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Abstract 
RNA-seq  is a  powerful  technique  to  investigate  and  quantify entire  transcriptomes. Recent 

advances in  the  field  have  made  it possible  to  explore  the  transcriptomes of single  cells. 

However, most widely used  RNA-seq  protocols fail  to  provide  crucial  information  regarding 

transcription  start sites. Here  we  present a  protocol, Tn5Prime, that takes advantage  of the  Tn5 

transposase  based  Smartseq2  protocol  to  create  RNA-seq  libraries that capture  the  5’  end  of 

transcripts. The  Tn5Prime  method  dramatically streamlines the  5’  capture  process and  is both 

cost effective  and  reliable. By applying  Tn5Prime  to  bulk RNA and  single  cell  samples we  were 

able  to  define  transcription  start sites as well  as quantify transcriptomes at high  accuracy and 

reproducibility. Additionally, similar to  3’  end  based  high-throughput methods like  Drop-Seq  and 

10X Genomics Chromium, the  5’  capture  Tn5Prime  method  allows the  introduction  of cellular 

identifiers during  reverse  transcription, simplifying  the  analysis of large  numbers of single  cells. 

In  contrast to  3’  end  based  methods, Tn5Prime  also  enables the  assembly of the  variable  5’ 

ends of antibody sequences present in  single  B-cell  data. Therefore, Tn5Prime  presents a 

robust tool  for both  basic and  applied  research  into  the  adaptive  immune  system and  beyond.  
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Introduction 
As the  cost of RNA-sequencing  has decreased, it has become  the  gold  standard  in 

interrogating  complete  transcriptomes from bulk samples and  single  cells. RNA-seq  is a 

powerful  tool  to  determine  gene  expression  profiles and  identify transcript features like 

splice-sites. However, standard  approaches lose  sequencing  coverage  towards the  very end  of 

transcripts. This reduced  coverage  means that we  cannot confidently define  the  5’  ends of 

mRNA transcripts which  contain  crucial  information  on  transcription  initiation  start sites (TSSs) 

and  5’  untranslated  regions (5’UTRs). Analyzing  TSSs can  help  infer the  active  promoter 

landscape, which  may vary from tissue  to  tissue  and  cell  to  cell. Analyzing  5’UTRs, which  may 

contain  regulatory elements and  structural  variations can  help  infer mRNA stability, localization, 

and  translational  efficiency. Identifying  such  features can  help  elucidate  our understanding  of 

the  molecular mechanisms that regulate  gene  expression.  

The  loss of sequencing  coverage  towards the  5’  end  of transcripts is often  attributed  to 

how sequencing  libraries are  constructed. For example, the  widely used  Smartseq2  RNA-seq 

protocol, a  powerful  tool  in  deciphering  the  complexity of single  cell  heterogeneity (1–3), 

features reduced  sequencing  coverage  towards transcript ends. This lost information  is a  result 

of cDNA fragmentation  using  Tn5  transposase. Several  technologies have  tried  to  compensate 

for the  lack of coverage  by specifically targeting  the  5’  ends of transcripts. The  most notable 

methods include  cap  analysis of gene  expression  (CAGE), NanoCAGE, and  single-cell  tagged 

reverse  transcription  sequencing  (STRT) (4–7). CAGE uses a  5’  trapping  technique  to  enrich  for 

the  5’-capped  regions by reverse  transcription  (7). This technique  is extremely labor intensive 

and  involves large  amounts of input RNA. The  NanoCAGE and  STRT methods target transcripts 

using  random or polyA priming  and  a  template-switch  oligo  technique  to  generate  cDNA (4, 6). 

While  NanoCAGE can  analyze  samples as low as a  few nanograms of RNA, and  STRT can  be 

used  to  analyze  single  cells, they both  require  long  and  labor-intensive  workflows including 

fragmentation, ligation, or enrichment steps. Therefore, none  of the  current 5’  end  specific 

protocols are  capable  of efficiently and  cost-effectively processing  hundreds to  thousands of 

single  cells necessary to  understand  heterogeneity within  complex mixtures of cells present in, 

for example, the  adaptive  immune  system or cancer.  

Furthermore, new droplet based  high-throughput single  cell  RNAseq  approaches like 

Drop-Seq  and  10X Genomics Chromium platform can  process thousands of cells but can  only 

analyze  the  3’end  of transcripts due  to  integrating  a  sequencing  priming  site  into  the  oligodT 

primer used  for reverse  transcription. By losing  information  of the  5’  end  almost entirely, these 
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approaches are  not capable  of comprehensively analyzing  cells of the  adaptive  immune  cells 

which  express antibody or T cell  receptor transcripts featuring  unique  V(D)J rearrangement 

sequence  information  on  their 5’  end. 

To  overcome  this lack of high-throughput single  cell  5’  capture  methods, we  chose  to 

modify the  Smartseq2  library preparation  protocol  which  is relatively cost-effective  and  simple 

with  features of STRT which  captures 5’  ends effectively. Here  we  describe  a  robust and  easily 

implemented  method  called  Tn5Prime  that performs genome-wide  profiling  across the  5’  end  of 

mRNA transcripts in  both  bulk and  single  cell  samples. The  protocol  is based  on  integrating  one 

sequencing  priming  site  into  the  template  switch  oligo  used  for reverse  transcription  and 

subsequently tagmenting  the  resulting  amplified  cDNA by Tn5  enzyme  loaded  with  an  adapter 

carrying  the  other sequencing  priming  site. This combination  allows for the  construction  of 

directional  RNAseq  libraries with  one  read  anchored  to  the  5’  end  of transcripts without the  need 

for separate  fragmentation, ligation, and, most importantly, enrichment steps. Additionally, by 

incorporating  cellular identifiers into  the  template  switch  oligo  makes it conducive  for pooling 

samples after reverse  transcription, thereby increasing  throughput and  reducing  cost. Finally, 

data  produced  by this novel  approach  allows for the  identification  of transcription  start sites, the 

quantification  of transcripts, and  the  assembly of antibody heavy and  light chain  sequences from 

single  B cells at low sequencing  depth.  

    

Results 
Construction of Tn5Prime  libraries 

Tn5Prime  libraries can  be  constructed  from either purified  total  RNA or single  cells 

sorted  by FACS into  multiwell  PCR plates. Tn5Prime  libraries create  a  directional  paired-end 

Illumina  RNAseq  library with  read  1  anchored  to  the  5’  end  of transcripts. Directionality and  read 

1  anchoring  is achieved  through  the  use  of our modified  template-switch  oligo  and  custom Tn5 

enzyme. After the  addition  of reverse  transcriptase  to  total  RNA or cell  lysate, first-strand 

synthesis occurs using  a  modified  oligo-dT and  a  template-switch  oligo  (TSO) containing  a 

partial  Nextera  A adapter sequence  and, optionally, a  cellular index sequence  (Table  S1, Fig. 

1A). During  reverse  transcription, the  oligo-dT serves as a  primer at the  3’  polyA tail  of mRNA 

transcripts, while  the  sequence  of the  partial  Nextera  A template-switch  oligo  is attached  to  the 

3’  end  of the  synthesized  cDNA corresponding  to  the  5’  end  of transcript sequences. After 

reverse  transcription, samples with  non-overlapping  cellular indexes can  be  pooled. The  cDNA 

product is then  amplified  using  a  complete  Nextera  A primer and  a  primer complementary to  the 
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modified  5’  end  of the  oligo-dT. After amplification, the  cDNA product will  contain  a  complete 

Nextera  A adapter including  Illumina  indexes. At this point, samples that contain  the 

non-overlapping  Illumina  indexes can  be  pooled. By pooling  after reverse  transcription  and  PCR 

amplification, we  can  dramatically reduce  the  workflow complexity and  reagent usage. 

Next, Tn5  transposase, loaded  only with  a  partial  Nextera  B adapters, fragments the 

cDNA and  attaches the  partial  Nextera  B adapters to  the  cDNA in  a  single  reaction. The  cDNA 

fragments are  then  amplified  using  a  universal  A primer and  a  Nextera  B primer that primes off 

the  partial  Nextera  B adapter sequences attached  by the  Tn5  enzyme. The  final  product is 

compatible  with  the  Illumina  platform by containing  the  complete  Nextera  A and  Nextera  B 

adapters. Libraries are  then  ready to  be  size  selected  and  quantified  prior to  sequencing. At this 

point, no  enrichment step  is necessary, as only molecules containing  both  Nextera  A and  B 

adapters will  be  targeted  for sequencing. Since  only the  TSOs associated  with  the  5’  end  of 

transcripts contain  Nextera  A adapters, read  1  of all  read  pairs in  the  sequencing  reaction 

begins at these  5’  ends and  extends into  the  transcript body, thereby identifying  transcription 

start site  and  directionality (Fig. 1A-C). Read  2  is distributed  throughout the  gene  body, as each 

location  represents the  random insertion  of Nextera  B adapters by Tn5  and  library size  selection 

(Fig. 1B,C). 

    

Creating and analyzing Tn5Prime  data  of GM12878  cell line  RNA     

To  evaluate  whether our Tn5Prime  protocol  consistently identifies the  5’  end  of the 

transcript we  first performed  low coverage  RNAseq  of total  RNA of GM12878  cultured 

lymphoblast cells. We  performed  a  side-by-side  comparison  of our protocol  with  the  standard 

Smartseq2  protocol  using  the  same  starting  material. Using  the  HiSeq2500  platform (Illumina) 

we  obtained  570805  and  453761  raw read  pairs for two  replicate  Tn5Prime  libraries. We  next 

obtained  1094530  raw read  pairs from a  Smartseq2  library. Adapter sequences and  low quality 

reads were  removed  using  Trimmomatic (8). In  the  Tn5Prime  replicates, 92.51% and  92.62% of 

the  trimmed  and  filtered  reads mapped  uniquely to  the  human  genome  using  the  STAR 

alignment tool  (9), surpassing  the  standard  Smartseq2  protocol  at 88.50%. The  uniquely aligned 

reads from the  TN5Prime  replicates collectively had  a  redundancy of 1.34. This high  unique 

alignment percentage  indicates that our Tn5Prime  protocol  produces libraries of high 
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complexity.

 

Fig. 1 Tn5Prime Library construction  and  5’ capture 
A.) Schematic of the Tn5Prime library construction. No enrichment steps  are required to generate a 
library that captures  the 5’ end of transcripts. B.) Examples  of 5’ end capture by Tn5Prime compared to 
random fragmentation by Smartseq2. Individual alignments  for the first (Read1, blue) and second (Read2, 
red) read of each read pair are shown. Read1 density is  shown for both library types  as  a histogram (blue). 
Gene models  are shown on top (Color indicates  transcriptional direction.) 
 

Detecting Transcription Start Sites  using Tn5Prime 
We  analyzed  the  read  distribution  across transcripts both  visually and  systematically to 

determine  the  5’  specificity of our protocol. Visual  inspection  found  that while  Smartseq2  reads 

are  distributed  across the  entire  body of genes, Tn5Prime  reads follow two  distinct patterns: 

First, the  start of the  read  1  is anchored  to  the  transcription  start site. Second, the  start of read  2 

is variable  and  likely dependent on  size  selection  during  library preparation  (Fig. 1B). Next, 

systematic analysis was based  on  mapping  the  start of read  1  to  identify putative  Transcription 

Start Sites (TSSs). To  test our ability to  identify TSSs, we  compared  our Tn5Prime  data  to  the 

Gencode  genome  annotation  and  CAGE data  which  was generated  from the  same  GM12878 

cell  line  from the  ENCODE project. We  identified  putative  TSSs by calling  peaks enriched  from 

the  start of read  1  in  our Tn5Prime  data  (see  Methods). 89.7% of the  17853  peaks  fell  within 

TSSs (0-25  bp  upstream) with  the  vast majority of them falling  near promoter regions 

(26bp-1000bp  upstream) or 5’UTRs (Fig. 2A). Next, we  subsampled  the  CAGE data  to  levels 
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similar to  the  Tn5Prime  data  and  called  peaks in  the  same  manner. 14107  of 17853  Tn5Prime 

peaks (73%) fell  within  25bp  to  the  nearest of 27526  CAGE peaks, indicating  high  concordance 

between  the  two  approaches (Fig. 2B). Tn5Prime  peaks (3,746) that were  not within  25bp  of a 

CAGE peak contained  far less sequencing  reads on  average  than  those  within  25bp  of a  CAGE 

peak. These  results indicate  that these  transcripts might be  expressed  at lower levels and  show 

more  variance  between  the  Tn5Prime  and  CAGE datasets (Fig. 2B). Ultimately, this suggests 

that our Tn5Prime  protocol  is equivalent to  the  gold  standard  CAGE technique  in  targeting 

transcription  start sites. 

 

 

Fig. 2 Tn5Prime peaks  are highly concordant with  GENCODE annotation  and  CAGE peaks  

A) Tn5Prime peaks  were matched to features  in the Gencode annotation and the feature they matched are 
shown as  a pie chart. B) Tn5Prime were matched to CAGE peaks. The green bar on top indicates  the 
peaks  within 25bp and the yellow bar indicates  all other peaks. Peaks  in each were rank sorted according 
to their read coverage and shown as  a histogram.  
 
 

Quantifying the  Transcriptome  using Tn5Prime 
After validating  the  ability of Tn5Prime  to  detect transcription  start sites, we  next wanted  to 

examine  whether it is capable  of transcript quantification. To  determine  whether our Tn5Prime 

method  is quantitative  we  compared  GM12878  data  generated  from four different protocols: 

Tn5Prime, Smartseq2  data  generated  by our lab, as well  as CAGE and  RNA-seq  data  produced 

by the  ENCODE project (Fig. 3). We  used  the  Tn5Prime  data  mentioned  in  the  previous section 

and  generated  the  Smartseq2  data  on  the  same  Cell  line  as described  by (1). We  performed 

replicates using  the  Tn5Prime  protocols to  define  overall  reproducibility and  accuracy. Based 

upon  our results, transcript quantification  by Tn5Prime  replicates showed  extremely high 
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correlation  with  a  Pearson  correlation  coefficient of r=0.97  (95% C.I. 0.97-0.97). Quantification 

by Tn5Prime  also  correlated  very well  with  Smartseq2  with  a  Pearson  r of 0.87  (95% C.I. 

0.86-0.87). Tn5Prime  and  Smartseq2  data  were  comparable  with  ENCODE RNA-seq  and 

CAGE data  (Fig. 3), indicating  that the  Tn5Prime  protocol  is equivalent to  the  conventional 

Smartseq2  method  in  measuring  transcript abundance. Together, these  data  show that 

Tn5Prime  can  accurately identify transcription  start sites and  quantitatively measure  transcript 

abundance. 

 

Fig 3. Tn5Prime quantifies  transcriptomes  accurately and  reproducibly. 
Pairwise correlations  of transcript levels  between Tn5Prime, Smartseq2, ENCODE CAGE and ENCODE 
RNAseq are shown as  scatter plots. Each transcript is  shown as  a black dot with an opacity of 5%. 
Distribution of transcript levels  is  shown on the outside of the plots  in grey histograms. 
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Transcript quantification and transcription start site  localization in single  B cells. 
As the  Tn5Prime  protocol  is based  on  the  same  cDNA amplification  strategy as the  Smartseq2 

protocol, we  expected  it capable  of generating  sequencing  libraries from single  cells. Indeed, we 

successfully generated  single  cell  libraries using  the  Tn5Prime  protocol  from primary murine 

B-lymphocytes (B2  cells; IgM+B220+CD5-CD11b-)(n=12) isolated  from the  peritoneal  cavity. 

We  generated  between  17,534-93,429  2x300  bp  read  pairs per cell  using  the  Illumina  MiSeq  of 

which  62% passed  quality filtering. Of the  filtered  reads, an  average  of 91.48% uniquely 

mapped  to  the  mouse  genome. The  high  alignment percentage  indicates we  are  able  to 

generate  high  quality libraries from single  cells using  our Tn5Prime. Despite  the  very low total 

number of read  pairs we  collected, we  still  detected  339  expressed  genes per cell  on  average. 

These  results are  not surprising  as primary B cells can  contain  little  RNA [ref?] and  transcript 

abundance  in  single  cells can  be  substantially variable  depending  on  the  state  of the  cell  [ref?]. 

Among  the  genes expressed  in  many of the  single  cells were  genes corresponding  to  B cell 

function, including   CD19, CD79a  and  components of the  MHC complexes (Fig. S1) These  data 

indicate  that we  can  efficiently identify cell  type  specific genes. 

 

Analysis  of 192  Single  CD27 high CD38 high  Human B Cells 
After successfully testing  our Tn5Prime  method  on  single  mouse  B cells, we  next wanted  to 

develop  a  multiplex approach  capable  of evaluating  hundreds of human  single  cells. To  this 

end, we  FACS sorted  into  192  single  B cells into  individual  wells of 96  well  plates using  the 

canonical  surface  molecules CD19, CD27  and  CD38  to  sub-select the  plasmablast 

subpopulation  (Fig. S2). Plasmablasts are  one  of the  most widely studied  B cell  populations and 

are  frequently monitored  after vaccination  or infections by flow cytometry. The  plasmablast cell 

compartment is defined  by high  levels of surface  markers CD27  and  CD38, but separation  from 

memory B cells which  also  express these  markers, albeit at lower levels, can  be  challenging. 

Therefore, analyzing  these  cell  types at the  single  cell  level  should  help  further delineate  these 

populations.  

By inserting  cellular indexes into  the  template  switch  oligo  during  reverse  transcription  to 

pool  libraries after reverse  transcription. This allowed  us to  streamline  our method  and  increase 

our throughput by decreasing  the  PCR and  Tn5  reactions required. Using  our multiplexing 

strategy we  generated  Tn5  libraries for 192  single  B cells using  192  RT reactions, 24  PCR 

reactions and  24  Tn5  reactions. Although  this was not performed, library pools carrying  distinct 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217117doi: bioRxiv preprint 

https://doi.org/10.1101/217117
http://creativecommons.org/licenses/by-nc-nd/4.0/


Illumina  sample  indexes could  have  been  further pooled  following  PCR to  reduce  the  numbers 

of Tn5  reactions to  2.  

We  generated  194,553,648  150  bp  paired  end  reads total. To  determine  gene 

expression  for each  cell, reads were  assigned  to  one  of 192  single  cells based  on  its Illumina 

index reads and  by comparing  the  sequence  of the  first 8  bases of read  1  to  the  cellular index 

sequences.  91% of the  194,553,648  150bp  paired  end  reads were  successfully assigned  to 

one  of the  192  single  B cells. 90.75% of cell-assigned  reads were  successfully aligned  to  the 

human  genome  using  STAR with  a  median  of 74.59% percent of cell-assigned  reads being 

uniquely assigned  to  an  annotated  gene. Each  cell  expressed  a  median  of 534  genes. Of the 

58234  annotated  genes in  GENCODE, 5414  genes had  at least one  read  per cell  on  average. 

The  median  redundancy for each  cell  is 13.92  which  means that, on  average, each  uniquely 

aligned  cDNA fragment was sequenced  13.92  times. This indicates that the  libraries were 

sequenced  exhaustively.  

 

Detecting Transcription Start Sites  in single  CD27 high  CD38 high  B cells  using Tn5Prime 

To  determine  if transcription  start site  specificity is maintained  within  the  single  cell  data, read  1 

start distribution  was compared  to  annotated  transcription  start sites and  Encode  CAGE data. 

By calling  peaks, we  found  that our single  cell  results were  able  to  maintain  transcription  start 

site  specificity, with  peaks predominantly falling  within  the  annotated  transcription  start sites 

(Fig. 4A-B). In  addition  to  the  transcription  start site, the  directionality of transcription  can  be 

inferred  due  to  our custom template  switch  oligo  incorporating  a  forward-read  priming  site  to  the 

5’  region  of the  transcript which  is an  advantage  over many other single  cell  RNAseq  protocol 

(Fig. 4C,D). 
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Fig 4. Transcription  start sites  are detected  in  single CD27high CD38high B cells 
A) CD27high  CD38high  Tn5Prime peaks  were matched to features  in the Gencode annotation and the feature 
they matched are shown as  a pie chart. TSS  = on or less  than 25bp behind the start of an annotated 
GENCODE gene, 5’UTR = inside 5’ prime untranslated region, Promoter = between 26 and 1000bp 
behind start of annotated gene. B) Tn5 peaks  were categorized into two groups. One group contains  all 
peaks  within 25bp of a peak identified in the complete RIKEN CAGE peak Human peak database and the 
other group contains  all other peaks. These peaks  were sorted by the number of cells  associated with that 
peak in the CD27high  CD28high  B cell data set and displayed in figure 5a. The yellow bar indicates  the 
peaks  within 25bp and the green bar indicates  all other peaks. C,D) Genome Browser view of reads  of 
several cells  aligned to Actb (C) and LTB (D) genes. In addition to TSS  information, read alignments  also 
show differential isoform usage between cells.  
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Detecting Subpopulations  within CD27 high  CD38 high  B cells  using Tn5Prime 
Since  separating  memory B cells and  plasmablasts by FACS based  on  surface  markers can  be 

challenging, especially when  the  adaptive  immune  system is not perturbed, we  wanted  to  see 

whether we  could  do  so  post-sorting  using  their gene  expression  profiles. Cells outside  more 

than  three  median  absolute  deviations from the  median  for percent alignment, Mitochondrial 

transcript percentage, or number of detected  genes were  marked  as outliers and  eliminated 

prior to  normalization  of transcript counts (Fig. S3). After normalizing  raw gene  expression 

counts and  removing  non-recombined  and  therefore  non-applicable  antibody gene  segments 

from the  annotation  (10), we  clustered  the  remaining  159  sorted  B cells using  t-SNE 

dimensional  reduction. The  clusters were  robust when  the  data  was subsampled  to  100,000 

reads per cell  (Fig. S4). We  then  identified  genes that showed  significant differences between 

the  two  clusters. We  detected  411  genes with  significant changes including  J-chain, LTB, 

XBP-1, HSPA5, MZB1, as well  as HLA-DRA, HLA-DRB5, and  HLA-DPB1  (Table  S2). J-chain 

was upregulated  in  cluster 2  and  is involved  in  antibody secretion  of IgM and  IgA (11) (Fig. 5). 

We  also  found  XBP-1, MZB1  and  HSPA5  were  upregulated  within  cluster 2  and  are  known 

targets of BLIMP-1  which  is essential  in  plasmablast differentiation   (Fig. S5) (12). LTB was 

downregulated  in  cluster 2  and  has been  shown  to  be  downregulated  upon  B cell  activation  (13) 

(Fig. 5). HLA-DRA, HLA-DRB5, and  HLA-DPB1  which  encode  for the  alpha  and  beta  chains of 

the  MHC II complex were  also  downregulated  in  cluster 2,  indicating  less MHC II presentation 

to  T cells which  is indicative  of plasma  cells and  plasmablasts (14)). Together, this suggests that 

cluster 2  does represent activated  plasmablasts which  are  known  to  secrete  more  antibody and 

display less MHC II complex than  the  memory B cells in  cluster 1. 
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Figure 5. Clustering of CD27high CD38high B cells 
159 B cells  were divided into two populations  by t-SNE dimensionality reduction (15). In the three 
subplots, cells  are colored based on their expression of example genes  that were significantly 
differentially expressed between the two populations  as  determined by a multiple hypothesis  testing 
corrected Mann-Whitney U tests. The cells  inside the boxed area belong to cluster 2 and all other cells 
belong to cluster 1. 
 

Assembly  of antibody  heavy  and light chain sequences  from single  B cell Tn5Prime  data 
Ideally, we  would  not only want to  identify plasmablasts based  on  their gene  expression  profile, 

but also  determine  the  sequences of the  antibodies they express. Sequencing  antibodies has 

been  a  long-standing  challenge  in  B cell  biology and  antibody engineering  because  it requires 

the  identification  of unique  pairs of rearranged  antibody heavy and  light chains for each  cell. 

Current techniques rely either on  the  targeted  amplification  and  sequencing  of antibody heavy 

and  light chain  genes (16) in  single  cells or on  the  assembly of their sequences from 

non-targeted  RNA-seq  data  (17). In  contrast to  3’  end  based  Drop-Seq  and  10X Genomics data, 

5’  based  Tn5Prime  could  potentially provide  this antibody sequence  information  in  addition  to 

genome  wide  expression  profiling, because  the  5’  region  contains the  unique  V(D)J 

rearrangement of heavy and  light chain  transcripts.  

To  determine  if our Tn5Prime  protocol  could  be  used  for assembling  antibody heavy and 

light chain  sequences, we  assembled  whole  transcriptomes using  SPAdes (18). IgBLAST (19) 

was used  to  identify transcripts containing  V, D, and  J gene  segments rearranged  in  a 

productive  manner. These  transcripts were  aligned  on  to  Constant gene  segments to  identify 

isotype. The  list of putative  antibodies was then  filtered  for obvious cross-contamination  and 

mis-assemblies. In  this way, we  effectively determined  heavy and  light chain  sequences and 

identify their unique  pairings within  single  B cells (Fig. 6A).  
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Of the  192  B-cells we  analyzed, we  were  able  to  assemble  one  heavy chain  and  one  light chain 

to  117  B-cells. Of these  117  B-cells 46  cells had  a  Lambda  light chain  and  71  cells had  a  Kappa 

light chain. Five  additional  cells had  one  heavy chain  and  two  light chains, 35  cells had  no 

heavy chains but at least one  light chain, and  35  cells had  no  heavy chains and  no  light chains. 

To  determine  the  sequencing  depth  requirement for successful  heavy and  light chain  assembly, 

subsampling  was performed  on  the  reads and  the  assembly and  pairing  analysis redone  (Fig. 

S6). We  found  100,000  reads per cell  was sufficient to  assemble  one  heavy and  one  light 

chains for 91  of 117  B cells with  successfully assembled  chain  pairs without subsampling.  

 

101  and  of the  117  cells with  paired  heavy and  light chains also  passed  all  other quality filters 

and  were  clustered  by t-SNE into  the  putative  plasmablast and  memory B cell  clusters. This 

combination  of single  cell  identity and  paired  antibody sequences allowed  us to  perform detailed 

analysis of differences in  antibody usage  and  characteristics between  those  two  populations.  

First, the  putative  plasmablast population  featured  less IgM antibodies than  the  memory B cell 

population  (19% IgM in  plasmablasts vs 53% in  memory B cells). Second, using  IgBlast (19), we 

found  that both  heavy (Fig. 6B) and  light chain  sequences showed  significantly higher levels of 

somatic hypermutation  in  plasmablasts than  memory B cells (Heavy chain: median  8.0% vs 

3.8% somatic hypermutation, two-sided  Monte  Carlo  permutation  test p-value=0.0081; Light 

chain: median  4.9% vs 2.7% somatic hypermutation, two-sided  Monte  Carlo  permutation  test 

p-value=0.0117). Third, by counting  and  normalizing  sequencing  reads originating  from antibody 

transcripts, we  could  determine  and  compare  heavy and  light chain  expression  in  these  two 

populations. Generally, light chains were  expressed  about 3-fold  higher than  heavy chains (Fig. 

6C) with  no  significant difference  between  plasmablasts and  memory B cells (two-sided  Monte 

Carlo  permutation  test p-value=0.533). However, the  percentage  of all  aligned  sequencing 

reads that originated  from antibody transcripts showed  dramatic differences between 

plasmablasts and  memory B cells. The  median  percentage  of reads that originated  from 

antibody transcripts was 23.5% in  plasmablasts and  only 2.2% in  memory B cells (Fig. 6D) 

(Monte  Carlo  Permutation  test two-sided  p-value=0). In  one  plasmablast over 60% of all  aligned 

sequencing  reads originated  from antibody transcripts indicating  just how much  of the 

plasmablast transcriptome  can  be  dedicated  to  the  production  and  secretion  of antibodies. In 

summary, our analysis of antibody usage  and  characteristics showed  that plasmablasts express 

more  mutated  and  class-switched  antibodies at much  higher levels than  memory B cells. 
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Figure 6. Assembling Antibody transcripts  from Tn5Prime data 
Antibody transcripts  were assembled by generating complete assembled transcriptomes  for each cell with 
SPADES  and then using IGBLAST to search for transcripts  with antibody features. Antibody transcripts 
for each cell were filtered for mis-assemblies  and mis-annotations. Cells  were sorted by the abundance of 
heavy chain transcripts  in their Tn5Prime data and V(,D,) and J  segment information for their heavy and 
light chains  are shown in the schematic in the center. The putative cell type determined by clustering with 
t-SNE is  indicated on the left. Yellow: plasmablasts, Green: Memory B cells.  
B-D) Antibody usage and characteristics  were compared between plasmablasts  and memory B cells. 
Somatic Hypermutation rates  (B), light to heavy chain expression ratios  (C) and the percentage of all 
aligned sequencing reads  that originated from antibody transcripts  (D) were compared using dotplots. 
Yellow: plasmablasts, Green: Memory B cells. Medians  are shown as  red lines. All p-values  are 
calculated using two-sided Monte Carlo permutation test with 10000 permutations.  
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Discussion 
Here  we  present a  novel  method  for the  genome-wide  identification  of transcription  start sites in 

bulk samples and  single  cells. The  method  combines aspects of Smartseq2  and  STRT. By 

modifying  template-switch  oligos used  during  reverse  transcription  to  carry one  sequencing 

adapter and  loading  the  other sequencing  adapter on  the  Tn5  enzyme used  for cDNA 

fragmentation  we  anchor the  sequence  priming  sites for read  1  of an  Illumina  read  pair to  the  5’ 

end  of transcripts without the  need  for fragmentation, ligation, and  enrichment steps. The 

resulting  workflow is easy to  implement and  capable  of generating  hundreds of libraries within  a 

day. An  important feature  of our Tn5Prime  method  is the  option  to  integrate  cellular indexes 

during  reverse  transcription  and  Illumina  sample  indexes during  PCR before  Tn5  tagmentation. 

This allows the  pooling  of samples early in  the  workflow and  thereby reduces experiment 

complexity and  reagent costs.  

We  validated  the  Tn5Prime  protocol  on  both  bulk RNA and  single  cells. First, using  5ng 

of total  RNA from the  GM12878  cell  line, we  yielded  similar results as the  ENCODE CAGE data 

with  respect to  the  identification  of transcripts start sites. However, the  CAGE protocol  used  by 

the  ENCODE consortium used  several  order of magnitude  more  RNA. As the  Smartseq2 

protocol  is already widely used, we  expect that the  Tn5Prime  assay with  its similar workflow and 

low RNA input has the  potential  to  become  a  valuable  tool  for transcriptome  annotation  and 

quantification  in  the  RNA-seq  toolbox.  

In  addition  to  the  analysis of bulk samples, we  show that our Tn5Prime  method  can  be 

utilized  for interrogating  single  cells, both  human  and  mouse.  The  TSO-based  multiplexing 

approach  we  implemented  makes it possible  to  efficiently analyze  thousands of cells, thereby 

increasing  the  throughput of plate  based  RNAseq  library protocols in  a  manner that is 

straightforward  and  economical. 

In  contrast to  other droplet or microwell  based  protocols, which  interrogate  only the  3’ 

ends of transcripts, the  Tn5Prime  protocols interrogates the  5’  ends of transcripts, thereby 

capturing  the  unique  sequence  information  of adaptive  immune  system receptors expressed  on 

B and  T cells. These  receptors are  often  hard  to  assemble  due  to  their unique  genomic 

rearrangement. Our data  shows that by limiting  sequencing  reads to  the  5’  end  of transcripts we 

can  analyze  both  transcriptomes as well  as paired  antibody heavy and  light sequences with  the 

low sequencing  coverage  of ~100,000  reads per cell, thereby enabling  the  analysis of 

thousands of B cells in  a  single  sequencing  run. This approach  should, without any modification, 

also  be  applicable  to  T cells to  map  rearrangement of the  T cell  receptors. This can  provide 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217117doi: bioRxiv preprint 

https://doi.org/10.1101/217117
http://creativecommons.org/licenses/by-nc-nd/4.0/


novel  insights into  the  composition  of B and  T cell  malignancies as well  as the  state  and 

composition  of the  adaptive  immune  system with  regards to  solid  tumors.  

To  highlight the  power of our approach  we  isolated  192  single  human  B cells from 

PBMCs using  canonical  plasmablast markers. Not only were  we  able  to  assemble  paired 

antibody transcripts, but we  succeeded  in  clustering  the  cells into  two  populations based  on 

their gene  expression  profiles. The  genes differentially expressed  between  those  clustered 

suggested  their putative  cell  types. Cells in  the  putative  plasmablast cluster expressed  more 

XBP-1  (X-box binding  protein  1), J-chain, HSPA5, and  MZB1  (Marginal  Zone  B1), which  are  all 

involved  in  either B cell  activation  or antibody production  and  secretion. Consistent with  less 

antigen  presentation, cells in  the  putative  plasmablast cluster also  expressed  less MHC II 

transcripts including  HLA-DRA, HLA-DRB5, and  HLA-DPB1. Finally, MS4A1  (CD20) is also 

expressed  less in  the  cells of the  putative  plasmablast cluster and  is known  to  be  downregulated 

in  activated  B cells. Overall, this clearly established  that we  could  distinguish  activated, antibody 

secreting  plasmablasts from resting, antigen  presenting  memory B-cells; cell-types which  are 

difficult to  distinguish  using  conventional  FACS analysis. 

In  addition  to  cell-types, we  showed  that Tn5Prime  can  be  used  to  determine  individual  B 

cells’  paired  antibody sequences. Together, these  data  allowed  us to  compare  antibody usage 

in  plasmablasts and  memory B cells, showing  that plasmablast expressed  higher levels of more 

mutated  and  class-switched  antibodies. In  addition  to  providing  functional  insight into  cell 

populations, this information  will  make  it possible  to  make  informed  decisions as to  which 

antibody sequences could  be  further cloned  and  tested  functionally for clinical, diagnostic, and 

research  applications. 

 

In  summary, Tn5Prime  is an  RNAseq  library construction  protocol  with  a  streamlined 

workflow that surpasses the  economy and  throughput of other plate-based  protocols. While  not 

reaching  the  throughput of droplet- and  microwell-based  protocols, it generates high  quality data 

that enables the  identification  of transcription  start sites and  could  be  useful  for analyzing  5’ 

UTR features or help  improve  incomplete  genome  annotations. Finally, Tn5Prime  presents the 

currently highest throughput mechanism to  comprehensively analyze  the  individual  cells of the 

adaptive  immune  system by determining  both  paired  adaptive  immune  receptor sequences and 

gene  expression  profiles.  
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Methods 
Cell purification, RNA isolation and sorting 
GM12878: RNA from 500,000  GM12878  cells was extracted  using  the  RNeasy kit (Qiagen) 

according  to  manufacturer’s instructions.  

Murine  B2  cells: Mice  were  maintained  in  the  UCSC vivarium according  to  IACUC-approved 

protocols. Single  murine  Ter119-CD3-CD4-CD8-B220 +  IgM+CD11b - CD5 - B2  cells were  isolated 

from wild-type  C57Bl/6  mice  by peritoneal  lavage  and  incubated  with  fluorescently-labeled 

antibodies prior to  sorting. The  following  antibodies were  used  to  stain  B-cells: Ter119, CD3 

(Biolegend; 145-2C11), CD4  (Biolegend; GK1.5), CD8a  (Biolegend; 53-6.7), B220  (Biolegend; 

RA3-6B2), IgM (Biolegend; RMM-1), CD5  (Biolegend; 53-7.3), and  CD11b  (Biolegend; M1/70). 

Cells were  analyzed  and  sorted  using  a  FACS Aria  II (BD), as described  (20–22).  

Human  B cells: Primary human  cells were  collected  from the  blood  of a  fully consented  healthy 

adult in  a  study approved  by the  Institutional  Review Board  (IRB) at UCSC. Single  human  B 

cells were  isolated  from PBMC using  negative  selection  using  RosetteSep  (StemCell). The 

resulting  B cells were  sorted  for CD19 +  CD27 high and  CD38 high
.The  following  antibodies were 

used  for staining  B cells: CD19  (BD Pharmingen; HIB19), CD27  (Biolegend; 0323), and  CD38 

(Biolegend; HB-7). Cells were  sorted  using  FACS Aria  II (BD) and  analyzed  using  FlowJo  v10.2 

(FlowJo, TreeStar Software, Ashland, OR). 

 

Both  murine  and  human  single  cells were  sorted  into  96  well  plates and  directly placed  into  4ul 

of Lysis Buffer - 0.1% Triton  X-100, 0.2ul  of SuperaseIn  (Thermo), 1ul  of oligodT primer (IDT), 

1ul  of dNTP (10mM each)(NEB) - and  frozen  at -80°C.  

 

RNA-seq library  construction and sequencing 
4ul  of RNA or Single  Cell  Lysate  was reverse  transcribed  using  Smartscribe  Reverse 

Transcriptase  (Clontech) in  a  10ul  reaction  including  either a  Smartseq2  TSO (Smartseq2 

libraries) or a  Nextera  A TSO (Tn5Prime  libraries) according  to  manufacturer’s instructions at 

42°C. The  resulting  cDNA was treated  with  1  ul  of 1:10  dilutions of RNAse  A (Thermo) and 

Lambda  Exonuclease  (NEB) for 30min  at 37°C. The  treated  cDNA was amplified  with  KAPA Hifi 

Readymix 2x (KAPA) using  the  ISPCR primer and  a  Nextera  A Index primer (Tn5Prime  only). 

The  resulting  PCR product was treated  with  Tn5  enzyme  (23) loaded  with  either Tn5ME-A/R 

and  Tn5ME-B/R (Smartseq2) or Tn5ME-B/R adapters only (Tn5Prime). 
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The  Tn5  treated  PCR product was then  size  selected  using  a  E-gel  2% EX (Thermo) to  a  size 

range  of 400-1000bp. GM12878  RNA Smartseq2  and  Tn5Prime  libraries were  sequenced  on  an 

Illumina  HiSeq2500  2x150  run, mouse  B2  cell  Tn5Prime  libraries were  sequenced  on  a  Illumina 

MiSeq  2x300  run, and  human  B cell  Tn5Prime  libraries were  sequenced  on  two  Illumina 

HiSeq3000  runs.  

 

Sequencing alignment and analysis 
Smartseq2, Tn5Prime, ENCODE CAGE (GEO accession  GSM849368; produced  by the  lab  of 

Piero  Carnici  at RIKEN), and  ENCODE RNAseq  (GEO accession  GSM958742; produced  by the 

lab  of Barbara  Wold  at Caltech) (24) GM12878  data  as well  as Tn5Prime  B2  data  were  trimmed 

of adapters low quality bases using  trimmomatic (v0.33) (8) and  a  quality cutoff of Q15. 

Trimming  of the  192  human  B cell  data  was performed  by Cutadapt, filtering  out all  paired  reads 

where  one  or more  read  had  a  post-trimming  length  of less than  25  bp.  

 

Trimmed  reads derived  from the  GM cell  line  and  single  B cells were  aligned  to  the  human 

genome  (GRCh38) annotated  with  Ensembl  GRCh38.78  GTF release  using  STAR (v2.4) (9). 

Trimmed  reads derived  from the  B2  cells were  aligned  to  the  mouse  genome  (GRCm38) 

annotated  with  Ensembl  GRCm38.80  GTF release  using  STAR (v2.4). Expression  levels were 

quantified  using  featureCounts (v1.4.6-p1) (25) and  normalized  by total  read  number resulting  in 

RPM (Reads Per Million). 

 

Peaks for CAGE and  Tn5Prime  data  were  called  by counting  the  number of unique  fragments 

which  began  their forward  read  alignments (R1  for Tn5Prime) at each  position  within  each 

chromosome  and  for each  orientation  (positive  or negative). A peak was called  at a  position  and 

orientation  if at least five  alignments begin  at that position, the  position  one  nucleotide 

downstream has fewer alignments beginning  at that position, and  the  position  one  nucleotide 

upstream has fewer alignments beginning  at that position. For the  single  cell  data, peaks were 

filtered  out unless they appeared  in  more  than  one  cell. The  distance  between  the  TN5  peaks 

and  the  nearest CAGE peak was called  by inserting  the  nucleotide  coordinates of the  CAGE 

peaks into  kd-trees and  then  performing  a  nearest neighbor search  on  them using  the  TN5  peak 

coordinates. Each  chromosome  and  orientation  had  its own  kd-tree. 
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Antibody  Assembly 
After assignment, reads were  assembled  into  transcriptomes using  rnaSPAdes (18) with  the 

single-cell  parameters. Putative  immunoglobulin  transcripts are  detected  and  annotated  by 

running  IGBLAST (19) against the  assembled  transcriptome  using  Human  V,D and  J segments 

from the  IMGT database  (26). Isotypes are  assigned  to  putative  IG transcripts by aligning 

constant regions to  the  transcripts with  BWA-MEM (27).  
Antibody transcripts were  filtered  with  the  following  process: 

1. A table  is generated  from the  SPADES/IGBLAST/BWA pipeline  listing  each  putative  IG 

transcript for each  cell  in  which  each  row represents one  assembled  antibody transcript and 

contains information  indicating  which  cell  it came  from, the  overall  abundance(as determined  by 

BWA) within  the  cell,the  CDR3  sequence  and  the  type(IGH,IGK,IGL) as well  as the  inferred 

segments used  during  VDJ recombination. 

2. The  transcripts are  clustered  by CDR3  sequencing  similarity using  a  single-linkage  clustering 

algorithm Based  on  the  Levenshtein  distance  where  two  clusters of transcripts are  merged 

when  at least one  transcript CDR3  has a  Levenshtein  distance  of 2  or less with  the  CDR3  of any 

transcript in  another cluster. 

3. Transcripts belonging  to  the  same  cluster are  merged  so  that highly similar transcripts 

belonging  to  the  same  cell  are  combined  and  their counts added  together. This is done  to 

correct for the  production  of spurious alternative  assemblies produced  by SPADES within  each 

cell's assembled  transcriptome. 

4. a  list is generated  for each  transcript of the  cells in  which  they appear. 

5. The  lists is sorted  by the  abundance  of the  transcript within  the  cells. 

6. the  entries in  the  lists are  marked  by their relative  abundance. If the  number of reads aligned 

to  the  transcript in  a  cell  is less than  10% of the  largest amount reads aligned  to  that transcript 

within  any cell, it is marked  as being  a  potential  contaminant. The  idea  is that if a  transcript 

discovered  in  a  cell  is a  contaminant it should  have  at least an  order of magnitude  fewer reads 

associated  with  it when  compared  with  the  cell  it actually came  from. 

7. For each  type  (IGH,IGK,IGL) of IG transcript found  within  each  cell, the  largest unique 

(non-contaminant) transcript is picked  to  have  potentially come  from that cell. if a  unique 

transcript cannot be  found, the  most highly expressed  transcript is selected 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/217117doi: bioRxiv preprint 

https://paperpile.com/c/WrTDFE/Cypl
https://paperpile.com/c/WrTDFE/D3ew
https://paperpile.com/c/WrTDFE/9fDr
https://paperpile.com/c/WrTDFE/SjfD
https://doi.org/10.1101/217117
http://creativecommons.org/licenses/by-nc-nd/4.0/


8. If both  a  potential  IGK and  IGL  are  present within  a  cell, the  unique  transcript is selected. if 

both  are  unique  or non-unique  the  most highly expressed  transcript is selected  unless either 

transcript has an  abundance  of at least  10% of the  other. 

9. After this process, most cells should  have  a  single  heavy chain  and  a  single  light chain. 

 

 

 

Visualization 
All  data  visualization  was done  using  Python/Numpy/Scipy/Matplotlib  (28–31). Schematics were 

drawn  in  Inkscape  (https://inkscape.org/en/). 

 
Data  and Script Access 
Raw data  has been  uploaded  to  the  Sequence  Read  Archive  (SRA) under the  accessions  

PRJNA320873  (GM12878  Smartseq2  and  Tn5Prime), PRJNA320902  (Mouse  B2  Cells), and 

PRJNA415475  (Human  CD27 high CD38 high). A UCSC genome  browser track is available  at  

 

https://genome.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=ch

kcole&hgS_otherUserSessionName=TN5_Prime_Alignments 

 

The  Tn5Prime  and  CAGE Peak Caller and  peak distance  calculator are  available  at 

https://github.com/chkcole/Peak-Calling. All  other Scripts are  available  upon  request.  
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