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Supplementary Figure 4: Correlations between GPX2 expression and the averaged expression of an 
oxidative response gene signature for all cancer sites. 
Supplementary Figure 5: Correlations between GPX2 expression and the averaged expression of a 
xenobiotic response gene signature for all cancer sites. 
Supplementary Figure 6: Boxplots representing the association between GPX2 expression and 
smoking profile for BLCA and HNSC cancers. 
Supplementary Figure 7: Venn diagram representing the number of genes regulating the immune 
response subnetwork and induced by IFNs of type I, II or III. 
Supplementary Figure 8: Scatterplots representing the associations between OAS2 expression and 
PD-L1 expression on the left, and PD-L2 expression, on the right for all cancer sites. 
 
Supplementary Tables 
Supplementary Table 1: (a) The top 50 most selected driver genes regulating modules enriched in 
major pathways of cancer including angiogenesis, hypoxia, EMT, cell cycle, immune response, 
apoptosis, metastases, integrin signaling and EGFR across all cancer sites, (b) genetic and epigenetic 
alterations of the top drivers across all cancer sites and (c) comparison of average number of enriched 
gene sets per module in 100 random permutations vs. the actual modules per cancer. 
 
Supplementary Table 2: Number of modules regulated by driver genes for all cancer types. Only the 
top regulator genes, ranked according to the total number of regulated modules across all cancer sites 
(last column) are represented. 
 
Supplementary Table 3: Prediction performances (R-square and mean squared error MSE) obtained 
after running AMARETTO using copy number data only, methylation only or both copy number and 
methylation on the 11 cancer sites. The two last columns indicate the R-square and MSE increase 
when adding methylation data. 
Supplementary Table 4: Distribution of the modules per cancer (column) and subnetwork (row). The 
last column indicates the total number of modules within a subnetwork. 
 
Supplementary Table 5: Cancer driver genes and enrichment results of the smoking subnetwork 
ranked by number of modules each driver gene is participating in.. 
 
Supplementary Table 6: (a) Oxidative and xenobiotic gene signatures provided by the GO ontology 
and used to measure the association of GPX2 expression with smoking. (b) Correlations and p-values 
measuring the association between smoking related data (smoking profile, number of smoked years 
and pack years) and GPX2 expression across all cancer sites with enough data (BLCA, HNSC, 
LUAD, LUSC). The percentage of missing data is also indicated. 
 
Supplementary Table 7: Experimental validation of the modules and their target genes regulated by 
GPX2 as a causative driver of the pancancer smoking subnetwork. Table shows overall GSEA 
enrichment results of the three perturbation experiments upon GPX2 knockdown in the lung 
adenocarcinoma A549 cell line derived from LINCS (columns: consensus, shRNA1, shRNA2) in 
each of the 8 modules regulated by GPX2 in the 5 cancer sites (rows: modules organized by the 5 
sites in the following order: LUAD, LUSC, BLCA, HNSC, UCEC). On top are shown the 
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significance levels (p-values and FDR values; green if p-value<0.05 and FDR<0.25, yellow if 
FDR<0.25) and below, the normalized enrichment scores (NES; blue if repressed, red if induced). On 
the right are the sizes of the signatures, from left to right: number of genes in the modules, number of 
genes that are part of the LINCS landmark and bing genes, and the numbers of those genes that are 
identified as ‘leading edge’ genes driving the GSEA enrichment scores in the three experiments 
(consensus, shRNA1, shRNA2).  
 
Supplementary Table 8: Cancer driver genes and enrichment results of the immune response 
subnetwork ranked by number of modules each driver gene is participating in. 
 
Supplementary Table 9: Correlations and p-values for Pearson test measuring the association between 
OAS2 expression and PD-L1/PD-L2 expression for all cancer sites.   
 
Supplementary Table 10: Cancer driver genes and enrichment results of the histone subnetwork 
ranked by number of modules each driver gene is participating in. 
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Figure 2 
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Figure 3
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Figure 5 
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