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Abstract

The performance of RNA-Seq aligners and assemblers varies greatly across
different organisms and experiments, and often the optimal approach is not
known beforehand. Here we show that the accuracy of transcript reconstruction
can be boosted by combining multiple approaches, and we present a novel
algorithm to integrate multiple RNA-Seq assemblies into a coherent transcript
annotation. Our algorithm can remove redundancies and select the best
transcript models according to user-specified metrics, while solving common
artefacts such as erroneous transcript chimerisms. We have implemented this
method in an open-source Python3 and Cython program, Mikado, available at
https://github.com/lucventurini/Mikado.
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Background
The annotation of eukaryotic genomes is typically a complex process which in-

tegrates multiple sources of extrinsic evidence to guide gene predictions. Improve-

ments and cost reductions in the field of nucleic acid sequencing now make it feasible

to generate a genome assembly and to obtain deep transcriptome data even for non-

model organisms. However, for many of these species often there are only minimal

EST and cDNA resources and limited availability of proteins from closely related

species. In these cases, transcriptome data from high-throughput RNA sequencing

(RNA-Seq) provides a vital source of evidence to aid gene structure annotation. A

detailed map of the transcriptome can be built from a range of tissues, developmen-

tal stages and conditions, aiding the annotation of transcription start sites, exons,

alternative splice variants and polyadenylation sites.

Currently, one of the most commonly used technology for RNA-Seq is Illumina se-

quencing, which is characterised by extremely high throughput and relatively short

read lengths. Since its introduction, numerous algorithms have been proposed to

analyse its output. Many of these tools focus on the problem of assigning reads to

known genes to infer their abundance [1–4], or of aligning them to their genomic

locus of origin [5–7]. Another challenging task is the reconstruction of the original

sequence and genomic structure of transcripts directly from sequencing data. Many

approaches developed for this purpose leverage genomic alignments [8–11], although

there are alternatives based instead on de novo assembly [9, 12, 13]. While these

methods focus on how to analyse a single dataset, related research has examined

how to integrate assemblies from multiple samples. While some researchers advo-

cate for merging together reads from multiple samples and assembling them jointly
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[9], others have developed methods to integrate multiple assemblies into a single

coherent annotation [8, 14].

The availability of multiple methods has generated interest in understanding the

relative merits of each approach [15–17]. The correct reconstruction of transcripts

is often hampered by the presence of multiple isoforms at each locus and the ex-

treme variability of expression levels, and therefore in sequencing depth, within and

across gene loci. This variability also affects the correct identification of transcrip-

tion start and end sites, as sequencing depth typical drops near the terminal ends

of transcripts. The issue is particularly severe in compact genomes, where genes

are clustered within small intergenic distances. Further, the presence of tandemly

duplicated genes can lead to alignment artefacts that then result in multiple genes

being incorrectly reconstructed as a fused transcript. As observed in a comparison

performed by the RGASP consortium [18], the accuracy of each tool depends on how

it corrects for each of these potential sources of errors. However, it also depends on

other external factors such as the quality of the input sequencing data as well as on

species-dependent characteristics, such as intron sizes and the extent of alternative

splicing. It has also been observed that no single method consistently delivers the

most accurate transcript set when tested across different species. Therefore, none

of them can be determined a priori as the most appropriate for a given experiment

[19]. These considerations are an important concern in the design of genome annota-

tion pipelines, as transcript assemblies are a common component of evidence guided

approaches that integrate data from multiple sources (e.g. cDNAs, protein or whole

genome alignments). The quality and completeness of the assembled transcript set

can therefore substantially impact on downstream annotation.

Following these studies, various approaches have been proposed to determine the

best assembly using multiple measures of assembly quality [19, 20] or to integrate

RNA-Seq assemblies generated by competing methods [21–23]. In this study we

show that alternative methods not only have different strengths and weaknesses,

but that they also often complement each other by correctly reconstructing differ-

ent subsets of transcripts. Therefore, methods that are not the best overall might

nonetheless be capable of outperforming the “best” method for a sub-set of loci.

An annotation project typically integrates datasets from a range of tissues or con-

ditions, or may utilise public data that may have been generated with different

technologies (e.g. Illumina, PacBio) or sequencing characteristics (e.g. read length,

strand specificity, ribo-depletion); in such cases, it is not uncommon to produce

at least one set of transcript assemblies for each of the different sources of data,

assemblies which then need to be reconciled. To address these challenges, we de-

veloped MIKADO, an approach to integrate transcript assemblies. The tool defines

loci, scores transcripts, determines a representative transcript for each locus, and

finally returns a set of gene models filtered to individual requirements, for example

removing transcripts that are chimeric, fragmented or with short or disrupted cod-

ing sequences. Our approach was shown to outperform both stand-alone methods

and those that combine assemblies, by returning more transcripts reconstructed

correctly and less chimeric and unannotated genes.
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Results and discussion
Assessment of RNA-Seq based transcript reconstruction methods

We evaluated the performance of four commonly utilised transcript assemblers: Cuf-

flinks, StringTie, CLASS2 and Trinity. Their behaviour was assessed in four species,

using as input data RNA-Seq reads aligned with two alternative leading aligners,

TopHat2 and STAR. In total, we generated 32 different transcript assemblies, eight

per species. In line with the previous RGASP evaluation, we performed our tests

on the three metazoan species of Caenhorabditis elegans, Drosophila melanogaster

and Homo sapiens, using RNA-Seq data from that study as input. We also added to

the panel a plant species, Arabidopsis thaliana, to assess the performance of these

tools on a non-metazoan genome. Each of these species has undergone extensive

manual curation to refine gene structures, and moreover, these annotations exhibit

very different gene characteristics in terms of their proportion of single exon genes,

average intron lengths and number of annotated transcripts per gene (Supplemen-

tary Table ST1). Similar to previous studies [18, 24], we based our initial assessment

on real rather than simulated data, to ensure we captured the true characteristics

of RNA-Seq data. Prediction performance was benchmarked against the subset of

annotated transcripts with all exons and introns (at least 1X coverage) identified

by at least one of the two RNA-Seq aligners.

The number of transcripts assembled varied substantially across methods, with

StringTie and Trinity generally reconstructing a greater number of transcripts (Sup-

plementary Figure SF1). Assembly with Trinity was performed using the genome

guided de-novo method, where RNA-Seq reads are first partitioned into loci ahead

of de-novo assembly. This approach is in contrast to the genome guided approaches

employed by the other assemblers that allow small drops in read coverage to be

bridged and enable the exclusion of retained introns and other lowly expressed

fragments. As expected Trinity annotated more fragmented loci, with a higher pro-

portion of mono-exonic genes (Supplementary Figure SF1).

Accuracy of transcript reconstruction was measured using recall and precision.

For any given feature (nucleotide, exon, transcript, gene), recall is defined as the

percentage of correctly predicted features out of all expressed reference features,

whereas precision is defined as the percentage of all features that correctly match

a feature present in the reference. In line with previous evaluations, we found that

accuracy varied considerably among methods, with clear trade-offs between recall

and precision (Supplementary Figure SF2). For instance, CLASS2 emerged as the

most precise of all methods tested, but its precision came at the cost of reconstruct-

ing less transcripts overall. In contrast, Trinity and StringTie often outperformed

the recall of CLASS2, but were also much more prone to yield erroneous transcripts

(Supplementary Figure SF2). Notably, the performance and the relative ranking

of the methods differed among the four species (Table 1). We found CLASS2 and

StringTie to be overall the most accurate (with either aligner), however exceptions

were evident. For instance, the most accurate method in D. melanogaster (CLASS2

in conjunction with Tophat alignments) performed worse than any other tested

method in A. thaliana. The choice of RNA-Seq aligner also substantially impacted

assembly accuracy, with clear differences between the two when used in conjunction

with the same assembler.
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Across the four species and depending on the aligner used, 22 to 35% of genes

could be reconstructed by any combination of aligner and assembler (Supplementary

Table ST2). However, some genes were recovered only by a subset of the methods

(Supplementary Table ST2), with on average 5% of the genes being fully recon-

structable only by one of the available combinations of aligner and assembler.

Taking the union of genes fully reconstructed by any of the methods shows that

an additional 14.92-19.08% of genes could be recovered by an approach that would

integrate the most sensitive assembly with less comprehensive methods. This com-

plementarity manifests as well in relation to genes missed by any particular method:

while each approach failed to reconstruct several hundred genes on average, the

majority of these models could be fully or partially reconstructed by an alterna-

tive method (Supplementary Figure SF3a). Another class of error are artifactual

fusion/chimeric transcripts that chain together multiple genes. These artefacts usu-

ally arise from an incorrect identification of start and end sites during transcript

reconstruction - an issue which appears most prominently in compact genomes with

smaller intergenic distances [9]. Among the methods tested, Cufflinks was particu-

larly prone to this class of error, while Trinity and CLASS2 assembled far fewer such

transcripts. Again, alternative methods complemented each other, with many genes

fused by one assembler being reconstructed correctly by another approach (Supple-

mentary Figure SF3b). Finally, the efficiency of transcript reconstruction depends

on coverage, a reflection of sequencing depth and expression level. Methods in gen-

eral agree on the reconstruction of well-expressed genes, while they show greater

variability with transcripts that are present at lower expression levels. Even at high

expression levels, though, only a minority of genes can be reconstructed correctly

by every tested combination of aligner and assembler (Supplementary Figure SF4).

Our results underscore the difficulty of transcript assembly and highlight advanta-

geous features of specific methods. A naive combination of the output of all methods

would yield the greatest sensitivity, but at the cost of a decrease in precision as noise

from erroneous reconstructions accumulates. Indeed, this is what we observe: in all

species, while the recall of the naive combination markedly improves even upon

the most sensitive method, the precision decreases (Supplementary Figure SF2). As

transcript reconstruction methods exhibit idiosyncratic strengths and weaknesses

an approach that can integrate multiple assemblies can potentially lead to a more

accurate and comprehensive set of gene models.

Overview of the Mikado method

Mikado provides a framework for integrating transcripts from multiple sources into

a consolidated set of gene annotations. Our approach assesses, scores (based on

user configurable criteria) and selects transcripts from a larger transcript pool,

leveraging transcript assemblies generated by alternative methods or from multi-

ple samples and sequencing technologies. The software takes as input transcript

structures in standard formats such as GTF and GFF3, with optionally BLAST

similarity scores or a set of high quality splice junctions, and produces a pol-

ished annotation and a rich set of metrics for each transcript. The software is

written in python3 and Cython, and extensive documentation is available from

https://github.com/lucventurini/mikado.
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Mikado is composed of three core programs (prepare, serialise, pick) executed in

series. The Mikado prepare step validates and standardizes transcripts, removing

exact duplicates and artefactual assemblies such as those with ambiguous strand

orientation (as indicated by canonical splicing). During the Mikado serialise step,

data from multiple sources are brought together inside a common database. Mikado

by default analyses and integrates three types of data: open-reading frames (ORFs)

currently identified via TransDecoder, protein similarity derived through BLASTX

or Diamond and high quality splice junctions identified using tools such as Portcullis

[25] or Stampy [26]. The selection phase (Mikado pick) groups transcripts into loci

and calculates for each transcript over fifty numerical and categorical metrics based

on either external data (e.g. BLAST support) or intrinsic qualities relating to CDS,

exon, intron or UTR features (summarised in Supplementary Table ST3). While

some metrics are inherent to each transcript (e.g. the cDNA length), others depend

on the context of the locus the transcript is placed in. A typical example would be

the proportion of introns of the transcript relative to the number of introns associ-

ated to the genomic locus. Such values are dependent on the loci grouping, and can

change throughout the computation, as transcripts are moved into a different locus

or filtered out. Notably, the presence of open reading frames is used in conjunc-

tion with protein similarity to identify and resolve fusion transcripts. Transcripts

with multiple ORFs are marked as candidate false-fusions; homology to reference

proteins is then optionally used to determine whether the ORFs derive from more

than one gene. If the fusion event is confirmed, the transcript is split into multiple

transcripts (Figure 1).

To determine the primary transcript at a locus, Mikado assigns a score for each

metric of each transcript, by assessing its value relatively to all other transcripts

associated to the locus. Once the highest scoring transcript for the group has been

selected, Mikado will exclude all transcripts which are directly intersecting it, and

if any remain, iteratively select the next best scoring transcripts pruning the graph

until all non-intersecting transcripts have been selected. This iterative strategy en-

sures that no locus is excluded if e.g. there are unresolved read-through events that

would connect two or more gene loci. Grouping and filtering happen in multiple

sequential phases, each defined by different rules for clustering transcripts into loci

(see methods). The process is controlled by a configuration file that determines

desirable gene features, allowing the user to define criteria for transcript filtering

and scoring as well as specifying minimum requirements for potential alternative

splicing events.

We also developed a Snakemake-based pipeline, Daijin, in order to drive Mikado,

including the calls to external programs to calculate ORFs and protein homology.

Daijin works in two independent stages, assemble and mikado. The former stage

enables transcript assemblies to be generated from the read datasets using a choice

of read alignment and assembly methods. In parallel, this part of the pipeline will

also calculate reliable junctions for each alignment using Portcullis. The latter stage

of the pipeline drives the steps necessary to execute Mikado, both in terms of the

required steps for our program (prepare, serialise, pick) and of the external programs

needed to obtain additional data for the picking stage (currently, homology search

and ORF detection). A summary of the Daijin pipeline is reported in Figure 2.
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Performance of Mikado

To provide a more complete assessment we evaluated the performance of Mikado

on both simulated and real data. While real data represents more fully the true

complexity of the transcriptome simulated data generates a known set of transcripts

to enable a precise assessment of prediction quality. For our purposes, we used

SPANKI to simulate RNA-Seq reads for all four species, closely matching the quality

and expression profiles of the corresponding real data. Simulated reads were aligned

and assembled following the same protocol that was used for real data, above.

Mikado was then used to integrate the four different transcript assemblies for each

alignment.

Across the four species and on both simulated and real data, Mikado was able

to successfully combine the different assemblies, obtaining a higher accuracy than

most individual tools in isolation. Compared with the best overall combination,

CLASS2 on STAR alignments, Mikado improved the accuracy on average by 6.58%

and 9.23% on simulated and real data at the transcript level, respectively (Figure 3

and Additional File 2). Most of this improvement accrues due to an improved recall

rate without significant losses on precision. We register a single exception, on H.

sapiens simulated data, due to an excess of intronic gene models which pervade the

assemblies of all other tools. On simulated data, CLASS2 is able to detect these

models and exclude them, most probably using its refined filter on low-coverage

regions [11]; however, this increase in precision is absent when using TopHat2 as an

aligner and on real data. Aside from the accuracy in correctly reconstructing tran-

script structures, in our experiments, merging and filtering the assemblies proved

an effective strategy to produce a comprehensive transcript catalogue: Mikado con-

sistently retrieved more loci than the most accurate tools, while avoiding the sharp

drop in precision of more sensitive methods such as e.g. Trinity (Figure 3b). Finally,

Mikado was capable to accurately identify and solve cases of artefactual gene fu-

sions, which mar the performance of many assemblers. As this kind of error is more

prevalent in our real data, the increase in precision obtained by using Mikado was

greater there rather in the analysis on simulated data.

We further assessed the performance of Mikado in comparison with three

other methods that are capable of integrating transcripts from multiple sources:

CuffMerge [27], StringTie-merge [14] and EvidentialGene [23]. CuffMerge and

StringTie-merge perform a meta-assembly of transcript structures, without consid-

ering ORFs or homology. In contrast, EvidentialGene is similar to Mikado in that

it classifies and selects transcripts, calculating ORFs and associated quality metrics

from each transcript to inform its choice. In our tests, Mikado consistently per-

formed better than alternative combiners, in particular when compared to the two

meta-assemblers. The performance of StringTie-merge and CuffMerge on simulated

data underscored the advantage of integrating assemblies from multiple sources as

both methods generally improved recall over input methods. However, this was

accompanied by a drop in precision, most noticeably for CuffMerge, as assembly

artefacts present in the input assemblies accumulated in the merged dataset. In

contrast, the classification and filtering based approach of EvidentialGene led to a

more precise dataset, but at the cost of a decrease in recall. Mikado managed to

balance both aspects, thus showing a better accuracy than any of the alternative
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approaches (A. thaliana +6.24%, C. elegans +7.66%, D. melanogaster +9.48%, H.

sapiens +4.92% F1 improvement over the best alternative method). On real and

simulated data, Mikado and EvidentialGene generally performed better than the

two meta-assemblers, with an accuracy differential that ranged from moderate in

H. sapiens (1.67 to 4.32%) to very marked in A. thaliana (14.87 to 29.58%). An

important factor affecting the accuracy of the meta-assemblers with real data is

the prevalence of erroneous transcript fusions that can result from incorrect read

alignment, genomic DNA contamination or bona fide overlap between transcrip-

tional units. Both StringTie-Merge and CuffMerge were extremely prone to this

type of error, as across the four species they generated on average 2.39 times the

number of fusion genes compared to alternative methods (Figure 3b). Between the

two selection based methods, EvidentialGene performed similarly to Mikado on real

data but much worse on simulated data: its accuracy was on average 2 points lower

than Mikado on real data, and 8.13 points lower in the simulations. This is due

mostly due to a much higher precision differential between the two methods in sim-

ulated data, with Mikado much better than EvidentialGene on this front (+8.95%

precision on simulated data).

Filtering lenient assemblies

Although our tests have been conducted using default parameters for the various

assemblers, these parameters can be adjusted to alter the balance between precision

and sensitivity according to the goal of the experiment. In particular, three of the

assemblers we tested provide a parameter to filter out alternative isoforms with a low

abundance. This parameter is commonly referred to as “minimum isoform fraction”,

or MIF, and sets for each gene a minimum isoform expression threshold1 relative

to the most expressed isoform. Only transcripts whose abundance ratio is greater

than the MIF threshold are reported. Therefore, lowering this parameter will yield a

higher number of isoforms per locus, retaining transcripts that are expressed at low

levels and potentially increasing the number of correctly reconstructed transcripts.

This improved recall is obtained at the cost of a drop in precision, as more and

more incorrect splicing events are reported (Supplementary Figure 4). Mikado can

be applied on top of these very permissive assemblies to filter out spurious splicing

events. In general, filtering with Mikado yielded transcript datasets that are more

precise than those produced by the assemblers at any level of chosen MIF, or even

when comparing the most relaxed MIF in Mikado with the most conservative in the

raw assembler output (Figure 4).

Multi-sample transcript reconstruction

Unravelling the complexity of the transcriptome requires assessing transcriptional

dynamics across many samples. Projects aimed at transcript discovery and genome

annotation typically utilize datasets generated across multiple tissues and experi-

mental conditions to provide a more complete representation of the transcriptional

landscape. Even if a single assembly method is chosen, there is often a need to in-

tegrate transcript assemblies constructed from multiple samples. StringTie-Merge,

CuffMerge and the recently published TACO [28] have been developed with this

specific purpose in mind. The meta-assembly approach of these tools can recon-

struct full-length transcripts when they are fragmented in individual assemblies,
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but as observed earlier, it is prone to creating fusion transcripts. TACO directly

addresses this issue with a dedicated algorithmic improvement, ie change-point de-

tection. This solution is based on fusion transcripts showing a dip in read coverage

in regions of incorrect assembly; this change in coverage can then be used to iden-

tify the correct breakpoint. A limitation of the implementation in TACO is that it

requires expression estimates to be encoded in the input GTFs, and some tools do

not provide this information.

To assess the performance of Mikado for multi sample reconstruction, we indi-

vidually aligned and assembled the twelve A. thaliana seed development samples

from PRJEB7093, using the four single-sample assemblers described previously.

The collection of twelve assemblies per tool was then integrated into a single set

of assemblies, using different combiners. StringTie-merge and TACO could not be

applied to the Trinity dataset, as they both require embedded expression data in

the GTF files, which is not provided in the Trinity output. In line with the re-

sults published in the TACO paper [28], we observed a high rate of fusion events

in both StringTie-merge and CuffMerge results (Figure 5b), which TACO reduced.

However, none of these tools performed as well as EvidentialGene or Mikado, either

in terms of accuracy, or in avoiding gene fusions (5). Mikado achieved the highest

accuracy irrespective of the single sample assembler used, with an improvement in

F1 over the best alternative method of +8.25% for Cufflinks assemblies, +2.23% in

StringTie, +0.95% with CLASS2 and +6.65% for Trinity.

Transcript assemblies are commonly incorporated into evidence-based gene find-

ing pipelines, often in conjunction with other external evidence such as cross species

protein sequences, proteomics data or synteny. The quality of transcript assembly

can therefore potentially impact on downstream gene prediction. To test the mag-

nitude of this effect, we used the data from these experiments on A. thaliana to

perform gene prediction with the popular MAKER annotation pipeline, using Au-

gustus with default parameters for the species as a gene predictor. Our results

(Supplementary Figure SF5) show that, as expected, an increased accuracy in the

transcriptomic dataset leads to an increased accuracy in the final annotation. Im-

portantly, MAKER was not capable of reducing the prevalence of gene fusion events

present in the transcript assemblies. This suggests that ab initio Augustus predic-

tions utilized by MAKER do not compensate for incorrect fusion transcripts that

are provided as evidence, and stress the importance of pruning these mistakes from

transcript assemblies before performing an evidence-guided gene prediction.

Expansion to long read technologies

Short read technologies, due to their low per-base cost and extensive breadth and

depth of coverage, are commonly utilised in genome annotation pipelines. How-

ever, like the previous generation Sanger ESTs, their short size requires the use of

sophisticated methods to reconstruct the structure of the original RNA molecules.

Third-generation sequencing technologies promise to remove this limitation, by gen-

erating full-length cDNA sequences. These new technologies currently offer lower

throughput and are less cost effective, but have in recent studies been employed

alongside short read technologies to define the transcriptome of species with large

gene content [29, 30].
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We tested the complementarity of the two technologies by sequencing two samples

of a standard human reference RNA library with the leading technologies for both

approaches, Illumina HiSeq for short-reads (250 bp, paired-end reads) and the Pa-

cific Bioscience IsoSeq protocol for long reads. Given the currently higher per-base

costs of long-read sequencing technologies, read coverage is usually much lower than

for short read sequencing. We found many genes to be reconstructed by both plat-

forms, but as expected given the lower sequencing depth there was a clear advantage

for the Illumina dataset on genes with expression lower than 10 TPM (Supplemen-

tary Figures SF6a and SF6b). We verified the feasibility of integrating the results

given by the different sequencing technologies by combining the long reads with the

short read assemblies, either simply concatenating them, or by filtering them with

EvidentialGene and Mikado (Supplementary Figure SF7). An advantage of Mikado

over the two alternative approaches is that it allows to prioritise PacBio reads over

Illumina assemblies, by giving them a slightly higher base score. In this analysis,

we saw that even PacBio data on its own might require some filtering, as the orig-

inal sample contains a mixture of whole and fragmented molecules, together with

immature transcripts. Both Mikado and EvidentialGene are capable of identifying

mature coding transcripts in the data, but Mikado shows a better recall and gen-

eral accuracy rate, albeit at the cost of some precision. However, Mikado performed

much better than EvidentialGene in filtering either the Illumina data on its own,

or the combination of the two technologies. Although the filtering inevitably loses

some of the real transcripts, the loss is compensated by an increased overall accu-

racy. Mikado performed better in this respect than EvidentialGene, as the latter

did not noticeably improve in accuracy when given a combination of PacBio and

Illumina data, rather than the Illumina data alone.

Conclusions
Transcriptome assembly is a crucial component of genome annotation workflows,

however, correctly reconstructing transcripts from short RNA-Seq reads remains a

challenging task. Over recent years methods for both de novo and reference guided

transcript reconstruction have accumulated rapidly. When combined with the large

number of RNA-seq mapping tools deciding on the optimal transcriptome assem-

bly strategy for a given organism and RNA-Seq data set (stranded/unstranded,

polyA/ribodepleted) can be bewildering. In this article we showed that different

assembly tools are complementary to each other; fully-reconstructing genes only

partially reconstructed or missing entirely from alternative approaches. Similarly,

when analysing multiple RNA-Seq samples, the complete transcript catalogue is of-

ten only obtained by collating together different assemblies. For a gene annotation

project it is therefore typical to have multiple sets of transcripts, be they derived

from alternative assemblers, different assembly parameters or arising from multiple

samples. Our tool Mikado provides a framework for integrating transcript assemblies

exploiting the inherent complementarity of the data to to produce a high-quality

transcript catalogue.

Rather than attempting to capture all transcripts, our approach aims to mimic

the selective process of manual curation by evaluating and identifying a sub-set

of transcripts from each locus. The criteria for selection can be configured by the
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user, enabling them to for example to penalise gene models with truncated ORFs,

those with non-canonical splicing, targets for nonsense mediated decay or chimeric

transcripts spanning multiple genes. Such gene models may represent bona fide tran-

scripts (with potentially functional roles), but can also arise from aberrant splicing

or, as seen from our simulated data, from incorrect read alignment and assembly.

Mikado acts as a filter principally to identify coding transcripts with complete ORFs

and is therefore in line with most reference annotation projects that similarly do not

attempt to represent all transcribed sequences. Our approach is made possible by

integrating the data on transcript structures with additional information generally

not utilised by transcript assemblers such as similarity to known proteins, the loca-

tion of open reading frames and information on the reliability of splicing junctions.

This information aids Mikado in performing operations such as discarding spurious

alternative splicing events, or detecting chimeric transcripts. This allows Mikado to

greatly improve in precision over the original assemblies, with in general minimal

drops in recall. Moreover, similarly to TACO, Mikado is capable of identifying and

resolving chimeric assemblies, which negatively affect the precision of many of the

most sensitive tools, such as StringTie or the two meta-assemblers Cuffmerge and

StringTie-merge.

Our experiments show that Mikado can aid genome annotation by generating

a set of high quality transcript assemblies across a range of different scenarios.

Rather than having to identify the best aligner/assembly combination for every

project, Mikado can be used to integrate assemblies from multiple methods, with

our approach reliably identifying the most accurate transcript reconstructions and

allowing the user to tailor the gene set to their own requirements. It is also simple to

incorporate assemblies from new tools even if the new method is not individually the

most accurate approach. Given the challenges associated with short-read assembly

it is desirable (when available) to integrate these with full-length cDNA sequences.

Mikado is capable of correctly integrating analyses coming from different assemblers

and technologies, including mixtures of Illumina and PacBio data. Our tool has

already been employed for such a task on the large, repetitive genome of Triticum

aestivum (Clavijo and Venturini et al., 2017), where it was instrumental in selecting

a set of gene models from over ten million transcript assemblies and PacBio IsoSeq

reads. The consolidated dataset returned by Mikado was almost thirty times smaller

than the original input dataset, and this polishing was essential both to ensure a

high-quality annotation and to reduce the running times of downstream processes.

In conclusion, Mikado is a flexible tool which is capable of handling a plethora

of data types and formats. Its novel selection algorithm was shown to perform well

in model organisms and was central in the genome annotation pipeline of various

species [30–32]. Its deployment should provide genome annotators with another

powerful tool to improve the accuracy of data for subsequent ab initio training and

evidence-guided gene prediction.

Methods
Input datasets

For C. elegans, D. melanogaster and H. sapiens, we retrieved from the European

Nucleotide Archive (ENA) the raw reads used for the evaluation in [18], under the
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Bioproject PRJEB4208. We further selected and downloaded a publicly available

strand-specific RNA-Seq dataset for A. thaliana, PRJEB7093. Congruently with the

assessment in [18], we used genome assemblies and annotations from EnsEMBL v.

70 for all metazoan species, while for A. thaliana we used the TAIR10 version. For

all species, we simulated reads using the input datasets as templates. Reads were

trimmed with TrimGalore v0.4.0 [33] and aligned onto the genome with Bowtie

v1.1.2 [34] and HISAT v2.0.4 [7]. The HISAT alignments were used to calculate

the expression levels for each transcript using Cufflinks v2.2.1, while the Bowtie

mappings were used to generate an error model for the SPANKI Simulator v.0.5.0

[35]. The transcript coverages and the error model were then used to generate

simulated reads, at a depth of 10X for C. elegans and D. melanogaster and 3X for

A. thaliana and H. sapiens. A lower coverage multiplier was applied to the latter

species to have a similar number of reads for all four datasets, given the higher

sequencing depth in the A. thaliana dataset and the higher number of reference

transcripts in H. sapiens. cDNA sequences for A. thaliana were retrieved from the

NCBI Nucleotide database on the 21st of April 2017, using the query:

‘‘Arabidopsis ’’ [Organism] OR arabidopsis[All Fields ]) AND ‘‘Arabidopsis

thaliana ’’[porgn] AND biomol\_mrna [PROP]

For the second experiment on H. sapiens, we sequenced two samples of the Strata-

gene Universal Human Reference RNA (catalogue ID#740000), which consists of

a mixture of RNA derived from ten different cell lines. One sample was sequenced

on an Illumina HiSeq2000 and the second on a Pacific Biosciences RSII machine.

Sequencing runs were deposited in ENA, under the project accession code PR-

JEB22606.

Preparation and sequencing of Illumina libraries

The libraries for this project were constructed using the NEXTflex�Rapid Direc-

tional RNA-Seq Kit (PN: 5138-08) with the NEXTflex�DNA Barcodes – 48 (PN:

514104) diluted to 6 µm. The library preparation involved an initial QC of the RNA

using Qubit DNA (Life technologies Q32854) and RNA (Life technologies Q32852)

assays as well as a quality check using the PerkinElmer GX with the RNA assay

(PN:CLS960010)

1 µg of RNA was purified to extract mRNA with a poly-A pull down using biotin

beads, fragmented and first strand cDNA was synthesised. This process reverse

transcribes the cleaved RNA fragments primed with random hexamers into first

strand cDNA using reverse transcriptase and random primers. The second strand

synthesis process removes the RNA template and synthesizes a replacement strand

to generate dscDNA. The ends of the samples were repaired using the 3’ to 5’

exonuclease activity to remove the 3’ overhangs and the polymerase activity to

fill in the 5’ overhangs creating blunt ends. A single ‘A’ nucleotide was added to

the 3’ ends of the blunt fragments to prevent them from ligating to one another

during the adapter ligation reaction. A corresponding single ’T’ nucleotide on the 3’

end of the adapter provided a complementary overhang for ligating the adapter to

the fragment. This strategy ensured a low rate of chimera formation. The ligation

of a number indexing adapters to the ends of the DNA fragments prepared them
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for hybridisation onto a flow cell. The ligated products were subjected to a bead

based size selection using Beckman Coulter XP beads (PN: A63880). As well as

performing a size slelection this process removed the majority of un-ligated adapters.

Prior to hybridisation to the flow cell the samples were PCR’d to enrich for DNA

fragments with adapter molecules on both ends and to amplify the amount of DNA

in the library. Directionality is retained by adding dUTP during the second strand

synthesis step and subsequent cleavage of the uridine containing strand using Uracil

DNA Glycosylase. The strand that was sequenced is the cDNA strand. The insert

size of the libraries was verified by running an aliquot of the DNA library on a

PerkinElmer GX using the High Sensitivity DNA chip (PerkinElmer CLS760672)

and the concentration was determined by using a High Sensitivity Qubit assay and

q-PCR.

The constructed stranded RNA libraries were normalised and equimolar pooled

into two pools. The pools were quantified using a KAPA Library Quant Kit Illumi-

na/ABI (KAPA KK4835) and found to be 6.71 nm and 6.47 nm respectively. A 2 nm

dilution of each pool was prepared with NaOH at a final concentration of 0.1N and

incubated for 5 minutes at room temperature to denature the libraries. 5µl of each

2 nm dilution was combined with 995µl HT1 (Illumina) to give a final concentration

of 10 pm. 135 µl of the diluted and denatured library pool was then transferred into

a 200 µl strip tube, spiked with 1 % PhiX Control v3 (Illumina FC-110-3001) and

placed on ice before loading onto the Illumina cBot with a Rapid v2 Paired-end flow-

cell and HiSeq Rapid Duo cBot Sample Loading Kit (Illumina CT-403-2001). The

flow-cell was loaded on a HiSeq 2500 (Rapid mode) following the manufacturer’s

instructions with a HiSeq Rapid SBS Kit v2 (500 cycles) (Illumina FC-402-4023)

and HiSeq PE Rapid Cluster Kit v2 (Illumina PE-402-4002). The run set up was

as follows: 251 cycles/7 cycles(index)/251 cycles utilizing HiSeq Control Software

2.2.58 and RTA 1.18.64. Reads in .bcl format were demultiplexed based on the 6bp

Illumina index by CASAVA 1.8 (Illumina), allowing for a one base-pair mismatch

per library, and converted to FASTQ format by bcl2fastq (Illumina).

Preparation and sequencing of PacBio libraries

The Iso-Seq libraries were created starting from 1µg of human total RNA and

full-length cDNA was then generated using the SMARTer PCR cDNA synthesis kit

(Clontech, Takara Bio Inc., Shiga, Japan) following PacBio recommendations set out

in the Iso-Seq method (http://www.pacb.com/wp-content/uploads/Procedure-

Checklist-Isoform-Sequencing-Iso-Seq-Analysis-using-the-Clontech-SMARTer-

PCR-cDNA-Synthesis-Kit-and-SageELF-Size-Selection-System.pdf). PCR op-

timisation was carried out on the full-length cDNA using the KAPA HiFi PCR kit

(Kapa Biosystems, Boston USA) and 12 cycles were sufficient to generate the ma-

terial required for ELF size selection. A timed setting was used to fractionate the

cDNA into 12 individual sized fractions using the SageELF (Sage Science Inc.,

Beverly, USA), on a 0.75 % ELF Cassette. Prior to further PCR, the ELF frac-

tions were equimolar pooled into the following sized bins: 0.7-2kb, 2-3kb, 3-5kb and

¿5kb. PCR was repeated on each sized bin to generate enough material for SMRT-

bell library preparation, this was completed following Pacbio recommendations in

the Iso-Seq method. The four libraries generated were quality checked using Qubit
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Florometer 2.0 and sized using the Bioanalyzer HS DNA chip. The loading calcula-

tions for sequencing were completed using the PacBio Binding Calculator v2.3.1.1

(https://github.com/PacificBiosciences/BindingCalculator). The sequenc-

ing primer was used from the SMRTbell Template Prep Kit 1.0 and was annealed

to the adapter sequence of the libraries. Each library was bound to the sequencing

polymerase with the DNA/Polymerase Binding Kit v2 and the complex formed was

then bound to Magbeads in preparation for sequencing using the MagBead Kit v1.

Calculations for primer and polymerase binding ratios were kept at default values.

The libraries were prepared for sequencing using the PacBio recommended instruc-

tions laid out in the binding calculator. The sequencing chemistry used to sequence

all libraries was DNA Sequencing Reagent Kit 4.0 and the Instrument Control

Software version was v2.3.0.0.140640. The libraries were loaded onto PacBio RS II

SMRT Cells 8Pac v3; each library was sequenced on 3 SMRT Cells. All libraries

were run without stage start and 240 minute movies per cell. Reads for the four

libraries was extracted using SMRT Pipe v2.3.3, following the instructions provided

by the manifacturer at https://github.com/PacificBiosciences/cDNA_primer.

Alignments and assemblies

Reads from the experiments were aligned using STAR v2.4.1c and TopHat v2.0.14.

For STAR, read alignment parameters for all species were as follows:

--outFilterMismatchNmax 4 --alignSJoverhangMin 12 --alignSJDBoverhangMin 12 --

outFilterIntronMotifs RemoveNoncanonical --alignEndsType EndToEnd --

alignTranscriptsPerReadNmax 100000 --alignIntronMin MININTRON --

alignIntronMax MAXINTRON --alignMatesGapMax MAXINTRON

whereas for TopHat2 we used the following parameters:

-r 50 -p 4 --min -anchor -length 12 --max -multihits 20 --library -type fr-

unstranded -i MININTRON -I MAXINTRON

The parameters “MINTRON” and “MAXINTRON” were varied for each species,

as follows:

� A. thaliana: minimum 20, maximum 10000

� C. elegans: minimum 30, maximum 15,000

� D. melanogaster : minimum 20, maximum 10,000

� H. sapiens: minimum 20, maximum 10,000

Each dataset was assembled using four different tools: CLASS v 2.12, Cufflinks

2.1.1, StringTie v. 1.03, and Trinity r20140717. Command lines for the tools were

as follows:

� CLASS: we executed this tools through a wrapper included in Mikado,

class run.py, with command line parameters -F 0.05

� Cufflinks: -u -F 0.05; for the A. thaliana dataset, we further specified

--library-type fr-firststrand.

� StringTie: -m 200 -f 0.05

� Trinity: --genome guided max intron MAXINTRON (see above)
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Trinity assemblies were mapped against the genome using GMAP v20141229 [36],

with parameters -n 0 --min-trimmed-coverage=0.70 --min-identity=0.95.

For simulated data, we elected to use a more modern version of Trinity (v.2.3.2)

as the older version was unable to assemble transcripts correctly for some of the

datasets. For assembling separately the samples in PRJBE7093, we used Cufflinks

(v.2.2.1) and StringTie v1.2.3, with default parameters.

Mikado analyses

All analyses were run with Mikado 1.0.1, using Daijin to drive the pipeline. For each

species, we built a separate reference protein dataset, to be used for the BLAST

comparison (see Table ST4). We used NCBI BLASTX v2.3.0 [37], with a maxi-

mum evalue of 10e-7 and a maximum number of targets of 10. Open reading frames

were predicted using TransDecoder 3.0.0 [9]. Scoring parameters for each species

can be found in Mikado v1.0.1, at https://github.com/lucventurini/mikado/

tree/master/Mikado/configuration/scoring_files, with a name scheme of

species name scoring.yaml (eg. “athaliana scoring.yaml” for A. thaliana). The same

scoring files were used for all runs, both with simulated and real data. Filtered junc-

tions were calculated using Portcullis v1.0 beta5, using default parameters.

Mikado was instructed to look for models with - among other features - a good

UTR/CDS proportion (adjusted per species), homology to known proteins, and a

high proportion of validated splicing junctions. We further instructed Mikado to

remove transcripts that do not meet minimum criteria such as having at least a

validated splicing junction if any is present in the locus, and a minimum transcript

length or CDS length. The configuration files are bundled with the Mikado software

as part of the distribution.

Details on the algorithms of Mikado

The Mikado pipeline is divided into three distinct phases.

Mikado prepare

Mikado prepare is responsible for bringing together multiple annotations into a

single GTF file. This step of the pipeline is capable of handling both GTF and GFF3

files, making it adaptable to use data from most assemblers and cDNA aligners

currently available. Mikado prepare will not just uniform the data format, but will

also perform the following operations:

1 It will optionally discard any model below a user-specified size (default 200

base pairs).

2 It will analyse the introns present in each model, and verify their canonicity. If

a model is found to contain introns from both strands, it will be discarded by

default, although the user can decide to override this behaviour and keep such

models in. Each multiexonic transcript will be tagged with this information,

making it possible for Mikado to understand the number of canonical splicing

events present in a transcript later on.

3 Mikado will also switch the strand of multiexonic transcripts if it finds that

their introns are allocated to the wrong strand, and it will strip the strand

information from any monoexonic transcript coming from non-strand specific

assemblies
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4 Finally, Mikado will sort the models, providing a coordinate-ordered GTF

file as output, together with a FASTA file of all the cDNAs that have been

retained.

Mikado prepare uses temporary SQLite databases to perform the sorting operation

with a limited amount of memory. As such, it is capable of handling millions of

transcripts from multiple assemblies with the memory found on a regular modern

desktop PC (lower than 8GB of RAM).

Mikado serialise

Mikado serialise is the part of the pipeline whose role is to collect all additional

data on the models, and store it into a standard database. Currently Mikado is

capable of handling the following types of data:

1 FASTAs, ie the cDNA sequences produced by Mikado serialise, and the

genome sequence.

2 Genomic BED files, containing the location of trusted introns. Usually these

are either output directly from the aligners themselves (eg the “junctions.bed”

file produced by TopHat) or derived from the alignment using a specialised

program such as Portcullis.

3 Transcriptomic BED or GFF3 files, containing the location of the ORFs on

the transcripts. These can be calculated with any program chosen by the user.

We highly recommend using a program capable of indicating more than one

ORF per transcript, if more than one is present, as Mikado relies on this

information to detect and solve chimeric transcripts. Both TransDecoder and

Prodigal have such capability.

4 Homology match files in XML format. These can be produced either by

BLAST+ or by DIAMOND (v 0.8.7 and later) with the option “-outfmt 5”.

Mikado serialise will try to keep the memory consumption at a minimum, by

limiting the amount of maximum objects present in memory (the threshold can be

specified by the user, with the default being at 20,000). XML files can be analysed in

parallel, so Mikado serialise can operate more efficiently if BLAST or DIAMOND

runs are performed by pre-chunking the cDNA FASTA file and producing corre-

sponding multiple output files.

Mikado serialise will output a database with the structure in SF8.

Mikado pick

Mikado pick selects the final transcript models and outputs them in GFF3 format.

In contrast with many ab initio predictors, currently Mikado does not provide an

automated system to learn the best parameters for a species. Rather, the choice of

what types of models should be prioritised for inclusion in the final annotation is

left to the experimenter, depending on her needs and goals. For the experiments

detailed in this article, we configured Mikado to prioritise complete protein-coding

models, and to apply only a limited upfront filtering to transcripts. A stricter up-

front hard-filtering of transcripts, for example involving discarding any monoexonic

transcript without sufficient homology support, might have yielded a more precise

collated annotation at the price of discarding any potentially novel monoexonic

genes. Although we provide the scoring files used for this paper in the software
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distribution, we encourage users to inspect them and adjust them to their specific

needs. As part of the workflow, Mikado also produces tabular files with all the met-

rics calculated for each transcript, and the relative scores. It is therefore possible for

the user to use this information to adjust the scoring model. The GFF3 files pro-

duced by Mikado comply with the formal specification of GFF3, as defined by the

Sequence Ontology and verified using GenomeTools v.1.5.9 or later. Earlier versions

of GenomeTools would not validate completely Mikado files due to a bug in their

calculation of CDS phases for truncated models, see issue #793 on GenomeTools

github: https://github.com/genometools/genometools/issues/793.

Integration of multiple transcript assemblies

Evidential Gene v20160320 [23] was run with default parameters, in conjunction

with CDHIT v4.6.4 [38]. Models selected by the tools were extracted from the

combined GTFs using a mikado utility, mikado grep, and further clustered into

gene loci using gffread from Cufflinks v2.2.1. StringTieMerge and Cuffmerge were

run with default paramers. Limitedly to the experiment regarding the integration of

assemblies from multiple samples, we used TACO v0.7. For all these three tools, we

used their default isoform fraction parameter. The GTFs produced by the TACO

meta-assemblies were reordered using a custom script (“sort taco assemblies.py”),

present in the script repository.

MAKER runs

We used MAKER v2.31.8 [39], in combination with Augustus 3.2.2 [40], for all our

runs. GFFs and GTFs were converted to a match/match part format for MAKER

using the internal script of the tool “cufflinks2gff3.pl”. MAKER was run using MPI

and default parameters; the only input files were the different assemblies produced

by the tested tools.

Comparison with reference annotations

All comparisons have been made using Mikado compare v1.0.1. Briefly, Mikado com-

pare creates an interval tree structure of the reference annotation, which is used to

find matches in the vicinity of any given prediction annotation. All possible matches

are then evaluated in terms of nucleotide, junction and exonic recall and precision;

the best one is reported as the best match for each prediction in a transcript map

(TMAP) file. After exhausting all possible predictions, Mikado reports the best

match for each reference transcript in the “reference map” (REFMAP) file, and

general statistics about the run in a statistics file. Mikado compare is capable of

detecting fusion genes in the prediction, defined as events where a prediction tran-

scripts intersects at least one transcript per gene from at least two different genes,

with either a junction in common with the transcript, or an overlap over 10% of

the length of the shorter between the prediction or the reference transcripts. Fusion

events are reported using a modified class code, with a “f,” prepending it. For a full

introduction to the program, we direct the reader to the online documentation at

https://mikado.readthedocs.io/en/latest/Usage/Compare.html.
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Creation of reference and filtered datasets for the comparisons

For A. thaliana, we filtered the TAIR10 GFF3 to retain only protein coding genes.

For the other three species, reference GTF files obtained through EnsEMBL were

filtered using the “clean reference.py” python script present in the “Assemblies”

folder of the script repository (see the “Script availability” section). The YAML

configuration files used for each species can be found in the “Biotypes” folder. The

retained models constitute our reference transcriptome for comparisons.

For all our analyses, we deemed a transcript reconstructable if all of its splicing

junctions (if any) and all its internal bases could be covered by at least one read. As

read coverage typically decreases or disappears at the end of transcripts, we used

the mikado utility “trim” to truncate the terminal UTR exons until their lengths

reaches the maximum allowed value (50 bps for our analysis) or the beginning of

the CDS section is found. BEDTools v. 2.27 beta (commit 6114307 [41]) was then

used to calculate the coverage of each region. Detected junctions were calculated

using Portcullis, specifically using the BED file provided at the end of Portcullis

junction analysis step. The “get filtered reference.py” was then used to identify

reconstructable transcripts.

For simulated datasets, we used the BAM file provided by SPANKI to derive the

list of reconstructable transcripts. For the non-simulated datasets, we used the union

of transcripts found to be reconstructable from each of the alignment methods. The

utility “mikado util grep” was used to extract the relevant transcripts from the

reference files.

Details of the process can be found in the two snakemakes “compare.snakefile”

and “compare simulations.snakefile” present in the “Snakemake” directory of the

script repository.

Calculation of comparison statistics

“Mikado compare” was used to assess the similarity of each transcript set against

both the complete reference, and the reference filtered for reconstructable tran-

scripts. Precision statistics were calculated from the former, while recall statistics

were calculated from the latter.

Script availability

Scripts and configuration files used for the analyses in this paper can be accessed

at https://github.com/lucventurini/mikado-analysis.

Customization and further development

Mikado allows to customize its run mode through the use of detailed configuration

files. There are two basic configuration files: one is dedicated to the scoring system,

while the latter contains run-specific details. The scoring file is divided in four

different sections, and allows the user to specify which transcripts should be filtered

out outright at any of the stages during picking, and how to prioritise transcripts

through a scoring system. Details on the metrics, and on how to write a valid

configuration file, can be found in the SI and at the online documentation (http://

mikado.readthedocs.io/en/latest/Algorithms.html). These configuration files

are intended to be used across runs, akin to how standard parameter sets are re-

used in ab initio gene prediction programs, e.g. Augustus. The second configuration
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file contains parameters pertaining each run, such as the position of the input

files, the type of database to be used, or the desired location for output files. As

such, they are meant to be customised by the user for each experiment. Mikado

provides a command, “mikado configure”, which will generate this configuration

file automatically when given basic instructions.
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Figure 1: The algorithm employed by Mikado is capable of solving complex loci, with

multiple potential assemblies. This locus in A. thaliana is particularly challenging

as an ancestral gene in the locus tandemly duplicated into the current AT5G66610,

AT5G66620 and AT5G66630 genes. Due to these difficulties, no single assembler

was capable of reconstructing correctly all loci. For instance, Trinity was the only

method which correctly assembled AT5G66631, but it failed to reconstruct correctly

any other transcript. The reverse was true for Cufflinks, which correctly assembled

the three duplicated genes, but completely missed the monoexonic AT566631. By

choosing between different alternative assemblies, Mikado was capable to provide

an evidence-based annotation congruent to the TAIR10 models.

Tables
Additional Files
Additional file 1 — Supplemental Information

Additional information for the main article, including supplemental figures and tables.

Additional file 2 — Reconstruction statistics for the input methods

This file (in Open Document Spreadsheet format - ODS) contains precision, recall and F1 statistics for the various

methods tested.
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Figure 2: Schematic representation of the Mikado workflow.
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Figure 3: Performance of Mikado on simulated and real data. a We evaluated

the performance of Mikado using both simulated data and the original real data.

The method with the best transcript-level F1 is marked by a circle. b Number of

reconstructed, missed and chimeric genes in each of the assemblies. Notice the lower

level of chimeric events in simulated data.

Table 1: Cumulative z-score for each method aggregating individual z-scores based

on base, exon, intron, intron chain, transcript and gene F1 score (top ranked method

in light gray, bottom ranked method in dark gray).
A. thaliana C. elegans D. melanogaster H. sapiens All methods

Method Z-score Rank Z-score Rank Z-score Rank Z-score Rank Z-score Rank
CLASS2 (STAR) 7.627 1 7.309 1 -3.310 6 5.258 1 16.884 1
StringTie (TopHat2) 0.584 4 5.502 3 6.612 2 3.199 3 15.897 2
CLASS2 (TopHat2) -5.542 8 6.698 2 9.314 1 4.998 2 15.738 3
StringTie (STAR) 2.621 3 -2.197 4 1.587 3 2.991 4 5.001 4
Cufflinks (STAR) 2.716 2 -2.306 5 -1.730 5 1.037 5 -0.283 5
Cufflinks (TopHat2) -0.526 5 -5.363 8 -1.504 4 -0.993 6 -8.386 6
Trinity (STAR) -4.120 7 -5.079 7 -4.762 7 -3.417 7 -17.458 7
Trinity (TopHat2) -3.280 6 -4.833 6 -6.206 8 -13.073 8 -27.392 8
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Figure 4: Precision/recall plot at the gene and transcript level for CLASS and

StringTie at varying minimum isoform fraction thresholds in A. thaliana, with and

without applying Mikado. Dashed lines mark the F1 levels at different precision

and recall values. CLASS sets MIF to 5% by default (red), while StringTie uses a

slightly more stringent default value of 10% (cyan).

a b

Figure 5: a Mikado performs consistently better than other merging tools.

StringTie-merge and TACO are not compatible with Trinity results and as such

have not been included in the comparison. b Rate of recovered, missed, and fused

genes for all the assembler and combiner combinations.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/216994doi: bioRxiv preprint 

https://doi.org/10.1101/216994
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract

