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2 

SUMMARY 1 
 2 

During development, cells must coordinate their differentiation with their 3 

growth and organization to form complex multicellular structures such as 4 

tissues and organs. Healthy tissues must maintain these structures during 5 

homeostasis. Epithelia are packed ensembles of cells from which the different 6 

tissues of the organism will originate during embryogenesis. A large barrier to 7 

the analysis of the morphogenetic changes in epithelia is the lack of simple 8 

tools that enable the quantification of cell arrangements. Here we present 9 

EpiGraph, an image analysis tool that quantifies epithelial organization. Our 10 

method combines computational geometry and graph theory to measure the 11 

degree of order of any packed tissue. EpiGraph goes beyond the traditional 12 

polygon distribution analysis, capturing other organizational traits that 13 

improve the characterization of epithelia. EpiGraph can objectively compare 14 

the rearrangements of epithelial cells during development and homeostasis 15 

to quantify how the global ensemble is affected. Importantly, it has been 16 

implemented in the open-access platform FIJI. This makes EpiGraph very 17 

user friendly, with no programming skills required.    18 
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3 

INTRODUCTION 1 

The development of any multicellular organism is based on coordinated 2 

changes that transform the embryo into the adult individual. During 3 

morphogenesis and growth, patterning, cell divisions and architectural 4 

changes must perfectly fit together for the correct development of the body 5 

plan. Any morphogenetic movement such as migration, extension or 6 

invagination of epithelial cells is coupled with dramatic changes in the 7 

organization of cells (Bertet et al., 2004; Blankenship et al., 2006; Escudero 8 

et al., 2007; Farhadifar et al., 2007; Girdler and Roper, 2014; Gómez-Gálvez 9 

et al., 2018; Lecuit and Lenne, 2007; Pilot and Lecuit, 2005). After 10 

development, homeostatic tissues must maintain their complex organization 11 

of cells in order to function correctly.  12 

How tissues modulate and maintain their organization during development 13 

and homeostasis is an important question that remains unsolved. This is 14 

mainly due to the lack of simple and general methods that can capture and 15 

quantify the arrangement of cells. It has been known for almost a hundred 16 

years that epithelial tissues exhibit a degree of order. The analysis of epithelial 17 

organization has been mainly based on the number of neighbours of the 18 

epithelial cells, considering the apical surface of these cells as convex 19 

polygons with the same number of sides as neighbours. In previous works, 20 

we have investigated several aspects of the organization of packed tissues 21 

using Voronoi tessellations to compare the polygon distributions of natural 22 

and mathematical tessellations (Sanchez-Gutierrez et al., 2016). We have 23 

described that the polygon distribution of natural tessellations is restricted to 24 

a series of frequencies of polygons that match the Voronoi diagrams that 25 

conform to the Centroidal Voronoi tessellation (CVT). This is what we call a 26 

“CVT path” and was used as a scale to compare the organization of different 27 

packed tissues. However, polygon distribution is not sufficient to completely 28 

characterize tissue organization. Tissues with clearly different appearance 29 

can present very similar polygon distribution (Sanchez-Gutierrez et al., 2016). 30 

As an alternative approach, we have proposed that Graph Theory could 31 

capture differences in the topology of tissues (Escudero et al., 2011; 32 

Sanchez-Gutierrez et al., 2013; Sánchez-Gutiérrez et al., 2017). This is based 33 
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on the idea of converting the epithelium into a network of cell-to-cell contacts 1 

(Escudero et al., 2011). The resulting “epithelial graph” can be analysed by 2 

combining the tools of network theory and multivariable statistical analysis 3 

(Escudero et al., 2011; Kursawe et al., 2016; Sanchez-Gutierrez et al., 2013; 4 

Yamashita and Michiue, 2014). This approach has been adapted to analyze 5 

biomedical tissue samples, useful in clinical research and the development of 6 

diagnostic tools (Csikász-Nagy et al., 2013; Guillaud et al., 2010; Sáez et al., 7 

2013; Sánchez-Gutiérrez et al., 2017). Finding features and patterns that can 8 

describe the graphs is key in many diverse fields, including biology (Benson 9 

et al., 2016; Costa et al., 2007; Hayes et al., 2013). A network can be split up 10 

into different subgraphs named graphlets. The graphlet composition of a 11 

network has been used to quantify differences between complex systems 12 

(Hayes et al., 2013; Ho et al., 2010; Kuchaiev et al., 2011; Pržulj et al., 2004). 13 

These measurements are based on the comparison of the quantity of each 14 

subgraph in different networks, providing an index of distance between them. 15 

This feature has the advantage of integrating the differences between diverse 16 

networks into a single value, simplifying the analyses and allowing multiple 17 

comparisons.  18 

In summary, there is a clear need for a method to specifically quantify tissue 19 

organization and aid the interpretation of biophysical and mechanical aspects 20 

of morphogenesis and tissue homeostasis. The advances in imaging 21 

techniques, together with the appearance of powerful methods for automated 22 

image analysis (Heller et al., 2016; Khan et al., 2014; Kursawe et al., 2016; 23 

Schindelin et al., 2012; Weigert et al., 2018) and new simulation resources 24 

(Bi et al., 2016, 2015; Blanchard et al., 2009; Etournay et al., 2016; Fletcher 25 

et al., 2014; Guirao et al., 2015; Mirams et al., 2013; Tanaka et al., 2015) 26 

provide a large amount of good quality source data that can now be analysed 27 

in terms of organization. Here we present an open source platform, EpiGraph, 28 

a new image analysis method that uses segmented images from real epithelia 29 

or simulations, to easily quantify and compare the organization of packed 30 

tissues.  31 

RESULTS 32 
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5 

Graphlet measurements as an approach to capture organization of 1 

packed tissues.  2 

In previous studies, a set of 29 graphlets was used to distinguish between 3 

different types of networks (Pržulj et al., 2004) (Fig. S1). This method 4 

calculated the Graphlet degree Distribution agreement Distance (GDD) 5 

between two networks (Pržulj, 2007). Therefore, the “GDD value”, that in 6 

theory can range from 0 to 1, weighs the differences among the two 7 

distributions of graphlets; the higher the value, the more different the 8 

arrangements (Fig. S1 and Methods). Epithelial images can be considered 9 

as natural tessellations and converted into networks of cell-to-cell contacts 10 

(Escudero et al., 2011). We have used the “graphlet” approach to capture the 11 

topology of epithelial tissues, making a correlation between graphlets and 12 

cellular motifs (compare Fig. 1A and Fig. S1). Tessellations give rise to 13 

“geographic networks” (Albert and Barabasi, 2002) that only make sense in a 14 

planar surface. For this reason, when we translated the set of graphlets to 15 

cellular patterns, some of them were redundant or not possible (see 16 

methods). Therefore, in this study we have used a total of 26 graphlets 17 

corresponding to 29 different cellular motifs that account for the organization 18 

of groups of up to 5 cells (Fig. 1A, Fig. S1). Most of the analyses performed 19 

in this work were completed with only 17 motifs (17-motifs, Fig. 1A, mauve). 20 

We found that, although all the motifs could be present in an actual tissue, 21 

17-motifs minimized the redundancy of the information provided by the 22 

graphlets. In addition, this set downplays the importance of rare cellular 23 

geometries that could excessively weight GDD calculations (for example, a 24 

high difference in GDD could appear when comparing an image with one or 25 

two quadrilateral cells versus another image with no four-sided cells; this 26 

effect is minimized using 17-motifs). However, it would be possible to use 27 

other combinations such as all the motifs (29-motifs) or cellular motifs that 28 

account for the organization of groups of up to 4 cells (10-motifs) (Fig. 1A).  29 

Graphlet measurements capture differences beyond polygon 30 

distributions. 31 

We tested the power of graphlet-based measurements in quantifying 32 

differences between sets of images with very similar polygon distributions 33 
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(Fig. 1B). In third instar larvae of Drosophila, the photoreceptors are 1 

specified, giving rise to a particular repetitive arrangement of the presumptive 2 

eye cells (Eye, Fig. 1C). This arrangement is very different to the irregular 3 

distribution in a Voronoi tessellation where the initial seeds were placed in a 4 

random way (Sanchez-Gutierrez et al., 2016), (Diagram 1, Fig. 1C). We 5 

previously showed that it was not possible to discriminate between the 6 

polygon distributions of these two tessellations (Sanchez-Gutierrez et al., 7 

2016). Using the graphlets approach, we obtained a GDD value of 0.086 8 

when comparing these two sets of images (17-motifs, Table S1, Fig. S2). In 9 

order to know if this difference was biologically relevant, we tried to set a 10 

baseline, by comparing other images with very similar polygon distribution 11 

that also presented an apparently similar arrangement. This was the case for 12 

Diagram 4 of the CVT vs. the Drosophila wing imaginal disc in larvae (dWL) 13 

and Diagram 5 of the CVT vs. the Drosophila wing imaginal disc in prepupae 14 

(dWP) (Fig. 1B-C). Both results were in the same range, with a GDD value of 15 

0.042 for Diagram 4 vs. dWL and 0.049 for Diagram 5 vs. dWP (Fig. 1C). 16 

Similar results were obtained when comparing Diagram 4 vs. Diagram 5 and 17 

dWL vs. dWP (Fig. 1-C). These results suggested the existence of a baseline 18 

in the range of 0.04-0.05 values that correspond to similar cellular 19 

arrangements that cannot be well distinguished using the graphlets 20 

distribution. Therefore, we interpreted the value of 0.086 obtained in the Eye 21 

vs. Diagram 1 comparison as the reflection of actual differences between 22 

these two sets. In all the mentioned cases, the results obtained using 17-23 

motifs and 29-motifs were equivalent (Table S1). 24 

EpiGraph quantitatively compares the organization of multiple sets of 25 

images. 26 

The GDD had the limitation of comparing only 2 samples each time. Here 27 

we have tried to overcome this limitation evaluating different images 28 

simultaneously using a reference. Therefore, we designed EpiGraph, a 29 

method that calculates the GDD of any epithelial tissue with another 30 

tessellation that serves as a reference. We used three different references: i) 31 

a tessellation formed by regular hexagons, representing the most ordered 32 

way to pave the space (Fig. 2A, Epi-Hexagons). ii) the network motifs 33 
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emerging from a random Voronoi tessellation (Fig. 2B, Epi-Random). iii) a 1 

Voronoi Diagram 5 from the CVT path (Fig. 2C, Epi-Voronoi5) that presents 2 

a polygon distribution similar to the one from multiple examples in nature 3 

(Gibson et al., 2006; Sanchez-Gutierrez et al., 2016).  4 

We tested the method with epithelial images that have been previously 5 

compared with the CVT path in terms of polygon distribution: chicken neural 6 

tube (cNT), dWL, dWP, reduction of myosin II in the Drosophila prepupa wing 7 

disc epithelium (dMWP) and Eye (Fig. 2D)(Sanchez-Gutierrez et al., 2016). 8 

To have a scale and facilitate fast comparisons, we used the concept of the 9 

CVT path (Sanchez-Gutierrez et al., 2016). We calculated the GDD values 10 

for Epi-Hexagons, Epi-Random and Epi-Voronoi5 for all the Voronoi diagrams 11 

and visualized these results with respect to the percentage of hexagons of 12 

the corresponding diagram (the percentage of hexagons is indicative of the 13 

proportions of the different types of polygons along the CVT, Table S2). 14 

However, the CVT does not progress beyond the 70% of hexagons limiting 15 

the possibilities of analysis. Therefore, we extended the Voronoi scale 16 

spanning a wider range of polygon distributions. The algorithm that devises 17 

the CVT was modified to introduce “noise” in the positioning of the seed that 18 

produces the subsequent diagram. In this way, we obtained a “CVT noise” 19 

(CVTn) whose last diagrams reached 90% of hexagons (Fig. 2E-G, Fig. S3 20 

and Material and methods). Interestingly, the plot obtained using CVT and 21 

CVTn diagrams was an optimum way to easily visualize these geometric 22 

scales as a continuous “CVT path” and a “CVTn path”. Therefore, we used 23 

this framework to analyse the values of Epi-Hexagons, Epi-Random and Epi-24 

Voronoi5 for each diagram in the scale. As expected, the Epi-Hexagons 25 

values were higher in the initial diagrams and progressively decreased with 26 

the increase in the percentage of hexagons of the Voronoi diagrams (Fig. 2E, 27 

left panel). The opposite happened in the case of the Epi-Random values 28 

(Fig. 2E, central panel). In the plot of percentage of hexagons vs Epi-29 

Voronoi5, the CVTn path presented the shape of a walking stick (Fig. 2E, 30 

right panel). The Epi-Voronoi5 values of Voronoi Diagrams 1, 2, 3, and 4 31 

were decreasing progressively, with Diagram 5 the closest to the zero value. 32 
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The values for the rest of the diagrams gradually increased, as in the case of 1 

the Epi-Random.  2 

We then plotted the values for the actual epithelia. We found that for cNT, 3 

dWL and dWP the Epi-Hexagons, Epi-Random and Epi-Voronoi5 values were 4 

similar to the CVTn at the same percentage of hexagons of the polygon 5 

distribution (Fig. 2E). In agreement with our previous results using the GDD, 6 

the Eye images presented a higher Epi-Random and Epi-Voronoi5 values 7 

than the expected for a 30% of hexagons (Fig. 2E). The differences with 8 

respect to the CVTn were even more clear when plotting Epi-Hexagons vs 9 

Epi-Random and Epi-Random vs Epi-Voronoi5 (Fig. 2F-G). We obtained 10 

similar results when analysed the dMWP set of images. In this case, our 11 

previous work showed a small deviation of the dMWP polygon distribution 12 

with respect the CVT (Sanchez-Gutierrez et al., 2016). However, using 13 

Epigraph, we observed that Epi-Random and Epi-Voronoi5 captured the clear 14 

differences in organization between these images and the CVTn (Fig. 2E-G, 15 

Fig. S4). These results suggested that EpiGraph is able to distinguish 16 

between different tessellations with a similar polygon distribution. In this 17 

regard, we have developed a statistical output using an outlier detection 18 

approach whose quantitative results represent how similar the organization 19 

of a tissue is when compared with the CVTn scale (Fig. S3 and Material and 20 

methods). The test confirmed that cNT, dWL, and dWP were close to the 21 

CVTn and similar to the Voronoi diagrams 1, 4, and 6 respectively. In contrast, 22 

the Eye and dMWP samples were labelled as different (Table S3). In this way, 23 

EpiGraph provides a quantitative description of tissue organization.  24 

Epigraph can capture different organization traits. 25 

We further investigated the possible applications of EpiGraph and 26 

performed a series of experiments aimed at understanding what traits of 27 

tissue organization are being captured and quantified by the graphlet 28 

measurements. To this end, we have used images of different vertex model 29 

simulations that alter tissue organization by changing the biophysical 30 

properties of the cells (images taken from (Sanchez-Gutierrez et al., 2016) 31 

(Material and methods and Fig. 3A-F).  32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/
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First, we analysed samples with 10% of the cells having increased effective 1 

cell-cell adhesion (Material and methods, Fig. 3B). This feature induced the 2 

formation of cells with a “quadrilateral shape” that often organized in motifs 3 

presenting four-way vertex configurations. These images were compared with 4 

simulations in which “elongated” cells appear (by simultaneously increasing 5 

cell-cell adhesion and reducing ideal area, Material and methods and Fig. 6 

3C). Epigraph analysis indicated that while control simulations gave similar 7 

values to the CVTn, the “squared” and “elongated” sets of images were 8 

different to the control and well separated from the CVTn.  However, 9 

EpiGraph failed to find clear differences between the “squared” and 10 

“elongated” images (Fig. 3G and Fig. S5).  11 

Second, we used a set of conditions to mimic the effect of a reduction of 12 

myosin II in the Drosophila prepupa wing disc epithelium (dMWP, Fig. 2D). In 13 

the control simulation (Fig. 3D), cells grow to double the original area and 14 

then divide into two cells. In case III and case IV simulations there was a 15 

random reduction of the tension parameter together with a requirement of a 16 

minimum tension threshold to be able to divide (Fig. 3E-F). If the cells do not 17 

reach this threshold, they continue to grow without dividing the cell body. 18 

When this happens, the cells will be stuck in mitotic phase and will not start a 19 

second round of cell division (Sanchez-Gutierrez et al., 2016) (Material and 20 

methods). The control simulation gave similar values to the CVTn, while case 21 

III, case IV and dMWP images presented a clear deviation in the Epi-Random 22 

vs Epi-Voronoi5 graph (Fig. 3G). All these data-points distributed in the same 23 

zone of the graph. Interestingly, we found that both sets of simulations 24 

(squared and elongated vs Case III and Case IV) appeared in two 25 

complementary regions, suggesting that the regions in the graph can reflect 26 

the existence of different traits of organization in each condition (Fig. 3G).  27 

EpiGraph: a method to capture epithelial organization implemented in 28 

FIJI. 29 

Aiming to enhance the accessibility of the analysis of tissue organization to 30 

the biology community, we have implemented EpiGraph as a plugin for FIJI 31 

(Schindelin et al., 2012). EpiGraph consists of a pipeline of 5 very simple 32 

steps. First, the skeleton of an epithelial image is uploaded and the individual 33 
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cells are identified.  Second, the user selects the distance threshold to identify 1 

two cells as neighbours. Here it is possible to select different thresholds and 2 

to check the number of neighbours of every cell in each case. Third, a ROI is 3 

selected. There are several possibilities such as a default ROI from the image 4 

or the selection of individual cells. Fourth, the graphlet information for the 5 

selected cells is calculated. These data are used to obtain the Epi-Hexagons, 6 

Epi-Random and Epi-Voronoi5. These values are incorporated into a table 7 

and serve as input data for a statistical analysis that indicates if a new image 8 

is inside or outside of the CVTn path and describes which Voronoi diagram 9 

presents the most similar organization to the sample (Material and 10 

methods). The fifth step includes the classification and labelling of different 11 

images in order to represent them in a new window. This final phase allows 12 

one to export the representation of the data in a three-dimensional graph. 13 

Movie S1 shows an example of EpiGraph usage. A detailed description of 14 

EpiGraph can be found in the Supplementary Material and methods. A full 15 

set of tutorials explaining how to install and use EpiGraph is available at 16 

EpiGraph’s wiki (https://imagej.net/EpiGraph).  17 

EpiGraph provides biological insights regarding homeostasis and 18 

tissue fluidity transitions 19 

Epithelial tissues have the ability to behave as a fluid due to cellular 20 

rearrangements or to solidify as cellular rearrangements cease (Bi et al., 21 

2016, 2015). The shape index is a characteristic of epithelial cells that has 22 

been shown, in vertex model simulations, to be able to capture the degree of 23 

rigidity, or fluidity, of a tissue (Bi et al., 2015). This study established the 24 

transition point between a soft (fluid) and a rigid (solid) tissue, described as a 25 

jamming transition, at the dimensionless shape index value of 3.81. We 26 

calculated the shape index for the CVTn path, finding that from Voronoi 27 

diagrams 1 to 20, the tessellations were behaving as a fluid (from diagram 21 28 

to 700 they behave as solid). Using this descriptor, all the images of biological 29 

tissues were placed in the fluid part as well as the four altered vertex model 30 

simulations shown in Fig. 3 (Fig. S4, Fig. S5, Fig. S6 and Table S4).  31 

We have investigated the dynamics of epithelial jamming in different 32 

conditions. First, to test the capabilities of EpiGraph in this regard, we 33 
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analysed several snapshots from two simulations published by Bi and 1 

colleagues as supplementary movies (Bi et al., 2016). These videos show the 2 

movements of cells in two conditions: rigid state (shape index less than 3.81) 3 

and soft state (shape index greater than 3.81) (Fig. 4A).  As expected, the 4 

snapshots of the soft tissue analysed appeared in different positions, 5 

indicating that the simulated epithelia changed its organization during the 6 

experiment. On the other hand, the different frames from the rigid simulation 7 

were clustered (Fig. 4B), showing little cell rearrangements.  8 

 We next tested whether EpiGraph could detect changes in tissue fluidity in 9 

real epithelia, which may be more ambiguous and noisier than simulations. 10 

Real tissues also display fluid-to-solid jamming transitions which are 11 

important for large scale tissue shape changes as well as for refining and 12 

maintaining tissue shape (Curran et al., 2017; Mongera et al., 2018). In the 13 

Drosophila pupal notum, the level of tissue fluidity is controlled by the global 14 

level of myosin II activity (Curran et al., 2017). We wondered if the regulation 15 

of myosin II could similarly impact on the fluidity state of the wing disc 16 

epithelium and the cell rearrangements that have been described during the 17 

late stages of normal wing disc development, where the overall tissue shape 18 

does not dramatically change (Heller et al., 2016) (Fig. 4C). To this end, we 19 

compared the WT organization with the effect of increasing myosin II activity 20 

by knocking down Mbs (Myosin binding subunit of the myosin phosphatase, 21 

which dephosphorylates myosin regulatory light chain, Fig. 4D) by RNAi 22 

throughout the entire wing pouch. Based on work in the pupal notum (Curran 23 

et al., 2017), we would predict that Mbs-RNAi discs behave as solids. 24 

Interestingly, in the two cases, the shape index was greater than the 25 

described shape index threshold of 3.81, suggesting that both tissues are in 26 

a fluid state (Fig. S6).  27 

We used EpiGraph to analyse the changes in organization of wing discs with 28 

perturbed myosin II activity along time and compared them with a WT 29 

condition. The snapshots for WT samples appeared clustered in the 3D 30 

graph, indicating that the epithelia were not changing their organization during 31 

the 30 minutes of analysis (Fig. 4E), despite previous work showing that cell 32 

intercalations do occur (Heller et al., 2016). This suggests that during this 33 
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slow growing phase of wing disc development, any cell rearrangements that 1 

occur do not drive large-scale morphogenesis, but act to maintain a 2 

homeostatic tissue topology. The statistical analysis confirmed that all of the 3 

WT wing discs were close to CVTn diagrams 3 and 4 (Table S3). In the case 4 

of the three samples from the Mbs-RNAi genotype, the data points presented 5 

different organizations (from similar to diagram 3 to close to diagram 13, see 6 

Table S3). In some cases, the dispersion was not only between samples, but 7 

occurred between images from each movie (Fig. 4E and Table S3). EpiGraph 8 

therefore predicted that these Mbs-RNAi wing discs are behaving very 9 

differently from WT wing discs, likely by changing their degree of fluidity. 10 

Accordingly, quantification of intercalation rates demonstrated that cell 11 

rearrangements happen significantly more frequently in WT than in Mbs-RNAi 12 

wing discs (Fig. 4F, 0.1281±0.08 vs. 0.0076±0.01 intercalations/cell/hour, 13 

Kolmogorov-Smirnov test, p=0.0079). As predicted, this resulted in more cells 14 

‘jamming’ at 4-way vertex configurations as they fail to complete intercalations 15 

(Fig. 4G, 0.0065±0.005 vs. 0.0116±0.006 fourfold vertices/cell, Kolmogorov-16 

Smirnov test, p=0.029). Interestingly, EpiGraph was able to detect this 17 

solidification of the tissue in the Mbs-RNAi discs, even though the shape index 18 

predicted a fluid tissue. Taken together, these results indicate that the 19 

quantification of tissue organization using EpiGraph can infer information 20 

about the fluidity of a tissue from several fixed snapshots, without the need to 21 

laboriously track individual frames of a time-lapse video.   22 

 23 

DISCUSSION  24 
Textbook definitions of morphogenesis include the term “organization” as 25 

key to explaining this fundamental developmental process (Dai and Gilbert, 26 

1991). The authors wondered, “How can matter organize itself so as to create 27 

a complex structure such as a limb or an eye?”. Later, changes in organization 28 

of adult tissues can reflect pathological traits due to defects in homeostasis 29 

(Csikász-Nagy et al., 2013; Soto and Sonnenschein, 2011).  Here, we have 30 

provided a tool that can help to investigate these questions.  31 
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The analysis of the polygon sides of epithelial cells has been shown to be 1 

insufficient to completely understand tissue organization. Some tessellations 2 

can present very different arrangements yet have the same frequencies of 3 

number of neighbours. A second problem is the lack of a simple value as an 4 

indicator of epithelial organization. This feature complicates the comparison 5 

between morphogenesis of normal development and that of genetically 6 

perturbed or diseased tissues.  Our previous attempts to overcome this 7 

caveat were based on multi-statistical analyses of graph features (Sanchez-8 

Gutierrez et al., 2013) and the creation of a Voronoi scale to statistically 9 

compare groups of images with the CVT reference (Sanchez-Gutierrez et al., 10 

2016). Several recent works cover part of these integrative analyses 11 

(Blanchard, 2017; Blanchard et al., 2009; Farrell et al., 2017; Guirao et al., 12 

2015; Jackson et al., 2017). However, we are aware that all these methods 13 

are difficult to incorporate into the average biology or biomedicine lab. 14 

We have developed EpiGraph, aiming to bring an easy way to quantify 15 

tissue organization without the requirement for programming skills. EpiGraph 16 

transforms the image into a graph of cell-to-cell contacts and extracts their 17 

graphlet content to later compare with other images. These complex 18 

algorithms are hidden behind the friendly user window of FIJI.  This is the 19 

most popular open-source biological image analysis platform. In addition, the 20 

output data options of EpiGraph facilitate fast and clear representations and 21 

interpretations of the results.  22 

One of the strengths of EpiGraph is the comparison of any tessellation with 23 

the hexagonal lattice, the “random” Voronoi tessellation and the Voronoi 24 

tessellation that presents the “conserved polygon distribution” (Gibson et al., 25 

2006; Sanchez-Gutierrez et al., 2016) (Fig. 2A-C). We have tested EpiGraph 26 

with different types of samples: as expected, the average of the natural 27 

tessellations such as wing imaginal disc (dWL and dWP) or the chicken neural 28 

tube (cNT) matched the CVTn path position (Fig. 2D-G). We interpret that 29 

these three natural samples present similar polygon distributions and graphlet 30 

compositions to some Voronoi Diagrams from the CVTn. On the other hand, 31 

the average of the Eye samples appeared far from the CVTn when Epi-32 

Voronoi5 or Epi-Random values were plotted (Fig. 2D-G). These two 33 
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references were capturing differences in organization between the Eye and 1 

any Voronoi Diagram (including Diagram 1, which presents a similar polygon 2 

distribution to the Eye). This result supports the utility of EpiGraph to quantify 3 

organizational traits that were not accessible until now. The same idea is 4 

reinforced by the results obtained with the mutant samples for myosin II 5 

(dMWP, Fig. 2D-G).  In previous work, we showed that this set of samples 6 

slightly deviated the CVT scale in terms of polygon distribution (Sanchez-7 

Gutierrez et al., 2016). Here we show very clear differences in terms of the 8 

values of Epi-Voronoi5 and Epi-Random (Fig. 2G), suggesting a higher 9 

sensitivity of the new method when capturing differences in organization. 10 

The output images from EpiGraph show the CVTn path as a clear 11 

reference for proliferative epithelia such the wing imaginal disc or the chicken 12 

neural tube and for vertex model control simulations. We have incorporated 13 

a statistical test into EpiGraph that indicates if a new tissue is within or outside 14 

of the CVTn path, and which is the Voronoi diagram with the closest 15 

organization. The different results comparing Epi-Hexagons, Epi-Random 16 

and Epi-Voronoi5 values also suggested that Epi-Hexagons had better 17 

resolution for images with a higher percentage of hexagons while Epi-18 

Random and Epi-Voronoi5 were more sensitive to the differences between 19 

images with less than 40% of hexagons. For this reason, we have designed 20 

the visualization step of the program to easily change the three axes and 21 

check the different results using any combination of these GDD references 22 

and the “percentage of hexagons”. 23 

Using different sets of simulations, we are able to distinguish two different 24 

types of organization: The cases where a subset of cells adopts a particular 25 

arrangement inside a mostly ordered tissue (Fig 3B, C, G) and the cases 26 

where the global topology of the tissue is altered and the cell sizes are very 27 

heterogeneous (Fig. 3E-G and Fig. S5). These two patterns create a “map” 28 

of arrangements that are out the CVTn, and they will help to other researchers 29 

to study the degree of order in their samples.  30 

The dynamics of the transition between a tissue behaving as a fluid or a 31 

solid is an emerging problem in developmental biology and biomedicine 32 

(Curran et al., 2017; Firmino et al., 2016; Mongera et al., 2018; Park et al., 33 
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2015; Petridou et al., 2018; Tetley and Mao, 2018). We have used the 1 

capabilities of EpiGraph to study how the fluidity state can affect the 2 

organization of a tissue. The utility of EpiGraph in this regard is supported by 3 

its ability to quantify dynamic changes in organization due to cell 4 

rearrangements in a vertex model simulation of a soft tissue (Fig. 4A-B). 5 

Therefore, in these simulations, cell movements are captured as changes in 6 

the organization of the tissue by EpiGraph. However, cell rearrangements do 7 

not necessarily have to lead to changes in tissue organization, as is often the 8 

case in more homeostatic tissues. Although, it has been shown that the late 9 

third instar Drosophila imaginal disc can exchange neighbours and rearrange 10 

during development (Heller et al., 2016), we were not able to see changes in 11 

organization combining live imaging of the WT discs and EpiGraph analysis 12 

(Fig. 4E). Therefore, we interpret that the multiple re-arrangements of the WT 13 

disc conserve the organization of the tissue, at least in the time framework 14 

analysed (30 min). On the contrary, the hyperactivation of myosin II (Mbs-15 

RNAi) produced a clear change in the organization of the tissue as detected 16 

by EpiGraph. The decrease of intercalation rate and the increase of fourfold 17 

vertices in the Mbs-RNAi discs suggest that EpiGraph is capturing a change 18 

in tissue fluidity (Fig. 4E-G). In this respect, we think that EpiGraph analyses 19 

provide information beyond previous parameters that have been used to 20 

capture the fluidity in cell arrangements such as the shape index (Bi et al., 21 

2015). All the real images analysed in this work have a high shape index (Fig. 22 

S6). These samples include the Mbs-RNAi mutant discs, that do not 23 

intercalate. Altogether, our results suggest that the shape index is not a 24 

sufficient parameter to define fluidity from a still image of a real sample.  25 

In biomedicine, a robust and efficient analysis of histopathological images is 26 

required. Computerized image tools have an enormous potential to improve 27 

the quality of histological image interpretation, offering objective analyses that 28 

can aid the pathologist’s diagnoses. Changes in organization have proven to 29 

be related to the onset of disease in very different contexts, being critical for 30 

early detection (Emmanuele et al., 2015; Guillaud et al., 2010; Park et al., 31 

2015; Sáez et al., 2013; Tsuboi et al., 2018). We propose that EpiGraph is 32 

able to efficiently detect mutant phenotypes related to changes in 33 
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organization and/or in tissue fluidity. Importantly, this can be done from a few 1 

snapshots in time, without the need for sophisticated time-lapse imaging and 2 

tracking. This may provide a simple detection tool for the early onset of 3 

disease, where changes in organization can occur, and only limited tissue 4 

samples are available from patients.  5 

EpiGraph limitations. 6 
Although Epigraph accepts a wide range of images as inputs, we have 7 

specified some minimum requirements. It is not recommended to use input 8 

images bigger than 3000 pixels of width or 3000 pixels of height, since 9 

processing them could be computationally intensive. In addition, EpiGraph 10 

only accepts single images. Images from time series should be adapted to 11 

single frames before uploading them to EpiGraph.  12 

Computers with little RAM memory (less than 16gb) will work but with a 13 

series of restrictions. To ensure usability, it is not recommended computing 14 

images with a high number of cells (more than 1000) due to a possible lack 15 

of memory. In the same way, we suggest skeletonizing the edges of the 16 

images and using a small radius, i.e. 3 pixels of radius for skeletonized image 17 

(we recommend don’t overpass a radius value of 10 pixels to avoid 18 

overloading the system) to calculate the cells neighbourhood. Choosing a 19 

high radius value could slow down the work queue, increasing the use of RAM 20 

memory.  21 

If any of these requirements are not satisfied, the program alerts the user, 22 

allowing him/her to change the image provided. Importantly, the images and 23 

ROIs require a minimum number of valid cells (cells without touching the 24 

borders or an invalid region of the image) in order to get coherent graphlets. 25 

Therefore, to get any result, EpiGraph must detect at least a 3-distance valid 26 

cell (see Fig. 2) in the case of 7-motifs or 10-motifs or a 4-distance valid cell 27 

(see Fig. 2) in the case of 17-motifs and 29-motifs. In any case, we strongly 28 

recommend having a greater number of 3-distance and 4-distance valid cells 29 

to get results that can be trusted in terms of capturing the organization of a 30 

tissue. Regarding the 3D visualization tool, it allows the user to see the 31 

position of the samples from different angles. However, the resolution of the 32 

exported file is only 72 pixels per inch (dpi). This could be too low for 33 
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publications and therefore EpiGraph provides an excel table with all the 1 

information needed to represent it with other programs. 2 

In summary, we have generated a very accessible, open source method to 3 

produce a quantitative description of developmental events. This quantitative 4 

aspect is reinforced by the statistical comparison with the CVT path that 5 

serves as a scale for tissue organization. We anticipate that our tool will 6 

improve the study of tissue dynamics and morphogenesis by permitting the 7 

comparative analysis of epithelial organization in genetically mutated or 8 

diseased tissues during time.  9 

  10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
18 

MATERIAL AND METHODS 1 
 2 
Source images used in the study. 3 
 4 
Centroidal Voronoi Tessellation (CVT) diagrams and variations 5 

For the generation of this set of paths we have used the software Matlab 6 

R2014b to iteratively apply Lloyd´s algorithm to a random Voronoi tessellation 7 

(Lloyd, 1957). This implies that the centroid of a cell in a Voronoi diagram is 8 

the seed for the same cell in the next iteration. 9 

- Centroidal Voronoi Tessellation (CVT) diagrams 10 

Centroidal Voronoi Tessellation diagrams were obtained as described 11 

previously by our group (Sanchez-Gutierrez et al., 2016). The 20 original 12 

Voronoi diagrams were created placing 500 seeds randomly in an image of 13 

1024x1024 pixels. A total of 700 iterations were generated for each initial 14 

image. 15 

- Centroidal Voronoi Tessellation noise (CVTn) diagrams 16 

We have developed a variation of the CVT path, named the CVT noise 17 

(CVTn) path (Fig. S3). We started from the same 20 initial random diagrams 18 

described above. The development process of the CVTn path was modified 19 

so that the new seeds were not strictly the centroid from the previous iteration. 20 

In even iterations, we selected a region of 5 pixels of radius from the centroid 21 

position, in which seeds could be placed randomly. In odd iterations, the 22 

system was stabilized, applying the original Lloyd algorithm. A total of 700 23 

iterations were generated for each initial image. 24 

Natural packed tissues and vertex model simulations 25 

The details of the obtaining and processing of the epithelial images were 26 

described in (Escudero et al., 2011). Control vertex model simulations include 27 

cell proliferation and are the basis for the other two cases. Case III 28 

corresponds to a vertex model simulation with heterogeneous reduction of 29 

line tension and an impairment of cell division when tension value is under 30 30 

percent of the initial value. Case IV is a similar simulation to Case III with a 31 

threshold of 40 percent. Regarding simulations with no cell proliferation, as a 32 

baseline, the control had homogeneous parameters for contractility, line 33 
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tension and ideal area. ‘Elongated’ simulations were as the control, but with 1 

ten percent of cells having a reduced line tension and ideal area, while 2 

‘squared’ ones had ten percent of cells with only line tension reduced. The 3 

exact conditions for the vertex model simulations were described in 4 

(Sanchez-Gutierrez et al., 2016).  5 

Perturbing myosin II activity in Drosophila wing discs and calculating 6 

intercalation rates 7 

Drosophila were raised in standard conditions. Wing discs were dissected 8 

from third instar larvae and cultured under filters as described by (Zartman et 9 

al., 2013). Discs were cultured in Shields and Sang M3 media supplemented 10 

with 2% FBS, 1% pen/strep, 3ng/ml ecdysone and 2ng/ml insulin. The 11 

following alleles and transgenes were used; shg-GFP (Ecad-GFP, Huang et 12 

al., 2009), UAS-Mbs-RNAi (KK library, VDRC), rn-GAL4 (RMCE-MiMIC 13 

Trojan-GAL4 collection). The following experimental genotypes were used; 14 

Ecad-GFP (WT) and Ecad-GFP/UAS-Mbs-RNAi; rn-GAL4/+ (Mbs-RNAi). For 15 

EpiGraph analysis, discs were imaged on a Zeiss LSM 880 microscope with 16 

Airyscan at 512x512 resolution with a 63x objective (NA 1.4) at 1.4x zoom for 17 

a total of 30 minutes with 1-minute time intervals and a z-step of 0.5µm. Time-18 

lapse image sequences were segmented using Epitools (Heller et al., 2016). 19 

To quantify intercalation rates, 5 WT and 5 Mbs-RNAi wing discs were 20 

imaged using the same methods as above, except using 5x zoom and 3 21 

minutes intervals for a total of 2 hours. Intercalation rate data was exported 22 

from the “EDGE_T1_TRANSITIONS” overlay in the “CellOverlay” plugin in 23 

Epitools. To exclude mistakes generated when 4-way junctions were not 24 

recognised, junctions less than 0.075µm in length were assigned a length of 25 

0µm. A productive intercalation event was scored when a neighbour 26 

exchange was stabilised for at least 2 time points (6 minutes). The total 27 

number of tracked cells was also quantified, allowing the intercalation rate to 28 

be expressed as the number of intercalations per cell per hour. 29 

We also counted the number of fourfold vertices per cell in both WT and 30 

Mbs-RNAi conditions. In particular, we quantified the number of vertices in 31 

which four or more cells were touching each other, using Matlab R2014b. The 32 
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cells closest to the border of the image were excluded from the analysis. In 1 

this way, we obtained the percentage of fourfold vertices per valid cell for 2 

each image and calculated a Kolmogorov-Smirnov test to check if the 3 

distributions of both conditions were different. 4 

Soft and Rigid tissue simulations 5 

We have extracted a set of screenshots from two videos that simulated 6 

different dynamical behaviour of vertex model simulations. These videos are 7 

presented as Supplemental Material in (Bi et al., 2016). The first video 8 

represents a rigid behaviour in the simulation: 9 

https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.6.021011/solid10 

_tissue_v0_0.2_p0_3.5_Dr_0.1.mp4; the second one represents a soft 11 

behaviour:https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.6.0212 

1011/fluid_tissue_v0_0.2_p0_3.8_Dr_0.1.mp4. In both videos, we selected a 13 

total of 13 frames with steps of 3.333 seconds (from t = 0 to 40 seconds). 14 

Graphlets and motifs selection. 15 
The different images from the previous section were used to create a graph 16 

of cell-to-cell contacts ((Escudero et al., 2011) and Supplementary Material 17 

and methods) that served as the source for the graphlet analysis (Pržulj, 18 

2007; Pržulj et al., 2004). First, we adapted the graphlet analysis performed 19 

by EpiGraph to the nature of our samples (tessellations). Three graphlets 20 

were discarded since they were not possible in the context of an epithelial 21 

tissue (Fig. 1 and Fig. S1). Second, we used the computer program for 22 

graphlet identification and calculation ORCA (Orbit Counting Algorithm) 23 

(Hočevar and Demšar, 2014), to extract the different conformations of nodes 24 

assembling the graphlets, called orbits (Pržulj, 2007). We computed the 25 

Graphlet degree Distribution of the 73 given orbits from the 29 graphlets, and 26 

then we removed the non-used ones. The reason to remove these graphlets 27 

was that they were either redundant or not possible in a planar tissue. On the 28 

first case, G5 and G27 were redundant since, in order to achieve G5 in a 29 

plane, there must be a centre cell with 4 sides, the same centre cell captured 30 

on G27 (Fig 1 and Fig. S1). It may occur that more than one cell is inside G5, 31 

which could not be captured by G27, still it would be captured by G5 and the 32 

chances of encounter this setting would be very low. Regarding the second 33 
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case, G20, G22 and G25 were not possible to achieve in a planar tessellation 1 

since it is assumed the convexity of the cells. Therefore, we removed them.  2 

Shape index calculation 3 

We have extracted the shape index, as an indicator of rigidity, from each 4 

natural and simulated image, based on (Bi et al., 2015). The global shape 5 

index in a tissue was measured as the median of the shape index of the 6 

individual valid cells. We quantified the cell area and perimeter using Matlab 7 

R2014b. We performed the following approach: We captured the vertex 8 

coordinates for each valid cell. Then, we calculated the Euclidean distance 9 

between each adjacent vertex, and adding all of them, we got the cell 10 

perimeter. From these vertices, a polygon was inferred and we calculated its 11 

contained area using the “polyarea” Matlab function.  12 

Statistical analysis. 13 

We have estimated the closest CVTn diagram of a given image in terms of 14 

the three GDDs measured in EpiGraph (Epi-Hexagons, Epi-Random and Epi-15 

Voronoi5). We computed the centre of the point cloud formed by the 20 16 

randomizations of a particular CVTn diagram as the mean of those twenty 17 

images, obtaining a 3D point. Then, we calculated the Euclidean distance 18 

between all the CVTn diagrams central points and the three calculated 19 

parameters of the input image, obtaining its closest point, which corresponds 20 

to its closest diagram. Furthermore, we checked if this image belonged to the 21 

closest diagram point cloud using an outlier detection approach. In particular, 22 

we tested if the inclusion of the image into a CVTn diagram point cloud would 23 

increase or decrease the standard deviation of the original group. We 24 

assigned the probability of being an inlier, which is defined as follows: 25 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 =
1
𝑐𝑐
�

𝑠𝑠𝑡𝑡𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑖𝑖
𝑠𝑠𝑡𝑡𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 26 

Where n is the total number of coordinates, which in our case is 3 dues to 27 

the three-dimensional space; the parameter stands for every different 28 

coordinate (Epi-Hexagons, Epi-Random and Epi-Voronoi5); represents the 29 

values of the 20 images from the closest CVTn diagram in a specific 30 

coordinate and is the value of the input image for the same coordinate. The 31 
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values range from 0 (very far from point cloud) to +∞ (inside point cloud). We 1 

have estimated that with a confidence of > 0.95 the input image is considered 2 

to be an inlier.  3 

 4 

 5 

 6 
  7 
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Figure 1. Graphlets, cellular motifs and characterization of epithelial 1 

organization. A) A representation of the cellular motifs that correspond to 2 

graphlets of up to five nodes. There are 29 motifs corresponding to 26 3 

different graphlets (Fig. S1). Note that one graphlet can represent two cellular 4 

motifs (G8, G23 and G26).  Mauve motifs form the 17-motifs set. Prussian 5 

Blue motifs stands for the set 29-motifs. In the first row are the motifs that 6 

account for the organization of groups of up to 4 cells (10-motifs). Therefore, 7 

7-motifs set is formed by the mauve coloured graphlets at the first row. B) 8 

Polygon distribution comparison of images from: Voronoi diagram 1 (black 9 

bar); Eye (orange), Drosophila eye disc: 3 samples; Voronoi diagram 4 (grey); 10 

dWL (green), Drosophila larva wing disc: 15 samples; Voronoi diagram 5 (light 11 

grey), dWP (red), Drosophila prepupal wing imaginal disc epithelium: 16 12 

samples. Data shown refer to the mean ± SEM. Diagram 1, 4 and 5: 20 13 

replicates. C) GDD value calculation (17-motifs) between natural images and 14 

Voronoi diagrams with similar polygon distribution. The data shown are the 15 

mean of the GDD between each pair of images.  16 
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Figure 2. Epithelial organization of biological tissues with respect to the 1 

CVTn. A-C) Tessellations with the corresponding graph of cell-to-cell 2 

contacts for a perfect hexagonal arrangement (A) a Voronoi Diagram 1 (B) 3 

and a Voronoi Diagram 5 (C) from a CVTn. These tessellations represent the 4 

diagrams used as reference to calculate the Epi-Hexagons, Epi-Random and 5 

Epi-Voronoi5 respectively. The light blue edges in these panels represent the 6 

cellular connectivity network. The colourful nodes mark the valid cells that 7 

were involved in the cellular motifs to measure graphlets presence. The dark 8 

blue and green nodes are the 3-distance valid cells (cells connected 9 

exclusively to valid cells within a distance of 3 edges), which were used to 10 

calculate the graphlets for 10-motifs and 7-motifs. The green nodes are the 11 

4-distance valid cells (cells connected exclusively to valid cells within a 12 

distance of 4 edges) that were used to quantify the graphlets for 29-motifs 13 

and 17-motifs. Cells without nodes were no valid cells for graphlet calculation. 14 

D) Representative images from the natural tessellations. E) Plots showing the 15 

different combinations of the values for 17-motifs of Epi-Hexagons, Epi-16 

Random and Epi-Voronoi5 with the percentage of hexagons. The diagrams 17 

of the CVTn path from the iteration 1 until the iteration 700 are represented 18 

as a greyscale beginning in black and reducing its darkness with the increase 19 

of the iterations (from 1 to 20, from 30 to 100 by stepwise of 10 and from 100 20 

to 700 by stepwise of 100). F-G) Charts representing the comparisons Epi-21 

Hexagons against Epi-Random, and Epi-Random against Epi-Voronoi5, 22 

respectively. The CVTn path in both scatter plots, is formed by the diagrams 23 

with numbers between 1 and 100, in a greyscale as in (E). The natural 24 

tessellations are: dMWP (violet), Drosophila mutant wing disc: 3 samples; 25 

cNT (light blue), chicken neural tube: 16 samples; Eye, dWL and dWP are the 26 

same replicates than Fig.1 and preserve their colour codes. Circumferences 27 

are individual values, circles are the average value obtained from the 28 

individual samples from each category.  29 
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Figure 3. Comparison of different simulations and mutants with the 1 

CVTn. A-C) Representative images for non-proliferative simulations. Control 2 

with homogeneous parameters (A). The ‘squared’ simulations are similar to 3 

control, but a ten percent of cells (randomly chosen) have a reduced line 4 

tension (B). The ‘elongated’ simulations have a ten percent of cells (randomly 5 

chosen) with its line tension and ideal area reduced, and the another 90% of 6 

cells have the same parameters than control simulations (C). D) Cell 7 

arrangement resulting from the control simulation that includes cell 8 

proliferation. E-F) Diagrams resulting from a vertex model simulation with an 9 

increase of the ideal area value, with respect the control, in some cells. Case 10 

III and Case IV slightly differ in the line-tension parameter conditions (see 11 

Material and methods). G) Plots showing the values of Epi-Random vs Epi-12 

Voronoi5 and the percentage of hexagons vs Epi-Voronoi5 (17-motifs) for 13 

CVTn, dMWP, Eye, cNT, dWL, dWP; Proliferative Control (20 replicates, 14 

carnation pink), Case III (17 replicates, hot pink) and Case IV (15 replicates, 15 

purple); Non-proliferative control (20 replicates, blue bell), Squared (20 16 

replicates, azure blue) and Elongated simulations (20 replicates, cornflower 17 

Blue). The diagrams of the CVTn path from the iteration 1 until the iteration 18 

100 are represented as a greyscale beginning in black and reducing its 19 

darkness with the increase of the iterations; dMWP, Eye, cNT, dWL and dWP 20 

have the same replicates and colour codes than Fig.2; circumferences are 21 

individual values, circles are the average value obtained from the individual 22 

samples from each category. 23 

 24 
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Figure 4. The rigidity/fluidity of a tissue can be assessed using 1 

EpiGraph. A) Initial and final frames of two simulations with different settings: 2 

a rigid and a soft tissue. B) Epigraph’s 3D plot with Epi-Random, Epi-3 

Hexagons and Epi-Voronoi5 axes, showing the soft simulation tissue in green 4 

dots and the rigid simulation as orange dots. Each simulation is represented 5 

in 13 frames (see Material and methods). C-D) Representative examples of 6 

segmented images from the third instar Drosophila imaginal disc in different 7 

conditions: Wild Type (C); a solid mutant, Mbs-RNAi in (D). E) Plot comparing 8 

the fluidity and organization of the tissues in (C-D). CVTn (until diagram 30) 9 

displayed in greyscale. Dots in scales of blue represent the WT condition: 10 

wing disc 1, aquamarine; wing disc 2, light blue; wing disc 3, dark blue. 11 

Represented with points in tones of orange-red, Mbs-RNAi: sample 1, salmon 12 

colour; sample 2, orange; sample 3, red. F-G) Boxplot of the intercalation rate 13 

(F), which is the number of T1 transitions per cell per hour, and the fourfold 14 

vertices found per cell (G) (note that no fivefold vertices, or beyond, was found 15 

on any sample).  Boxes stand for the data inside the upper and lower 16 

quartiles, while the vertical dashed lines (whiskers) indicate the variability 17 

outside them. Mean (dashed line) and median (thick line) of each condition is 18 

represented inside each box. The actual values are also presented as circles 19 

(and the outlier values as circumferences) with its correspondent colour. In 20 

addition, statistical significance, by means of a Kolmogorov-Smirnov test, is 21 

shown in the top of both panels (F: ‘**’ p<0.01, G: ‘*’ p<0.05). Each condition 22 

has 3 samples (different colour tone), and the numeric tag represents its 23 

frame. In WT have been taken 6 frames per sample in periods of 6 minutes. 24 

In the case of Mbs-RNAi were taken 3 frames per sample with time lapse of 25 

15 minutes. All the conditions have been tracked for 30 minutes (see Material 26 

and methods). 27 

 28 

 29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 5, 2019. ; https://doi.org/10.1101/217521doi: bioRxiv preprint 

https://doi.org/10.1101/217521
http://creativecommons.org/licenses/by-nc-nd/4.0/

