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Abstract

RNA-seq is a powerful technique to investigate and quantify entire transcriptomes. Recent
advances in the field have made it possible to explore the transcriptomes of single cells.
However, most widely used RNA-seq protocols fail to provide crucial information regarding
transcription start sites. Here we present a protocol, Tn5Prime, that takes advantage of the Tn5
transposase based Smartseq2 protocol to create RNA-seq libraries that capture the 5’ end of
transcripts. The Tn5Prime method dramatically streamlines the 5’ capture process and is both
cost effective and reliable. By applying Tn5Prime to bulk RNA and single cell samples we were
able to define transcription start sites as well as quantify transcriptomes at high accuracy and
reproducibility. Additionally, similar to 3’ end based high-throughput methods like Drop-Seq and
10X Genomics Chromium, the 5’ capture Tn5Prime method allows the introduction of cellular
identifiers during reverse transcription, simplifying the analysis of large numbers of single cells.
In contrast to 3’ end based methods, Tn5Prime also enables the assembly of the variable 5’
ends of antibody sequences present in single B-cell data. Therefore, Tn5Prime presents a

robust tool for both basic and applied research into the adaptive immune system and beyond.
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Introduction

As the cost of RNA-sequencing has decreased, it has become the gold standard in
interrogating complete transcriptomes from bulk samples and single cells. RNA-seq is a
powerful tool to determine gene expression profiles and identify transcript features like
splice-sites. However, standard approaches lose sequencing coverage towards the very end of
transcripts. This reduced coverage means that we cannot confidently define the 5’ ends of
MRNA transcripts which contain crucial information on transcription initiation start sites (TSSs)
and 5’ untranslated regions (5’UTRs). Analyzing TSSs can help infer the active promoter
landscape, which may vary from tissue to tissue and cell to cell. Analyzing 5’UTRs, which may
contain regulatory elements and structural variations can help infer mMRNA stability, localization,
and translational efficiency. ldentifying such features can help elucidate our understanding of
the molecular mechanisms that regulate gene expression.

The loss of sequencing coverage towards the 5’ end of transcripts is often attributed to
how sequencing libraries are constructed. For example, the widely used Smartseq2 RNA-seq
protocol, a powerful tool in deciphering the complexity of single cell heterogeneity (1-3),
features reduced sequencing coverage towards transcript ends. This lost information is a result
of cDNA fragmentation using Tn5 transposase. Several technologies have tried to compensate
for the lack of coverage by specifically targeting the 5’ ends of transcripts. The most notable
methods include cap analysis of gene expression (CAGE), NanoCAGE, and single-cell tagged
reverse transcription sequencing (STRT) (4—7). CAGE uses a 5’ trapping technique to enrich for
the 5’-capped regions by reverse transcription (7). This technique is extremely labor intensive
and involves large amounts of input RNA. The NanoCAGE and STRT methods target transcripts
using random or polyA priming and a template-switch oligo technique to generate cDNA (4, 6).
While NanoCAGE can analyze samples as low as a few nanograms of RNA, and STRT can be
used to analyze single cells, they both require long and labor-intensive workflows including
fragmentation, ligation, or enrichment steps. Therefore, none of the current 5’ end specific
protocols are capable of efficiently and cost-effectively processing hundreds to thousands of
single cells necessary to understand heterogeneity within complex mixtures of cells present in,
for example, the adaptive immune system or cancer.

Furthermore, new droplet based high-throughput single cell RNAseq approaches like
Drop-Seq and 10X Genomics Chromium platform can process thousands of cells but can only
analyze the 3’end of transcripts due to integrating a sequencing priming site into the oligodT

primer used for reverse transcription. By losing information of the 5’ end almost entirely, these
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approaches are not capable of comprehensively analyzing cells of the adaptive immune cells
which express antibody or T cell receptor transcripts featuring unique V(D)J rearrangement
sequence information on their 5’ end.

To overcome this lack of high-throughput single cell 5° capture methods, we chose to
modify the Smartseq2 library preparation protocol which is relatively cost-effective and simple
with features of STRT which captures 5’ ends effectively. Here we describe a robust and easily
implemented method called Tn5Prime that performs genome-wide profiling across the 5’ end of
MRNA transcripts in both bulk and single cell samples. The protocol is based on integrating one
sequencing priming site into the template switch oligo used for reverse transcription and
subsequently tagmenting the resulting amplified cDNA by Tn5 enzyme loaded with an adapter
carrying the other sequencing priming site. This combination allows for the construction of
directional RNAseq libraries with one read anchored to the 5’ end of transcripts without the need
for separate fragmentation, ligation, and, most importantly, enrichment steps. Additionally, by
incorporating cellular identifiers into the template switch oligo makes it conducive for pooling
samples after reverse transcription, thereby increasing throughput and reducing cost. Finally,
data produced by this novel approach allows for the identification of transcription start sites, the
quantification of transcripts, and the assembly of antibody heavy and light chain sequences from

single B cells at low sequencing depth.

Results
Construction of Tn5Prime libraries

Tn5Prime libraries can be constructed from either purified total RNA or single cells
sorted by FACS into multiwell PCR plates. Tn5Prime libraries create a directional paired-end
lllumina RNAseq library with read 1 anchored to the 5’ end of transcripts. Directionality and read
1 anchoring is achieved through the use of our modified template-switch oligo and custom Tn5
enzyme. After the addition of reverse transcriptase to total RNA or cell lysate, first-strand
synthesis occurs using a modified oligo-dT and a template-switch oligo (TSO) containing a
partial Nextera A adapter sequence and, optionally, a cellular index sequence (Table S1, Fig.
1A). During reverse transcription, the oligo-dT serves as a primer at the 3’ polyA tail of mMRNA
transcripts, while the sequence of the partial Nextera A template-switch oligo is attached to the
3’ end of the synthesized cDNA corresponding to the 5’ end of transcript sequences. After
reverse transcription, samples with non-overlapping cellular indexes can be pooled. The cDNA

product is then amplified using a complete Nextera A primer and a primer complementary to the
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modified 5’ end of the oligo-dT. After amplification, the cDNA product will contain a complete
Nextera A adapter including Illumina indexes. At this point, samples that contain the
non-overlapping lllumina indexes can be pooled. By pooling after reverse transcription and PCR
amplification, we can dramatically reduce the workflow complexity and reagent usage.

Next, Tn5 transposase, loaded only with a partial Nextera B adapters, fragments the
cDNA and attaches the partial Nextera B adapters to the cDNA in a single reaction. The cDNA
fragments are then amplified using a universal A primer and a Nextera B primer that primes off
the partial Nextera B adapter sequences attached by the Tn5 enzyme. The final product is
compatible with the lllumina platform by containing the complete Nextera A and Nextera B
adapters. Libraries are then ready to be size selected and quantified prior to sequencing. At this
point, no enrichment step is necessary, as only molecules containing both Nextera A and B
adapters will be targeted for sequencing. Since only the TSOs associated with the 5’ end of
transcripts contain Nextera A adapters, read 1 of all read pairs in the sequencing reaction
begins at these 5’ ends and extends into the transcript body, thereby identifying transcription
start site and directionality (Fig. 1A-C). Read 2 is distributed throughout the gene body, as each
location represents the random insertion of Nextera B adapters by Tn5 and library size selection
(Fig. 1B,C).

Creating and analyzing Tn5Prime data of GM12878 cell line RNA

To evaluate whether our Tn5Prime protocol consistently identifies the 5’ end of the
transcript we first performed low coverage RNAseq of total RNA of GM12878 cultured
lymphoblast cells. We performed a side-by-side comparison of our protocol with the standard
Smartseq2 protocol using the same starting material. Using the HiSeq2500 platform (lllumina)
we obtained 570805 and 453761 raw read pairs for two replicate Tn5Prime libraries. We next
obtained 1094530 raw read pairs from a Smartseq?2 library. Adapter sequences and low quality
reads were removed using Trimmomatic (8). In the Tn5Prime replicates, 92.51% and 92.62% of
the trimmed and filtered reads mapped uniquely to the human genome using the STAR
alignment tool (9), surpassing the standard Smartseq2 protocol at 88.50%. The uniquely aligned
reads from the TN5Prime replicates collectively had a redundancy of 1.34. This high unique

alignment percentage indicates that our Tn5Prime protocol produces libraries of high
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Fig. 1 TnSPrime Library construction and 5’ capture

A.) Schematic of the Tn5Prime library construction. No enrichment steps are required to generate a
library that captures the 5° end of transcripts. B.) Examples of 5’ end capture by Tn5Prime compared to
random fragmentation by Smartseq2. Individual alignments for the first (Read1, blue) and second (Read2,
red) read of each read pair are shown. Readl density is shown for both library types as a histogram (blue).
Gene models are shown on top (Color indicates transcriptional direction.)

Detecting Transcription Start Sites using Tn5Prime

We analyzed the read distribution across transcripts both visually and systematically to
determine the 5’ specificity of our protocol. Visual inspection found that while Smartseq2 reads
are distributed across the entire body of genes, Tn5Prime reads follow two distinct patterns:
First, the start of the read 1 is anchored to the transcription start site. Second, the start of read 2
is variable and likely dependent on size selection during library preparation (Fig. 1B). Next,
systematic analysis was based on mapping the start of read 1 to identify putative Transcription
Start Sites (TSSs). To test our ability to identify TSSs, we compared our Tn5Prime data to the
Gencode genome annotation and CAGE data which was generated from the same GM12878
cell line from the ENCODE project. We identified putative TSSs by calling peaks enriched from
the start of read 1 in our Tn5Prime data (see Methods). 89.7% of the 17853 peaks fell within
TSSs (0-25 bp upstream) with the vast majority of them falling near promoter regions

(26bp-1000bp upstream) or 5’'UTRs (Fig. 2A). Next, we subsampled the CAGE data to levels
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similar to the Tn5Prime data and called peaks in the same manner. 14107 of 17853 Tn5Prime
peaks (73%) fell within 25bp to the nearest of 27526 CAGE peaks, indicating high concordance
between the two approaches (Fig. 2B). Tn5Prime peaks (3,746) that were not within 25bp of a
CAGE peak contained far less sequencing reads on average than those within 25bp of a CAGE
peak. These results indicate that these transcripts might be expressed at lower levels and show
more variance between the Tn5Prime and CAGE datasets (Fig. 2B). Ultimately, this suggests
that our Tn5Prime protocol is equivalent to the gold standard CAGE technique in targeting

transcription start sites.
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Fig. 2 TnSPrime peaks are highly concordant with GENCODE annotation and CAGE peaks

A) Tn5Prime peaks were matched to features in the Gencode annotation and the feature they matched are
shown as a pie chart. B) Tn5Prime were matched to CAGE peaks. The green bar on top indicates the
peaks within 25bp and the yellow bar indicates all other peaks. Peaks in each were rank sorted according
to their read coverage and shown as a histogram.

Quantifying the Transcriptome using Tn5Prime

After validating the ability of Tn5Prime to detect transcription start sites, we next wanted to
examine whether it is capable of transcript quantification. To determine whether our Thn5Prime
method is quantitative we compared GM12878 data generated from four different protocols:
Tn5Prime, Smartseqg2 data generated by our lab, as well as CAGE and RNA-seq data produced
by the ENCODE project (Fig. 3). We used the Tn5Prime data mentioned in the previous section
and generated the Smartseq2 data on the same Cell line as described by (1). We performed
replicates using the Tn5Prime protocols to define overall reproducibility and accuracy. Based

upon our results, transcript quantification by Tn5Prime replicates showed extremely high
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correlation with a Pearson correlation coefficient of r=0.97 (95% C.l. 0.97-0.97). Quantification
by Tn5Prime also correlated very well with Smartseq2 with a Pearson r of 0.87 (95% C.I.
0.86-0.87). Tn5Prime and Smartseq2 data were comparable with ENCODE RNA-seq and
CAGE data (Fig. 3), indicating that the Tn5Prime protocol is equivalent to the conventional
Smartseg2 method in measuring transcript abundance. Together, these data show that
Tn5Prime can accurately identify transcription start sites and quantitatively measure transcript
abundance.
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Fig 3. TnSPrime quantifies transcriptomes accurately and reproducibly.

Pairwise correlations of transcript levels between Tn5Prime, Smartseq2, ENCODE CAGE and ENCODE
RNAseq are shown as scatter plots. Each transcript is shown as a black dot with an opacity of 5%.
Distribution of transcript levels is shown on the outside of the plots in grey histograms.
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Transcript quantification and transcription start site localization in single B cells.

As the Tn5Prime protocol is based on the same cDNA amplification strategy as the Smartseq2
protocol, we expected it capable of generating sequencing libraries from single cells. Indeed, we
successfully generated single cell libraries using the Tn5Prime protocol from primary murine
B-lymphocytes (B2 cells; IgM+B220+CD5-CD11b-)(n=12) isolated from the peritoneal cavity.
We generated between 17,534-93,429 2x300 bp read pairs per cell using the lllumina MiSeq of
which 62% passed quality filtering. Of the filtered reads, an average of 91.48% uniquely
mapped to the mouse genome. The high alignment percentage indicates we are able to
generate high quality libraries from single cells using our Tn5Prime. Despite the very low total
number of read pairs we collected, we still detected 339 expressed genes per cell on average.
These results are not surprising as primary B cells can contain little RNA [ref?] and transcript
abundance in single cells can be substantially variable depending on the state of the cell [ref?].
Among the genes expressed in many of the single cells were genes corresponding to B cell
function, including CD19, CD79a and components of the MHC complexes (Fig. S1) These data

indicate that we can efficiently identify cell type specific genes.

Analysis of 192 Single CD27"9" CD38"¢" Human B Cells

After successfully testing our Tn5Prime method on single mouse B cells, we next wanted to
develop a multiplex approach capable of evaluating hundreds of human single cells. To this
end, we FACS sorted into 192 single B cells into individual wells of 96 well plates using the
canonical surface molecules CD19, CD27 and CD38 to sub-select the plasmablast
subpopulation (Fig. S2). Plasmablasts are one of the most widely studied B cell populations and
are frequently monitored after vaccination or infections by flow cytometry. The plasmablast cell
compartment is defined by high levels of surface markers CD27 and CD38, but separation from
memory B cells which also express these markers, albeit at lower levels, can be challenging.
Therefore, analyzing these cell types at the single cell level should help further delineate these
populations.

By inserting cellular indexes into the template switch oligo during reverse transcription to
pool libraries after reverse transcription. This allowed us to streamline our method and increase
our throughput by decreasing the PCR and Tn5 reactions required. Using our multiplexing
strategy we generated Tnb5 libraries for 192 single B cells using 192 RT reactions, 24 PCR

reactions and 24 Tn5 reactions. Although this was not performed, library pools carrying distinct
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lllumina sample indexes could have been further pooled following PCR to reduce the numbers
of Tn5 reactions to 2.

We generated 194,553,648 150 bp paired end reads total. To determine gene
expression for each cell, reads were assigned to one of 192 single cells based on its lllumina
index reads and by comparing the sequence of the first 8 bases of read 1 to the cellular index
sequences. 91% of the 194,553,648 150bp paired end reads were successfully assigned to
one of the 192 single B cells. 90.75% of cell-assigned reads were successfully aligned to the
human genome using STAR with a median of 74.59% percent of cell-assigned reads being
uniquely assigned to an annotated gene. Each cell expressed a median of 534 genes. Of the
58234 annotated genes in GENCODE, 5414 genes had at least one read per cell on average.
The median redundancy for each cell is 13.92 which means that, on average, each uniquely
aligned cDNA fragment was sequenced 13.92 times. This indicates that the libraries were

sequenced exhaustively.

Detecting Transcription Start Sites in single CD27"¢" CD38"¢" B cells using Tn5Prime

To determine if transcription start site specificity is maintained within the single cell data, read 1
start distribution was compared to annotated transcription start sites and Encode CAGE data.
By calling peaks, we found that our single cell results were able to maintain transcription start
site specificity, with peaks predominantly falling within the annotated transcription start sites
(Fig. 4A-B). In addition to the transcription start site, the directionality of transcription can be
inferred due to our custom template switch oligo incorporating a forward-read priming site to the
5’ region of the transcript which is an advantage over many other single cell RNAseq protocol
(Fig. 4C,D).
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Fig 4. Transcription start sites are detected in single CD27"¢" CD38"" B cells

A) CD27"¢" CD38"¢" Tn5Prime peaks were matched to features in the Gencode annotation and the feature
they matched are shown as a pie chart. TSS = on or less than 25bp behind the start of an annotated
GENCODE gene, 5’UTR = inside 5’ prime untranslated region, Promoter = between 26 and 1000bp
behind start of annotated gene. B) Tn5 peaks were categorized into two groups. One group contains all
peaks within 25bp of a peak identified in the complete RIKEN CAGE peak Human peak database and the
other group contains all other peaks. These peaks were sorted by the number of cells associated with that
peak in the CD27"¢" CD28"¢" B cell data set and displayed in figure 5a. The yellow bar indicates the
peaks within 25bp and the green bar indicates all other peaks. C,D) Genome Browser view of reads of
several cells aligned to Actb (C) and LTB (D) genes. In addition to TSS information, read alignments also
show differential isoform usage between cells.
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Detecting Subpopulations within CD27"9" CD38"¢" B cells using Tn5Prime

Since separating memory B cells and plasmablasts by FACS based on surface markers can be
challenging, especially when the adaptive immune system is not perturbed, we wanted to see
whether we could do so post-sorting using their gene expression profiles. Cells outside more
than three median absolute deviations from the median for percent alignment, Mitochondrial
transcript percentage, or number of detected genes were marked as outliers and eliminated
prior to normalization of transcript counts (Fig. S3). After normalizing raw gene expression
counts and removing non-recombined and therefore non-applicable antibody gene segments
from the annotation (10), we clustered the remaining 159 sorted B cells using t-SNE
dimensional reduction. The clusters were robust when the data was subsampled to 100,000
reads per cell (Fig. S4). We then identified genes that showed significant differences between
the two clusters. We detected 411 genes with significant changes including J-chain, LTB,
XBP-1, HSPA5, MZB1, as well as HLA-DRA, HLA-DRB5, and HLA-DPB1 (Table S2). J-chain
was upregulated in cluster 2 and is involved in antibody secretion of IgM and IgA (11) (Fig. 5).
We also found XBP-1, MZB1 and HSPAS were upregulated within cluster 2 and are known
targets of BLIMP-1 which is essential in plasmablast differentiation (Fig. S5) (12). LTB was
downregulated in cluster 2 and has been shown to be downregulated upon B cell activation (13)
(Fig. 5). HLA-DRA, HLA-DRBS, and HLA-DPB1 which encode for the alpha and beta chains of
the MHC Il complex were also downregulated in cluster 2, indicating less MHC Il presentation
to T cells which is indicative of plasma cells and plasmablasts (14)). Together, this suggests that
cluster 2 does represent activated plasmablasts which are known to secrete more antibody and

display less MHC Il complex than the memory B cells in cluster 1.
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Figure 5. Clustering of CD27"" CD38"¢" B cells

159 B cells were divided into two populations by t-SNE dimensionality reduction (15). In the three
subplots, cells are colored based on their expression of example genes that were significantly
differentially expressed between the two populations as determined by a multiple hypothesis testing
corrected Mann-Whitney U tests. The cells inside the boxed area belong to cluster 2 and all other cells
belong to cluster 1.

Assembly of antibody heavy and light chain sequences from single B cell Tn5Prime data
Ideally, we would not only want to identify plasmablasts based on their gene expression profile,
but also determine the sequences of the antibodies they express. Sequencing antibodies has
been a long-standing challenge in B cell biology and antibody engineering because it requires
the identification of unique pairs of rearranged antibody heavy and light chains for each cell.
Current techniques rely either on the targeted amplification and sequencing of antibody heavy
and light chain genes (16) in single cells or on the assembly of their sequences from
non-targeted RNA-seq data (17). In contrast to 3’ end based Drop-Seq and 10X Genomics data,
5’ based Tn5Prime could potentially provide this antibody sequence information in addition to
genome wide expression profiling, because the & region contains the unique V(D)J
rearrangement of heavy and light chain transcripts.

To determine if our Tn5Prime protocol could be used for assembling antibody heavy and
light chain sequences, we assembled whole transcriptomes using SPAdes (18). IgBLAST (19)
was used to identify transcripts containing V, D, and J gene segments rearranged in a
productive manner. These transcripts were aligned on to Constant gene segments to identify
isotype. The list of putative antibodies was then filtered for obvious cross-contamination and
mis-assembilies. In this way, we effectively determined heavy and light chain sequences and

identify their unique pairings within single B cells (Fig. 6A).
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Of the 192 B-cells we analyzed, we were able to assemble one heavy chain and one light chain
to 117 B-cells. Of these 117 B-cells 46 cells had a Lambda light chain and 71 cells had a Kappa
light chain. Five additional cells had one heavy chain and two light chains, 35 cells had no
heavy chains but at least one light chain, and 35 cells had no heavy chains and no light chains.
To determine the sequencing depth requirement for successful heavy and light chain assembly,
subsampling was performed on the reads and the assembly and pairing analysis redone (Fig.
S6). We found 100,000 reads per cell was sufficient to assemble one heavy and one light

chains for 91 of 117 B cells with successfully assembled chain pairs without subsampling.

101 and of the 117 cells with paired heavy and light chains also passed all other quality filters
and were clustered by t-SNE into the putative plasmablast and memory B cell clusters. This
combination of single cell identity and paired antibody sequences allowed us to perform detailed
analysis of differences in antibody usage and characteristics between those two populations.
First, the putative plasmablast population featured less IgM antibodies than the memory B cell
population (19% IgM in plasmablasts vs 53% in memory B cells). Second, using IgBlast (19), we
found that both heavy (Fig. 6B) and light chain sequences showed significantly higher levels of
somatic hypermutation in plasmablasts than memory B cells (Heavy chain: median 8.0% vs
3.8% somatic hypermutation, two-sided Monte Carlo permutation test p-value=0.0081; Light
chain: median 4.9% vs 2.7% somatic hypermutation, two-sided Monte Carlo permutation test
p-value=0.0117). Third, by counting and normalizing sequencing reads originating from antibody
transcripts, we could determine and compare heavy and light chain expression in these two
populations. Generally, light chains were expressed about 3-fold higher than heavy chains (Fig.
6C) with no significant difference between plasmablasts and memory B cells (two-sided Monte
Carlo permutation test p-value=0.533). However, the percentage of all aligned sequencing
reads that originated from antibody transcripts showed dramatic differences between
plasmablasts and memory B cells. The median percentage of reads that originated from
antibody transcripts was 23.5% in plasmablasts and only 2.2% in memory B cells (Fig. 6D)
(Monte Carlo Permutation test two-sided p-value=0). In one plasmablast over 60% of all aligned
sequencing reads originated from antibody transcripts indicating just how much of the
plasmablast transcriptome can be dedicated to the production and secretion of antibodies. In
summary, our analysis of antibody usage and characteristics showed that plasmablasts express

more mutated and class-switched antibodies at much higher levels than memory B cells.
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Figure 6. Assembling Antibody transcripts from Tn5Prime data

Antibody transcripts were assembled by generating complete assembled transcriptomes for each cell with
SPADES and then using IGBLAST to search for transcripts with antibody features. Antibody transcripts
for each cell were filtered for mis-assemblies and mis-annotations. Cells were sorted by the abundance of
heavy chain transcripts in their Tn5Prime data and V(,D,) and J segment information for their heavy and
light chains are shown in the schematic in the center. The putative cell type determined by clustering with
t-SNE is indicated on the left. Yellow: plasmablasts, Green: Memory B cells.

B-D) Antibody usage and characteristics were compared between plasmablasts and memory B cells.
Somatic Hypermutation rates (B), light to heavy chain expression ratios (C) and the percentage of all
aligned sequencing reads that originated from antibody transcripts (D) were compared using dotplots.
Yellow: plasmablasts, Green: Memory B cells. Medians are shown as red lines. All p-values are
calculated using two-sided Monte Carlo permutation test with 10000 permutations.
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Discussion

Here we present a novel method for the genome-wide identification of transcription start sites in
bulk samples and single cells. The method combines aspects of Smartseq2 and STRT. By
modifying template-switch oligos used during reverse transcription to carry one sequencing
adapter and loading the other sequencing adapter on the Tn5 enzyme used for cDNA
fragmentation we anchor the sequence priming sites for read 1 of an lllumina read pair to the &’
end of transcripts without the need for fragmentation, ligation, and enrichment steps. The
resulting workflow is easy to implement and capable of generating hundreds of libraries within a
day. An important feature of our Tn5Prime method is the option to integrate cellular indexes
during reverse transcription and lllumina sample indexes during PCR before Tn5 tagmentation.
This allows the pooling of samples early in the workflow and thereby reduces experiment
complexity and reagent costs.

We validated the Tn5Prime protocol on both bulk RNA and single cells. First, using 5ng
of total RNA from the GM12878 cell line, we yielded similar results as the ENCODE CAGE data
with respect to the identification of transcripts start sites. However, the CAGE protocol used by
the ENCODE consortium used several order of magnitude more RNA. As the Smartseq2
protocol is already widely used, we expect that the Tn5Prime assay with its similar workflow and
low RNA input has the potential to become a valuable tool for transcriptome annotation and
quantification in the RNA-seq toolbox.

In addition to the analysis of bulk samples, we show that our Tn5Prime method can be
utilized for interrogating single cells, both human and mouse. The TSO-based multiplexing
approach we implemented makes it possible to efficiently analyze thousands of cells, thereby
increasing the throughput of plate based RNAseq library protocols in a manner that is
straightforward and economical.

In contrast to other droplet or microwell based protocols, which interrogate only the 3’
ends of transcripts, the Tn5Prime protocols interrogates the 5’ ends of transcripts, thereby
capturing the unique sequence information of adaptive immune system receptors expressed on
B and T cells. These receptors are often hard to assemble due to their unique genomic
rearrangement. Our data shows that by limiting sequencing reads to the 5’ end of transcripts we
can analyze both transcriptomes as well as paired antibody heavy and light sequences with the
low sequencing coverage of ~100,000 reads per cell, thereby enabling the analysis of
thousands of B cells in a single sequencing run. This approach should, without any modification,

also be applicable to T cells to map rearrangement of the T cell receptors. This can provide


https://doi.org/10.1101/217117
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217117; this version posted November 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

novel insights into the composition of B and T cell malignancies as well as the state and
composition of the adaptive immune system with regards to solid tumors.

To highlight the power of our approach we isolated 192 single human B cells from
PBMCs using canonical plasmablast markers. Not only were we able to assemble paired
antibody transcripts, but we succeeded in clustering the cells into two populations based on
their gene expression profiles. The genes differentially expressed between those clustered
suggested their putative cell types. Cells in the putative plasmablast cluster expressed more
XBP-1 (X-box binding protein 1), J-chain, HSPA5, and MZB1 (Marginal Zone B1), which are all
involved in either B cell activation or antibody production and secretion. Consistent with less
antigen presentation, cells in the putative plasmablast cluster also expressed less MHC I
transcripts including HLA-DRA, HLA-DRB5, and HLA-DPB1. Finally, MS4A1 (CD20) is also
expressed less in the cells of the putative plasmablast cluster and is known to be downregulated
in activated B cells. Overall, this clearly established that we could distinguish activated, antibody
secreting plasmablasts from resting, antigen presenting memory B-cells; cell-types which are
difficult to distinguish using conventional FACS analysis.

In addition to cell-types, we showed that Tn5Prime can be used to determine individual B
cells’ paired antibody sequences. Together, these data allowed us to compare antibody usage
in plasmablasts and memory B cells, showing that plasmablast expressed higher levels of more
mutated and class-switched antibodies. In addition to providing functional insight into cell
populations, this information will make it possible to make informed decisions as to which
antibody sequences could be further cloned and tested functionally for clinical, diagnostic, and

research applications.

In summary, Tn5Prime is an RNAseq library construction protocol with a streamlined
workflow that surpasses the economy and throughput of other plate-based protocols. While not
reaching the throughput of droplet- and microwell-based protocols, it generates high quality data
that enables the identification of transcription start sites and could be useful for analyzing 5’
UTR features or help improve incomplete genome annotations. Finally, Tn5Prime presents the
currently highest throughput mechanism to comprehensively analyze the individual cells of the
adaptive immune system by determining both paired adaptive immune receptor sequences and

gene expression profiles.
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Methods
Cell purification, RNA isolation and sorting
GM12878: RNA from 500,000 GM12878 cells was extracted using the RNeasy kit (Qiagen)

according to manufacturer’s instructions.

Murine B2 cells: Mice were maintained in the UCSC vivarium according to IACUC-approved
protocols. Single murine Ter119-CD3-CD4-CD8-B220* IgM*CD11b- CD5" B2 cells were isolated
from wild-type C57BI/6 mice by peritoneal lavage and incubated with fluorescently-labeled
antibodies prior to sorting. The following antibodies were used to stain B-cells: Ter119, CD3
(Biolegend; 145-2C11), CD4 (Biolegend; GK1.5), CD8a (Biolegend; 53-6.7), B220 (Biolegend;
RA3-6B2), IgM (Biolegend; RMM-1), CD5 (Biolegend; 53-7.3), and CD11b (Biolegend; M1/70).
Cells were analyzed and sorted using a FACS Aria Il (BD), as described (20-22).

Human B cells: Primary human cells were collected from the blood of a fully consented healthy

adult in a study approved by the Institutional Review Board (IRB) at UCSC. Single human B
cells were isolated from PBMC using negative selection using RosetteSep (StemCell). The
resulting B cells were sorted for CD19* CD27"%" and CD38"" The following antibodies were
used for staining B cells: CD19 (BD Pharmingen; HIB19), CD27 (Biolegend; 0323), and CD38
(Biolegend; HB-7). Cells were sorted using FACS Aria Il (BD) and analyzed using FlowJo v10.2
(Flowdo, TreeStar Software, Ashland, OR).

Both murine and human single cells were sorted into 96 well plates and directly placed into 4ul
of Lysis Buffer - 0.1% Triton X-100, 0.2ul of Superaseln (Thermo), 1ul of oligodT primer (IDT),
1ul of ANTP (10mM each)(NEB) - and frozen at -80°C.

RNA-seq library construction and sequencing

4ul of RNA or Single Cell Lysate was reverse transcribed using Smartscribe Reverse
Transcriptase (Clontech) in a 10ul reaction including either a Smartseq2 TSO (Smartseq2
libraries) or a Nextera A TSO (Tn5Prime libraries) according to manufacturer’s instructions at
42°C. The resulting cDNA was treated with 1 ul of 1:10 dilutions of RNAse A (Thermo) and
Lambda Exonuclease (NEB) for 30min at 37°C. The treated cDNA was amplified with KAPA Hifi
Readymix 2x (KAPA) using the ISPCR primer and a Nextera A Index primer (Tn5Prime only).
The resulting PCR product was treated with Tn5 enzyme (23) loaded with either TNR5ME-A/R
and Tn5ME-B/R (Smartseq2) or Tn5ME-B/R adapters only (Tn5Prime).
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The Tn5 treated PCR product was then size selected using a E-gel 2% EX (Thermo) to a size
range of 400-1000bp. GM12878 RNA Smartseq2 and Tn5Prime libraries were sequenced on an
lllumina HiSeq2500 2x150 run, mouse B2 cell Tn5Prime libraries were sequenced on a lllumina
MiSeq 2x300 run, and human B cell Tn5Prime libraries were sequenced on two lllumina
HiSeq3000 runs.

Sequencing alignment and analysis

Smartseqg2, Tn5Prime, ENCODE CAGE (GEO accession GSM849368; produced by the lab of
Piero Carnici at RIKEN), and ENCODE RNAseq (GEO accession GSM958742; produced by the
lab of Barbara Wold at Caltech) (24) GM12878 data as well as Tn5Prime B2 data were trimmed
of adapters low quality bases using trimmomatic (v0.33) (8) and a quality cutoff of Q15.
Trimming of the 192 human B cell data was performed by Cutadapt, filtering out all paired reads

where one or more read had a post-trimming length of less than 25 bp.

Trimmed reads derived from the GM cell line and single B cells were aligned to the human
genome (GRCh38) annotated with Ensembl GRCh38.78 GTF release using STAR (v2.4) (9).
Trimmed reads derived from the B2 cells were aligned to the mouse genome (GRCm38)
annotated with Ensembl GRCm38.80 GTF release using STAR (v2.4). Expression levels were
quantified using featureCounts (v1.4.6-p1) (25) and normalized by total read number resulting in
RPM (Reads Per Million).

Peaks for CAGE and Tn5Prime data were called by counting the number of unique fragments
which began their forward read alignments (R1 for Tn5Prime) at each position within each
chromosome and for each orientation (positive or negative). A peak was called at a position and
orientation if at least five alignments begin at that position, the position one nucleotide
downstream has fewer alignments beginning at that position, and the position one nucleotide
upstream has fewer alignments beginning at that position. For the single cell data, peaks were
filtered out unless they appeared in more than one cell. The distance between the TN5 peaks
and the nearest CAGE peak was called by inserting the nucleotide coordinates of the CAGE
peaks into kd-trees and then performing a nearest neighbor search on them using the TN5 peak

coordinates. Each chromosome and orientation had its own kd-tree.
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Antibody Assembly

After assignment, reads were assembled into transcriptomes using rnaSPAdes (18) with the
single-cell parameters. Putative immunoglobulin transcripts are detected and annotated by
running IGBLAST (19) against the assembled transcriptome using Human V,D and J segments
from the IMGT database (26). Isotypes are assigned to putative IG transcripts by aligning
constant regions to the transcripts with BWA-MEM (27).

Antibody transcripts were filtered with the following process:

1. A table is generated from the SPADES/IGBLAST/BWA pipeline listing each putative 1G
transcript for each cell in which each row represents one assembled antibody transcript and
contains information indicating which cell it came from, the overall abundance(as determined by
BWA) within the cell,the CDR3 sequence and the type(IGH,IGK,IGL) as well as the inferred
segments used during VDJ recombination.

2. The transcripts are clustered by CDR3 sequencing similarity using a single-linkage clustering
algorithm Based on the Levenshtein distance where two clusters of transcripts are merged
when at least one transcript CDR3 has a Levenshtein distance of 2 or less with the CDR3 of any
transcript in another cluster.

3. Transcripts belonging to the same cluster are merged so that highly similar transcripts
belonging to the same cell are combined and their counts added together. This is done to
correct for the production of spurious alternative assemblies produced by SPADES within each
cell's assembled transcriptome.

4. a list is generated for each transcript of the cells in which they appear.

5. The lists is sorted by the abundance of the transcript within the cells.

6. the entries in the lists are marked by their relative abundance. If the number of reads aligned
to the transcript in a cell is less than 10% of the largest amount reads aligned to that transcript
within any cell, it is marked as being a potential contaminant. The idea is that if a transcript
discovered in a cell is a contaminant it should have at least an order of magnitude fewer reads
associated with it when compared with the cell it actually came from.

7. For each type (IGH,IGK,IGL) of IG transcript found within each cell, the largest unique
(non-contaminant) transcript is picked to have potentially come from that cell. if a unique

transcript cannot be found, the most highly expressed transcript is selected
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8. If both a potential IGK and IGL are present within a cell, the unique transcript is selected. if
both are unique or non-unique the most highly expressed transcript is selected unless either
transcript has an abundance of at least 10% of the other.

9. After this process, most cells should have a single heavy chain and a single light chain.

Visualization
All data visualization was done using Python/Numpy/Scipy/Matplotlib (28—-31). Schematics were

drawn in Inkscape (https://inkscape.org/en/).

Data and Script Access

Raw data has been uploaded to the Sequence Read Archive (SRA) under the accessions
PRJNA320873 (GM12878 Smartseg2 and Tn5Prime), PRINA320902 (Mouse B2 Cells), and
PRJUNA415475 (Human CD27"¢" CD38"e"). A UCSC genome browser track is available at

https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=ch

kcole&hgS_otherUserSessionName=TN5_Prime_Alignments

The Tn5Prime and CAGE Peak Caller and peak distance calculator are available at

https://github.com/chkcole/Peak-Calling. All other Scripts are available upon request.
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