bioRxiv preprint doi: https://doi.org/10.1101/217349; this version posted November 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Johns Hopkins University
Applied Physics Laboratory
INTELLIGENT SYSTEMS CENTER

e
A substrate for modular, extensible data-

visualization

Jordan Matelsky, Joseph Downs, Brock Wester, Will Gray Roncal

Johns Hopkins University Applied Physics Laboratory; Laurel, Maryland
Correspondence: jordan.matelsky@jhuapl.edu, william.gray.roncal@jhuapl.edu

November 9, 2017

Abstract

As scientific questions grow in scope and datasets
grow larger, collaborative research teams and data
dissemination have emerged as core research en-
ablers. However, simply visualizing datasets is chal-
lenging, especially when sharing information across
research groups or to the broader scientific com-
munity. We present substrate, a data-visualization
platform designed to enable communication and
code reuse across diverse research teams. Written in
three. js, our platform provides a rigid and simple,
yet powerful interface for scientists to rapidly build
tools and effective visualizations.

1 Introduction

With modern web-frameworks like three. js [1] and
React [2], it is increasingly easy to generate beauti-
ful, interactive, and informative visualizations of sci-
entific data. These visualizations simplify the pro-
cess of exploring and sharing data with the com-
munity. In many domains (e.g. neuroinformatics,
healthcare), this has become a key step of the re-
search pipeline [3].

One challenge with these technologies is the dif-
ficulty of adapting other researchers’ prior work in
visualization: these tools are often built as single-
purpose, not interoperable tools, and it can be dif-
ficult or even impossible to combine aspects of dis-
parate visualization platforms, even when the plat-
forms use the same technologies or frameworks.
This challenge leads to software duplication instead
of reuse and makes it difficult to share ideas across
research efforts. In general, modern visualization so-
lutions also often fail to address required capabili-
ties, such as co-located visualization and analysis, ex-

tensibility, and data fusion [4].

Several frameworks have been designed to remedy
these challenges [3, 5, 6] and we leverage some of
these ideas in our solution, called substrate. We fol-
low a compositional model similar in spirit to others
[2, 6], but with additional functionality —including
integrated Jupyter notebook capabilities found in
systems such as Mayavi [5]. Specifically, we have de-
veloped pytri, a Python module that enables Python
developers to access and interact with WebGL-based
substrate from inside a Jupyter environment. Un-
like Jupyter visualization packages such as plotly [7],
substrate visualizatons are unopinionated and fully
customizable by an end user. Users are not con-
strained by the limits of prepackaged visualization
data structures or plot types.

substrate is modular — components may be
added or removed without affecting the rest of the
visualization; extensible — data scientists can easily
use existing visualization components, and develop-
ers can easily extend or implement their own; and ac-
cessible — using pytri, data scientists can leverage
common Python libraries such as numpy, pandas, or
networkx.

2 Software Architecture

We present substrate, a JavaScript library that ex-
poses a simple but powerful developer-facing API to
help ameliorate the challenges facing modern sci-
entific visualization. This abstraction enables vi-
sualization projects to easily share resources and
logic. We first describe the architecture and design
of substrate, and we then demonstrate use-cases
in which this interoperability can reduce the engi-
neering overhead of a new visualization project. We
refer to demos and tutorials which are available at
https://iscoe.github.io/substrate/.

https://iscoe.github.io/substrate/
https://doi.org/10.1101/217349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217349; this version posted November 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

Figure 1: A GraphLayer and a ScatterLayer, repre-
sentative of the same 3D space. substrate overlays
the two and controls the two independently.

2.1

substrate is designed to enable reusability and com-
posability of data-visualization structures. This is
implemented through an abstract Layer class. A
Layer can accept arbitrary inputs and must expose
render functionality to a parent Visualizer object.
For example, a ScatterLayer implements Layer by
accepting an array of [x,y, z]-tuples, and will ren-
der these data when its requestRender function is
called. In the same scene, a GraphLayer might ren-
der a 3D graph embedding as shown in Figure 1.

We design a universal Layer interface that should
accommodate all visualization tasks: Layers must
include:

Design

1. requestInit function, which is called before
the visualization starts: This function generally
includes instructions to provision objects in a
3D scene.

2. requestRender, which runs on every frame. In
static, non-animated Layers, this function may
be empty.

3. children is an array attribute of all objects in a
scene associated with a Layer. When a Layer
is removed from the visualization, all objects in
this list are cleaned up by substrate internally.

This simple interface is flexible, so as to apply
to any visualization object or group of objects, but
still fully adequate to enable modularity and inter-
operability without namespacing conflicts, which are
common in many three.js scenes.

let V = new Visualizer ({
renderLayers: {
scatter: new ScatterLayer({ ...
graph: new GraphLayer({ ... })

b,

}
B

V.triggerRender ();

Figure 2: A sample Visualizer, with two Layers.
One renders a 3D scatter-plot, and the other renders
nodes and edges of an undirected graph.

In order to maximize accessibility, we use
three.js as a convenience to wrap WebGL: De-
spite the prevalence of three.js in our codebase,
substrate aims to be framework-agnostic. Authors
of new Layers may choose to write WebGL directly,
or use another wrapper or framework. substrate
will support these Layers provided they subscribe to
the Layer interface.

This can be expressed in code using the syn-
tax shown in Figure 2. Here we show a simple
Visualizer containing two Layers; this short snip-
pet can run a complete visualization without any ex-
tra configuration. A data scientist need only bring
her own data.

2.2 Capabilities

2.21 Modular Design

One common use of separate Layers is to place ob-
jects — such as a mesh — in one Layer, and place
lighting or other environmental factors in another.
This enables a developer to share their data visu-
alization, such as a 3D mesh, with others, without
extraneous features such as light sources. In Fig-
ure 3, we illustrate a sample implementation that
can be ported to any substrate visualization. Our
add-and-remove-layer demo provides an example
in which a MeshLayer is added or removed, without
affecting other objects in the scene.

2.2.2 Focus on Extensibility

Layers written for one visualization or applica-
tion are repurposable with no additional developer-
effort; this means that for most visualization use-
cases, such as graph displays or scatter plots, no
substrate knowledge is required at all; instead, pre-
built Layers are available for public use, including
a ScatterLayer, GraphLayer, MeshLayer, and many
others.

If a developer instead decides to implement her
own Layer, it can be trivially integrated into new visu-
alizations, as all substrate Layers subscribe to the
same simple interface.

https://doi.org/10.1101/217349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217349; this version posted November 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

class ScatterLayer extends Layer {
constructor (opts) {
super (opts) ;
// Default to empty array of points
[1;

this.points = opts.points ||

}

requestInit (scene) {
// For each point, create a sphere
at that [x, y, z] location:
(let i = 0; i < this.points.
length; i++) {
let sphere = new window.THREE.
Mesh (
// A small sphere
new window.THREE.
SphereGeometry (1,
16),

// A new color

new window.THREE.
MeshLambertMaterial ({
color: OxcOfefe

for

16,

13l
);
// Set the position of the mesh

sphere.position.set(...this.
points[il]);

// Add it to this.children so
that it is automatically

// marked for deletion when the

layer is deconstructed:

this.children.push(sphere);

// Add it to the scene:

scene.add (sphere) ;

Figure 3: A sample implementation of a Layer that
generates a point-cloud from the data provided in
the constructor. This exact implementation can be
dropped into any substrate visualization without
modification. This code, and other Layer exam-
ples, are available online.

Our brownian-particle-motion example (avail-
able online) demonstrates how a developer can eas-
ily implement a new Layer, while still taking advan-
tage of prebuilt code. We envision that users will
merge these new Layers into the codebase to extend
functionality and cover a diverse set of use cases. As
groups work together to achieve research goals, these
researchers may separately develop Layers (e.g. a raw
experimental Layer and an annotation Layer for the
analysis) which can be combined when needed. An
example of a Layer definition is shown in Figure 3.

2.3 pytri

In order to provide a convenient visualization so-
lution for data scientists, we have created pytri,
a Python package that enables visualization of

: from pytri import pytri
p = pytri()

i p.axes()
p.mesh("./neuron.obj")
p.show()

Figure 4: Here, pytri runs substrate visualiza-
tions inside a Jupyter notebook, using WebGL to
enable real-time interaction with the visualization.
This mesh was generated using manual annota-
tions from a recent electron microscopy study [9].

substrate Layers in a Jupyter notebook [8] or other
IPython environment (as seen in Figure 4). Jupyter is
increasingly a standard platform for many commu-
nities; by bringing composable, extensible function-
ality to this platform, data scientists can quickly vi-
sualize and explore data in a familiar paradigm with-
out needing to understand the underlying substrate
codebase.

3 Use-Cases

One of the advantages of substrate is its use as a
general framework for visualization. Here we high-
light two diverse applications that benefit from this
package.

3.1 Neuroimagery

Neuroimaging datasets are often used as inputs to
analysis pipelines to extract properties or features
about the brain. For example, in diffusion weighted
imaging, anatomical and connectivity information
are gathered through Magnetic Resonance Imaging
(MRI) sequences, which can be combined with neu-
roanatomical labels to produce a brain graph (i.e., a
connectome) [10]. Visualizing the result is challeng-
ing with existing tools, but important for both data
exploration and quality control [11]. substrate pro-
vides an elegant solution, rendering a single Layer
for each of (1) raw MRI images; (2) mesh parcellations
indicating brain regions; (3) fibers showing putative
connections in the brain; and (4) the derived connec-
tome graph (Figure 5).

https://doi.org/10.1101/217349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217349; this version posted November 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

Figure 5: The ndmg pipeline [10] results for a subject
are shown in a web-based substrate visualization.
We show the overlay of three Layers: This visualiza-
tion includes a VolumeLayer to render the diffusion-
tensor imaging of the brain tissue in the form of
a numpy 3D array; a FibersLayer that renders the
hair-like streamlines; and a GraphLayer that shows
the 3D embedding of the graph (i.e., connectome).

3.2 GIS Visualization in a Notebook

Geospatial information is of interest to researchers
in a variety of domains; we demonstrate the ability
to show a graph of street connectivity and regions of
interest. This provides a flexible framework to enrich
a scene as additional sensors and data fusion prod-
ucts become available. We use pytri to demonstrate
the flexibility of the tool for data science applications
substrate in a Jupyter notebook in Figure 6.

4 Discussion

substrate follows the “standalone-component”
model of web development popularized by frame-
works such as Angular [13] and React [2] by exposing
an interface for discrete visualization entities. By
compositing several of these entities, complex and
deeply informative scenes can be designed with
minor composition-engineering, as we demonstrate
in Section 3.

There are domains that will require Layers that
have not yet been developed. We intend to support
some level of integration with other languages be-
sides Python (e.g. R or Julia), based on ongoing
community feedback. While we have devoted ef-
fort to maximize performance, we have optimized
for mesoscale data, and have not yet optimized for
very large dataset representations. Users with dif-
ferent tooling requirements, who require custom im-
port formats, or very large scale visualizations (e.g.
billions of vertices and edges) may need to add func-

In [6]: p = pytri.pytri()
p-show()

In [7]: import networkx as nx

p.graph(nx.Graph(gg))

Figure 6: Using osmnx[12], pytri displays a graph
representation of the roads and paths surrounding
the Johns Hopkins University Homewood campus.
This visualization uses a GraphLayer to represent
streets, paths, and intersections as generated by the
osmnx library in networkx.Graph format.

tionality to fully meet their requirements. We hope
in the future to accommodate the layer-based or
component-based visualization layers of other re-
lated projects such as Uber’s deck.gl.

pytri can easily invoke substrate Layers for
portable, on-the-fly visualization in a Jupyter note-
book. This reduces the barrier for data scien-
tists, who can create publication quality figures and
communicate breaking analyses by sharing (or ren-
dering) their notebooks, without having to learn
JavaScript or be concerned with the implementa-
tion details of substrate. Furthermore, these anal-
yses can be done inline with existing data science
pipelines, without needing to import or export data.

This enables an individual developer to reuse their
own Layers from previous projects, or to transplant
and integrate Layers from their colleagues. We an-
ticipate that this open-source contribution will en-
able collaboration between research teams, and re-
duce the overhead to produce new visualizations by
localizing component-specific logic inside Layers.

We provide the codebase for substrate, docu-
mented and open-source athttps://iscoe.github.
io/substrate/, and welcome community feedback
in the form of a pull request or bug report. We also
provide demonstrations of common uses and tutori-
als for users to extend the current functionality. Fi-
nally, we provide a Dockerfile to enable anyone to
trivially launch a pytri-enabled Jupyter notebook in
their browser. pytri can be downloaded either via
pypi (pip install pytri) or from our open-source
repository at https://iscoe.github.io/pytri/.

https://iscoe.github.io/substrate/
https://iscoe.github.io/substrate/
https://iscoe.github.io/pytri/
https://doi.org/10.1101/217349
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217349; this version posted November 10, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

5 Acknowledgements

We would like to thank Hannah Cowley for her work
developing substrate Layers and demos, as well as
for visualization prototypes informing development.

This material is based upon work supported by the
Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity
(IARPA), via IARPA Contract No. 2017-17032700004-
005 under the MICrONS program. The views and
conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of the ODNI, IARPA, or
the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright an-
notation therein.

References

[1] three.js. [Online]. Available: https://threejs.org/
[2] react.js. [Online]. Available: https://reactjs.org/

[3] D. Hihn, N. Rannou, B. Ahtam, P. Grant, and
R. Pienaar, “Neuroimaging in the browser using
the x toolkit,” in Frontiers in Neuroinformatics,
2014. [Online]. Available: https://f1000research.
com/posters/1092491

P. C. Wong, H. W. Shen, C. R. Johnson, C. Chen,
and R. B. Ross, “The top 10 challenges in
extreme-scale visual analytics,” IEEE Computer
Graphics and Applications, vol. 32, no. 4, pp. 63—
67, July 2012.

G. Varoquaux and P. Ramachandran, “Mayavi:
Making 3D Data Visualization Reusable,” in
SciPy 2008: 7th Python in Science Confer-
ence, Pasadena, United States, Aug. 2008. [On-
line]. Available: https://hal.archives-ouvertes.fr/
hal-00502548

deck.gl. [Online]. Available: https://uber.github.
io/deck.gl/#/

P. T. Inc. (2015) Collaborative data science.
Montréal, QC.[Online]. Available: https://plot.ly

F. Pérez and B. E. Granger, “IPython: a sys-
tem for interactive scientific computing,” Com-
puting in Science and Engineering, vol. 9,
no. 3, pp. 21-29, May 2007. [Online]. Available:
http://ipython.org

[9] N. Kasthuri, K. Hayworth, D. Berger, R. Schalek,
J. Conchello, S. Knowles-Barley, D. Lee,
A. Vazquez-Reina, V. Kaynig, T. Jones, and

[10]

[11]

et al.,, “Saturated reconstruction of a vol-
ume of neocortex,” Cell, vol. 162, no. 3,
p. 648-661, Jul 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.cell.2015.06.054

G. Kiar, W. Gray Roncal, D. Mhembere,
E. Bridgeford, R. Burns, and]. T. Vo-
gelstein, “ndmg: Neurodata’s mri graphs
pipeline,” Aug. 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.60206

P. Rudolph, “Realtime visualization of the con-
nectome in the browser using webgl,” Frontiers
in Neuroinformatics, vol. 5, 2011. [Online].
Available: http://dx.doi.org/10.3389/conf.fninf.
2011.08.00095

G. Boeing, “Osmnx: New methods for ac-
quiring, constructing, analyzing, and vi-
sualizing complex street networks,” CoORR,

vol. abs/1611.01890, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01890

M. Ramos, M. T. Valente, R. Terra, and G. Santos,
“Angularjs in the wild: A survey with 460
developers,” CoRR, vol. abs/1608.02012, 2016.
[Online]. Available: http://arxiv.org/abs/1608.
02012

https://threejs.org/
https://reactjs.org/
https://f1000research.com/posters/1092491
https://f1000research.com/posters/1092491
https://hal.archives-ouvertes.fr/hal-00502548
https://hal.archives-ouvertes.fr/hal-00502548
https://uber.github.io/deck.gl/#/
https://uber.github.io/deck.gl/#/
https://plot.ly
http://ipython.org
http://dx.doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.5281/zenodo.60206
http://dx.doi.org/10.3389/conf.fninf.2011.08.00095
http://dx.doi.org/10.3389/conf.fninf.2011.08.00095
http://arxiv.org/abs/1611.01890
http://arxiv.org/abs/1608.02012
http://arxiv.org/abs/1608.02012
https://doi.org/10.1101/217349
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Software Architecture
	Design
	Capabilities
	Modular Design
	Focus on Extensibility

	pytri

	Use-Cases
	Neuroimagery
	GIS Visualization in a Notebook

	Discussion
	Acknowledgements

