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ABSTRACT7

High-throughput single-cell RNA-Seq (scRNA-Seq) methods can efficiently generate expression profiles
for thousands of cells, and promise to enable the comprehensive molecular characterization of all cell
types and states present in heterogeneous tissues. However, compared to bulk RNA-Seq, single-cell
expression profiles are extremely noisy and only capture a fraction of transcripts present in the cell. Here,
we describe an algorithm to smooth scRNA-Seq data, with the goal of significantly improving the signal-to-
noise ratio of each profile, while largely preserving biological expression heterogeneity. The algorithm is
based on the observation that across platforms, the technical noise exhibited by UMI-filtered scRNA-Seq
data closely follows Poisson statistics. Smoothing is performed by first identifying the nearest neighbors of
each cell in a step-wise fashion, based on variance-stabilized and partially smoothed expression profiles,
and then aggregating their UMI counts. For multiple datasets, the application of our algorithm resulted
in more stable cell type-specific expression profiles, and recovered correlations between co-expressed
genes. More generally, smoothing improved the results of commonly used dimensionality reduction and
clustering methods, greatly facilitating the identification of cell subsets and clusters of co-expressed
genes. Our work implies that there exists a quantitative relationship between the number of cells profiled
and the potential accuracy with which individual cell types or states can be characterized, and helps
unlock the full potential of scRNA-Seq to elucidate molecular processes in healthy and disease tissues.
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INTRODUCTION25

Over the past decode, single-cell expression profiling by sequencing (scRNA-Seq) technology has ad-26

vanced rapidly: After the transcriptomic profiling of a single cell (Tang et al. 2009), protocols were27

developed that incorporated cell-specific barcodes to enable the efficient profiling of tens or hundreds of28

cells in parallel (Islam, Kjällquist, et al. 2011; Hashimshony, Wagner, et al. 2012). scRNA-Seq methods29

were then improved by the incorporation of unique molecular identifiers (UMIs) that allow the identifica-30

tion and counting of individual transcripts (e.g., Islam, Zeisel, et al. 2014; Hashimshony, Senderovich,31

et al. 2016). More recently, single-cell protocols were combined with microfluidic technology (Klein et al.32

2015; Macosko et al. 2015; Zheng et al. 2017), combinatorial barcoding (Cao et al. 2017; Rosenberg et al.33

2017), or nanowell plates (Gierahn et al. 2017). These high-throughput scRNA-Seq methods allow the34

cost-efficient profiling of tens of thousands of cells in a single experiment.35

Due to the typically very low amounts of starting material, and the inefficiencies of the various36

chemical reactions involved in library preparation, scRNA-Seq data is inherently noisy (Ziegenhain37

et al. 2017). This has motivated the development of many specialized statistical models, for example38

for determining differential expression (Kharchenko, Silberstein, and Scadden 2014), performing factor39

analysis (Pierson and Yau 2015), pathway analysis (Fan et al. 2016), or more general modeling of scRNA-40

Seq data (Risso et al. 2017). In addition, a diffusion method has been proposed to impute missing values41

and perform smoothing (Dijk et al. 2017). Finally, many authors of scRNA-Seq studies have relied on42

ad-hoc approaches for mitigating noisiness, for example by clustering and averaging cells belonging to43

each cluster (Shekhar et al. 2016; Baron et al. 2016).44

Fundamental to any statistical treatment are the assumptions that are made about the data. For45

methods aimed at analyzing scRNA-Seq data, assumptions about the noise characteristics determine46
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which approach can be considered the most appropriate. All aforementioned approaches have assumed an47

overabundance of zero values, compared to what would be expected if the data followed a Poisson or48

negative binomial distribution. However, in the absence of true expression differences, the analysis by49

Ziegenhain et al. (2017) has suggested that across scRNA-Seq protocols, there is little evidence of excess-50

Poisson variability when expression is quantified by counting unique UMI sequences instead of raw reads51

(see Figure 5B in Ziegenhain et al. (2017)). This is consistent with reports describing individual UMI-52

based scRNA-Seq protocols, which have demonstrated that in the absence of true expression differences,53

the mean-variance relationship of genes or spike-ins closely follows that of Poisson-distributed data (Grün,54

Kester, and Oudenaarden 2014; Klein et al. 2015; Zheng et al. 2017).55

In this work, we propose a smoothing algorithm that makes direct use of the observation that after56

normalization to account for efficiency noise (Grün, Kester, and Oudenaarden 2014), the technical57

noise associated with UMI counts from high-throughput scRNA-Seq protocols is entirely consistent58

with Poisson statistics. Instead of adopting a model-based approach, we propose an algorithm that59

smoothes scRNA-Seq data by aggregating gene-specific UMI counts from the k nearest neighbors of60

each cell. To accurately determine these neighbors, we propose to use an appropriate variance-stabilizing61

transformation, and to proceed in a step-wise fashion using partially smoothed profiles. Conveniently, the62

noise associated with the smoothed expression profiles is again Poisson-distributed, which simplifies their63

variance-stabilization and downstream analysis. We demonstrate the improved signal-to-noise ratio of64

scRNA-Seq data processed with our method on several real-world examples.65

RESULTS66

The normalized UMI counts of replicate scRNA-Seq profiles are Poisson-distributed67

To validate the Poisson-distributed nature of high-throughput scRNA-Seq data in the absence of true68

expression differences, we obtained data from control experiments conducted on three platforms: in-69

Drop (Klein et al. 2015), Drop-Seq (Macosko et al. 2015), and 10x Genomics (Zheng et al. 2017). In70

these experiments, droplets containing identical RNA pools were analyzed. Assuming that the number of71

transcripts in each droplet was sufficiently large, there are no true expression differences among droplets,72

and all of the observed differences among droplets can be attributed to technical noise arising from73

library preparation and sequencing. As expected from published results (cf. Figure 5A in Klein et al.74

(2015), Supplementary Figure 2f in Zheng et al. (2017)), data from both the inDrop platform and the 10x75

Genomics platform followed the Poisson distribution (see Figure 1a,c; see Methods), with the exception76

of highly expressed genes, which is likely due to global droplet-to-droplet differences in capture efficiency,77

previously referred to as “efficiency noise” (Grün, Kester, and Oudenaarden 2014).78

For the Drop-Seq data, Macosko et al. (2015) did not discuss the mean-variance relationship, but79

we observed a pattern consistent with inDrop and 10x Genomics data (see Figure 3b). Interestingly, the80

y axis intercept of the Drop-Seq CV-mean relationship was clearly above 0, suggesting that transcript81

counts followed a scaled Poisson distribution (see Methods). A possible explanation could be that the82

computational pipeline used to derive the Drop-Seq UMI counts generated artificially inflated transcript83

counts, but we did not explore this hypothesis further.84

To test whether the larger-than-expected variance of highly expressed genes can indeed be explained85

by efficiency noise, we normalized the expression profiles in each dataset to the median UMI count across86

profiles (Model I in Grün, Kester, and Oudenaarden (2014); see Methods). This resulted in an almost87

perfectly linear CV-mean relationship (see Figure 1d-f), suggesting that efficiency noise is indeed the88

dominating source of variation for very highly expressed genes.89

Finally, we directly compared the frequency of UMI counts of zero for each gene to that predicted by90

Poisson statistics, and found that for the inDrop and 10x Genomics data, the observed values matched the91

theoretical prediction almost perfectly (see Figure 3g,i). For the Drop-Seq data, the frequency of zeros92

was slightly shifted upwards across the entire expression range (see Figure 3h), which may be due to93

artificially inflated UMI counts.94

In summary, we found that for all three high-throughput scRNA-Seq platforms examined, Poisson-95

distributed noise, in combination with the efficiency noise observed for very highly expressed genes,96

described virtually all of the observed technical noise, and that there was no evidence of substantial97

zero-inflation. We note that the recent publication describing the Quartz-Seq2 single-cell platform also98

reports a Poisson noise relationship (see Figure 2e in Sasagawa et al. (2017)), bringing the total number99

of high-throughput scRNA-Seq protocols with reported Poisson noise characteristics to four.100
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Aggregation of n replicate profiles results in Poisson-distributed values with the signal-101

to-noise ratio increased by a factor of
√
n102

Since the sum of independent Poisson-distributed variables is again Poisson-distributed, we reasoned that103

the aggregation of normalized expression values from n independent measurements of the same RNA104

pool would result in Poisson-distributed values, with the signal-to-noise ratio increased by a factor of
√
n105

(see Methods). Similarly, we predicted that averaging instead of aggregating (summing) would result in a106

scaled Poisson distribution with the same increased signal-to-noise ratio. We tested this idea on the inDrop107

pure RNA dataset previously shown in Figure 1a, which consisted of 935 expression profiles. Averaging108

randomly selected, non-overlapping sets of 16 profiles resulted in 58 new expression profiles, with genes109

exhibiting an almost exact four-fold increase in their signal-to-noise ratios, i.e., a four-fold reduction of110

their coefficients of variation, as expected (see Figure 2a). As an example, the UMI count distribution of111

the GADPH gene before and after averaging is shown in Figure 2b, and can be seen to closely match the112

theoretically predicted Poisson and scaled Poisson distributions, respectively. In summary, the results113

showed that independently of gene expression level, aggregating expression values from replicate profiles114

led to more accurate expression estimates that again exhibited Poisson-distributed noise profiles.115

The Freeman-Tukey transform effectively stabilizes the technical variance of high-116

throughput scRNA-Seq data117

Based on the aforementioned results, we conceived an algorithm to smooth single-cell RNA-seq data,118

with the following outline:119

• For each cell C:120

1. Determine the k nearest neighbors of C.121

2. Calculate a smoothed expression profile for C by combining its UMI counts with those of the122

k nearest neighbors, on a gene-by-gene basis.123

3. (Optional) Divide C’s new expression profile by k, to retain the scale of the original data.124

The main challenge in implementing this algorithm is to devise an appropriate approach for determin-125

ing the k nearest neighbors of each cell, and to choose an appropriate k. We defer the question of how to126

choose k to the Discussion, and focus here on the problem of determining the k nearest neighbors.127

Due to the Poisson-distributed nature of scRNA-Seq data, the technical variance (noise) associated128

with each gene is directly proportional to its expression level. This type of extreme heteroskedasticity129

poses a problem when attempting to calculate cell-cell similarities, because the noise of highly expressed130

genes can drown out the true expression differences of more lowly expressed genes, therefore strongly131

biasing the analysis towards the most highly expressed genes. One strategy to address this issue is the132

application of an appropriate variance-stabilizing transformation, designed to render the technical variance133

independent of the gene expression level (Love, Huber, and Anders 2014). For bulk RNA-Seq data, a134

log-TPM (or log-RPKM) transform is commonly used for this purpose, even though lowly expressed135

genes will still exhibit unduly large variances under this transformation (Love, Huber, and Anders136

2014). Based on our results, we reasoned that for scRNA-Seq data, the Freeman-Tukey transform (FTT),137

y =
√
x +
√
x+ 1, would be a more appropriate choice, as it is designed to stabilize the variance of138

Poisson-distributed variables (Freeman and Tukey 1950).139

To compare the abilities of the FTT and the log-CPM (counts per million) transform to stabilize the140

technical variance of scRNA-Seq data, we applied both transformations to the inDrop pure RNA dataset,141

and found that the FTT produced significantly better results (see Figure 3): With the log transform,142

genes with low-intermediate expression, which we considered to be those with expression values between143

the 60th and 80th percentiles (of all protein-coding genes, not only genes expressed by K562 cells),144

had between three- and ten-fold higher levels of variance than the 10% most highly expressed genes145

(see Figure 3b). In contrast, with the FTT, the difference was no larger than two-fold, and the variances of146

lowly expressed genes were biased downwards, not upwards (see Figure 3c). Moreover, we found that147

the FTT also stabilized the variance of the aggregated profiles (see Figure 3d-f), which was expected,148

given our earlier observation that the aggregated UMI counts are again Poisson-distributed. In particular,149

a greater share of genes now had variances close to 1. This closely mirrored theoretical results, according150

to which the variance Poisson-distributed variables with mean λ ≥ 1 should be within 6% of the151
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asymptotic value of 1 after FTT (Freeman and Tukey 1950). In summary, our analysis showed that152

distance calculations performed on Freeman-Tukey transformed UMI counts would give similar weight to153

genes with intermediate and high expression. Expression differences from lowly expressed genes would154

tend to be suppressed, but this suppression would become less severe for aggregated expression profiles.155

A k-nearest neighbor algorithm for smoothing scRNA-Seq data156

The previously discussed ideas suggested that a simple way to determine the k nearest neighbors for all157

cells would be to normalize their expression profiles, apply the FTT, and then find the k closest cells158

for each cell based on the Euclidean metric. However, we reasoned that this simple approach could be159

improved upon, because the noisiness of the data itself can interfere with the accurate determination of160

the k nearest neighbors. We therefore instead decided to adopt a step-wise approach, whereby initially,161

each profile is only minimally smoothed (using k1 = 1). In the second step, a larger set of nearest162

neighbors (e.g., k2 = 3) is identified for each cell based on those minimally smoothed profiles, and the163

raw data is then smoothed using these larger sets of neighbors. Additional steps using increasing ki are164

performed until the desired degree of smoothing is reached (i.e., ki = k). By choosing the i’th step to165

use ki = min{2i − 1, k}, each step theoretically improves the signal-to-noise ratio by a factor of
√
2166

— except for the last step, for which the improvement can be smaller —, and only a small number of167

steps are required even for large choices of k (e.g., six steps for k = 63). The resulting “kNN-smoothing”168

algorithm is formalized in Algorithm 1 (see Supplement for a reference implementation in Python). We169

found that in contrast to a simple “one-step” approach, the step-wise identification of neighbors gave170

significantly better results and avoided the generation of obvious smoothing artifacts (data not shown).171

Application of kNN-smoothing to scRNA-Seq data of human pancreatic islets improves172

the signal-to-noise ratio of cell type-specific expression profiles173

To test whether kNN-smoothing would improve the ability to distinguish between different cell types in174

a scRNA-Seq experiment, we applied our algorithm to a dataset of human pancreatic islets, containing175

various cell types (Baron et al. 2016). We performed principal component analyses and observed several176

improvements for the smoothed data (see Figure 4a,b): First, cell type clusters appeared significantly177

more compact in principal component space, indicating that the smoothed expression profiles were more178

similar than unsmoothed profiles for cells of the same type, but more different for cells from distinct179

types. Second, a single cluster of cells that contained alpha cells as well as other cells separated into180

two highly distinct clusters after smoothing. Notably, all alpha cells were still contained within a single181

cluster after smoothing. This suggested smoothing helped reveal important differences that were not182

previously captured by the first two principal components. Third, the proportion of cells of each type183

that could be identified using simple marker gene expression thresholds increased slightly, suggesting184

that the expression values of individual marker was less noisy in the smoothed data. Finally, a much185

greater share of total variation was explained by the first two principal components for the smoothed186

data than for the unsmoothed data (41.1% vs 23.9%), which would be consistent with a greater share of187

variation originating from true biological differences rather than technical noise. In addition to PCA, we188

also applied t-SNE to the data (Maaten and Hinton 2008), and similarly obtained more compact cell type189

clusters (see Figure 4c,d).190

To obtain a more detailed view of the expression patterns of individual genes before and after191

smoothing, we applied hierarchical clustering to the expression values of the 1,000 most variable genes192

(after smoothing and variance-stabilization) across all 2,109 cells, which resulted in clearly discernible193

gene and cell clusters (see Figure 4e). To assess whether cell clusters delineated different cell types,194

we examined the expression patterns of known marker genes (Baron et al. 2016), and found that the195

hierarchical clustering of the smoothed expression profiles accurately grouped cells by their cell type196

(see Figure 4g). Moreover, the expression patterns in clusters appeared significantly more coherent197

in the smoothed data compared to the unsmoothed data (see Figure 4f), and marker genes exhibited198

much less noisy expression signatures (see Figure 4h). In summary, our analyses showed that kNN-199

smoothing significantly improved the signal-to-noise ratio of cell type-specific expression profiles, and led200

to improved results with dimensionality reduction and visualization techniques such as PCA and t-SNE.201
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Algorithm 1: K-nearest neighbor smoothing for UMI-filtered scRNA-Seq data

Input:
p, the number of genes.
n, the number of cells.
X , a p× n matrix containing the UMI counts for all genes and cells.
k, the number of neighbors to use for smoothing.

Output:
S, a p× n matrix containing the smoothed (aggregated) UMI counts.

1: procedure KNN-SMOOTH(p, n, X , k)
2: S = COPY(X)
3: steps = dlog2 (k + 1)e
4: for t = 1 to steps do
5: M = MEDIAN-NORMALIZE(S) // a new p× n matrix
6: F = FREEMAN-TUKEY-TRANSFORM(M) // a new p× n matrix
7: D = PAIRWISE-DISTANCE(F ) // a new n× n matrix
8: A = ARGSORT-ROWS(D) // a new n× n matrix
9: k step = MIN({2t − 1, k})

10: for j = 1 to n do // empty matrix S
11: for i = 1 to p do
12: Sij = 0
13: end for
14: end for
15: for j = 1 to n do // go over all cells
16: for v = 1 to k step+ 1 do // go over all nearest neighbors (including self)
17: u = Ajv
18: for i = 1 to p do // aggregate original UMI counts for each gene
19: Sij = Sij +Xiu

20: end for
21: end for
22: end for
23: end for
24: return S
25: end procedure

Notes: For a two-dimensional matrix X , Xij refers to the element in the i’th row and j’th column of
X . COPY(X) returns an independent memory copy of X (not a reference). MEDIAN-NORMALIZE(X)
returns a new matrix of the same dimension as X , in which the values in each column have been
scaled by a constant so that the column sum equals the median column sum of X . FREEMAN-TUKEY-
TRANSFORM(X) returns a new matrix of the same shape as X , in which all values have been Freeman-
Tukey transformed (y =

√
x +
√
x+ 1). PAIRWISE-DISTANCE(X) computes the pair-wise distance

matrix D from X , so that Dij is the Euclidean distance between the i’th column and the j′th column of
X . For a matrix D with n columns, ARGSORT-ROWS(D) returns a matrix of indices A that sort D in a
row-wise manner, i.e., DjAj1 ≤ DjAj2 ≤ ... ≤ DjAjn for all j.

Application of kNN-smoothing to scRNA-Seq data of human peripheral blood mononu-202

clear cells improves correlations between cell type marker genes203

We next applied our kNN-smoothing algorithm to a dataset containing peripheral blood mononuclear cells204

(PBMCs) (Gierahn et al. 2017), and examined the correlation between individual T cell and monocyte205

marker genes before and after smoothing, using k = 15 and k = 63 (see Figure 5). For the T cell206

receptor genes CD3E and CD3G, only weak correlation (r = 0.20) was observed for the counts before207

smoothing. However, after smoothing with k = 63, the correlation was extremely strong (r = 0.90).208

Similarly, the correlation between CTSB and SOD2, two markers used by Gierahn et al. (2017) to identify209

monocytes, improved from r = 0.35 to r = 0.88, revealing a clear bimodal pattern. As expected, the210

5/18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/217737doi: bioRxiv preprint 

https://doi.org/10.1101/217737
http://creativecommons.org/licenses/by-nc/4.0/


anti-correlation between the monocyte marker CTSB and the T cell marker CD3E changed from weak211

to very strong (Figure 5g-i). In summary, smoothing resulted in the effective recovery of strong yet212

previously undetectable co-expression patterns among marker genes.213

Application of smoothing to scRNA-Seq data of mouse myeloid progenitor cells214

To compare our method to a previously proposed approach (Dijk et al. 2017), we applied our smoothing215

algorithm to a scRNA-Seq dataset of mouse myeloid progenitor cells (Paul et al. 2015). We generated a216

heatmap of characteristic genes for 19 clusters identified by the authors of the original study, as well as217

for important cell surface markers, in a way that allows a direct comparison to the results obtained by Dijk218

et al. (2017) (see Figure 6a,b). We found that even though k-nearest neighbor smoothing is much simpler219

than their approach, our method performed similarly well in generating smooth expression profiles for220

cells belonging to the same cluster, while respecting cluster boundaries.221

We similarly examined the pairwise correlations of cell surface markers, and obtained qualitatively222

similar results to Dijk et al. (2017) (see Figure 6c-e). As in their study, recovering cell type-specific223

co-expression patterns depended on the amount of smoothing applied. Some differences were observed in224

the precise shapes of the associations, but it was not clear how much of this was due to differences in225

normalization and/or scaling used for visualization. In summary, for this particular dataset, the diffusion-226

based approach by Dijk et al. (2017) and our algorithm gave qualitatively similar results, although there227

were some quantitative differences.228

DISCUSSION229

Comparison with previously reported methods230

In this work, we have described a simple yet effective algorithm for smoothing single-cell RNA-Seq data.231

Our algorithm combines a previously proposed normalization method (Grün, Kester, and Oudenaarden232

2014) with a standard variance-stabilizing transformation (VST) for Poisson-distributed data (Freeman233

and Tukey 1950). We are not aware of prior work suggesting the use of a VST in the context of smoothing234

scRNA-Seq data. Instead, most work has focused on parametric modeling (see Introduction). While235

these approaches can certainly be effective, our work suggests that they are not strictly necessary to236

effectively to address the issue of noise in scRNA-Seq data. Moreover, sophisticated models often require237

complex inference procedures, which can be difficult to implement correctly and efficiently. In contrast,238

our method requires only a few lines of code, while still being based on statistical theory.239

Our approach relies on the basic notion of smoothing scRNA-Seq expression profiles by aggregating240

them with similar cells. Simple aggregation or averaging of scRNA-Seq expression profiles has been241

previously employed in specific contexts, for example for library size normalization (Lun, Bach, and242

Marioni 2016). Recently, La Manno et al. (2017) employed a simple version of k-nearest neighbor243

smoothing (“pooling”) as part of a method designed to estimate the time derivative of mRNA abundance244

based on unspliced RNA sequences. The authors defined the most similar cells based on log-transformed245

data (for read counts from the SMART-Seq2 protocol), or PCA-transformed data (for UMI counts from246

inDrop and 10x Genomics protocols). However, they did not provide any justification for their choices of247

similarity metrics, nor a discussion of the statistical properties of the data before and after smoothing.248

Moreover, neither of these studies aimed to develop a general-purpose method to improve the signal-to-249

noise ratio of scRNA-Seq data, or employed a step-wise approach for defining the nearest neighbors,250

as we have done here. As a general method for smoothing, our work can be compared to a recently251

proposed diffusion-based approach (Dijk et al. 2017). However, van Dijk et al. aimed to apply the idea252

of manifold learning using diffusion maps to scRNA-Seq data, whereas we aimed to rely on a specific253

statistical property of scRNA-Seq data, namely its Poisson-distributed noise profile. Second, our method254

currently requires researchers to specify only a single parameter, k, which has a clear meaning (the255

number of neighbors to use for smoothing). The diffusion algorithm proposed by van Dijk et al. relies on256

three parameters (ka, npca, and t), and the extent to which different parameter combinations can give257

quantitatively or qualitatively different results is not always obvious, especially for different settings of258

t. Third, the algorithm proposed by Dijk et al. (2017) involves the calculation of weighted averages of259

expression profiles, which do not result in Poisson-distributed values (unless all the weights are equal). For260

example, if X1 and X2 are two independent Poisson-distributed variables, then Y = 0.4 ∗X1 + 0.6 ∗X2261

is neither a Poisson nor a scaled Poisson variable. As a result, a simple transformation like the Anscombe262

transform will not be able to accurately stabilize the variance of data smoothed using the method proposed263
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by van Dijk et al., which can make downstream analyses more challenging. We therefore believe that the264

method described here is unique in the sense that each step is motivated by the statistical properties of the265

data, and that it is guaranteed to retain its Poisson-distributed nature. This property facilitates downstream266

analyses using variance-stabilization transformations or parametric models.267

How to choose k?268

The choice of k directly affects the results obtained when smoothing a particular dataset using our method.269

Choosing k very small might not adequately reduce noise. On the other hand, choosing k too large incurs270

the risk of smoothing over biologically relevant expression heterogeneity. Moreover, large k can also lead271

to artifactual expression profiles that consist of averages of profiles belonging to different cell populations.272

Our method provides no guarantee that a smoothed expression profile accurately reflects an existing cell273

population. During the exploratory phase of data analysis, we therefore recommend to test different274

choices of k. When a signal of interest has been identified (such as a gene-gene correlation, a cluster of275

cells, an expression signature, etc.), it can be determined what minimum of value of k is required in order276

to obtain this signal. When this value is large, adequate controls should be performed to ensure that the277

observed signal is not a smoothing artifact.278

An appropriate choice of k also depends on the particular application: When analyzing cells under-279

going a highly dynamic process (e.g., differentiation), large values of k might result in an overly coarse280

picture of the transcriptomic changes. In contrast, when aiming to distinguish distinct cell types, larger281

choices of k can help identify robust expression profiles for each type.282

Implications for study design283

Based on the work described here, it appears tempting to speculate that in theory, there is no limit as to284

how accurately the average expression profile of individual cell populations and sub-populations can be285

determined using scRNA-Seq. Our analysis suggests that the signal-to-noise ratio can always be improved286

by aggregating more profiles from “biologically identical” cells. In practice, however, the number of287

cells that can be analyzed is limited by the protocol used, the cost of the experiment, the number of288

cells available, and/or the rarity of the population of interest. Furthermore, the accuracy with which289

“biologically identical” cells can be identified based on their noisy profile depends on several factors,290

including the granularity required (e.g., can cells in different cell cycle stages be considered identical for291

the purpose of the analysis?), and the precise measure of similarity adopted. When the transcriptomic292

differences between cell populations of interest become too small to allow a reliable identification of293

neighbors, it is not clear how to perform smoothing and extract the true biological signal. In this work, we294

have determined similarity on the basis of the expression of all genes, but restricting this calculation to a295

subset of genes could be more appropriate in certain settings.296

More generally, the quadratic relationship between relationship between “cell coverage” (loosely297

defined as the average number of profiles obtained for each cell population) and quantification accuracy298

brings into focus the question of what constitutes an optimal number of sequencing reads per cell. While299

a quantitative treatment of this issue is beyond the scope of this work, it is clear that in certain cases, it300

would be more beneficial to sequence additional cells, rather than increase the read coverage per cell. The301

precise optimum likely depends on numerous factors, and is difficult to determine without an examination302

of all the experimental, statistical, and computational factors involved in scRNA-Seq studies. However,303

since sequencing often represents the single most expensive part of the experiment, this question clearly304

warrants further investigation.305

Future directions306

In this work, we have used multiple datasets to demonstrate that basic techniques for exploratory analysis307

of gene expression data (PCA, t-SNE, hierarchical clustering, correlation analysis) benefit strongly from308

our kNN-smoothing algorithm. In future work, we hope to explore the effect of smoothing for additional309

types of analyses, including differential expression analysis, gene set enrichment analysis, or exploratory310

analysis using prior knowledge (Wagner 2015). We anticipate that our kNN-smoothing algorithm will311

benefit all of these approaches, and generally enable the more effective analysis of scRNA-Seq data in312

wide variety of settings. It should be noted, however, that smoothed expression profiles of cells are no313

longer statistically independent, so smoothing should not be used naively in combination with statistical314

tests for differential expression.315
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The use of a global k could limit the effectiveness of our algorithm in cases where different cell316

populations are present at very different abundances. As an extreme example, if one population constitutes317

5% of all cells, and another 95%, k should not be chosen larger than 5% of the total number of profiles, in318

order to avoid artifacts. However, the expression profile of the population present at 95% could benefit319

from larger choices of k. It would therefore seem useful to automatically adjust k for each cell. This320

is the approach chosen by Dijk et al. (2017), who use the distance of a cell to its ka’th neighbor as an321

important parameter in the calculation of the smoothed profile. However, a complication associated with322

this approach is that different expression profiles would exhibit distinct technical noise levels, since they323

would be the result of aggregating or averaging over different numbers of cells. Another way to address324

this issue would be to cluster cells by type before performing more aggressive smoothing. Ultimately,325

which strategy is more appropriate might depend on the specific application.326

High-throughput scRNA-Seq technology is widely believed to hold enormous potential for the analysis327

of heterogeneous tissues and dynamic cellular processes in health and disease. However, the inherent328

noisiness of the data means that greater computational efforts are required in order to realize this potential.329

Fortunately, data from different protocols exhibit very similar statistical properties, presumably due to330

their shared reliance on 5’- or 3’-end counting and incorporation of UMI sequences. These properties331

should directly inform the design of effective algorithms for smoothing and analysis of scRNA-Seq data.332

We have described a generally applicable, easy-to-implement approach for improving the signal-to-noise333

ratio of single-cell expression profiles, which promises to significantly expand the realm of possibilities334

for downstream analyses of scRNA-Seq data.335

METHODS336

Download and processing of inDrop pure RNA replicate data337

Raw sequencing data were downloaded from SRA (experiment accession SRX863258). In this experi-338

ment by Klein et al. (2015), droplets containing pure RNA extracted from K562 cells were processed339

using the inDrop protocol. The downloaded data were processed using a custom pipeline. Briefly, SRA340

data were converted to the FASTQ format using fastq-dump. Next, the “W1” adapter sequence of the341

inDrop RT primer were located in the barcode mate sequence (the first mate of the paired-end sequencing),342

by comparing the 22-mer sequences starting at positions 9-12 in the read with the known W1 sequence,343

allowing at most two mismatches. Reads for which the W1 sequence could not be located in this way344

were discarded. The start position of the W1 sequence was then used to infer the length of the first part345

of the inDrop cell barcode in each read, which can range from 8-11 bp, as well as the start position of346

the second part of the inDrop cell barcode, which always consists of 8 bp. Cell barcode sequences were347

mapped to the known list of 384 barcode sequences for each read, allowing at most one mismatch. The348

resulting barcode combination was used to identify the cell from which the read originated. Finally, the349

UMI sequence was extracted, and only with low-confidence base calls for the six bases comprising the350

UMI sequence (minimum PHRED score less than 20) were discarded. The mRNA mate sequences (the351

second mate of the paired-end-sequencing) were mapped to the human genome, release GRCh38, using352

STAR 2.5.3a with parameter ”–outSAMmultNmax 1” and default parameters otherwise. Testing the353

overlap of mapped reads with exons of protein-coding genes and UMI-filtering was performed using354

custom Python scripts. Droplets (barcodes) were filtered for having a total UMI count of at least 10,000,355

resulting in a dataset containing UMI counts for 19,865 protein-coding genes across 935 droplets.356

Download of 10x Genomics ERCC spike-in expression data357

UMI counts for ERCC spike-in RNA processed using the 10x Genomics scRNA-Seq protocol (Zheng358

et al. 2017) were downloaded from the 10x Genomic website. The dataset consisted of UMI counts for 92359

spike-ins across 1,015 droplets.360

Download of Drop-Seq ERCC spike-in expression data361

UMI counts for ERCC spike-in RNA processed using the 10x Genomics scRNA-Seq protocol (Macosko362

et al. 2015) were downloaded from GEO accession number GSM1629193. The dataset consisted of UMI363

counts for 80 spike-ins across 84 droplets.364

8/18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/217737doi: bioRxiv preprint 

http://cf.10xgenomics.com/samples/cell-exp/1.1.0/ercc/ercc_filtered_gene_bc_matrices.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1629nnn/GSM1629193/suppl/GSM1629193%5FERCC%2Edigital%5Fexpression%2Etxt%2Egz
https://doi.org/10.1101/217737
http://creativecommons.org/licenses/by-nc/4.0/


Download and processing of inDrop pancreatic islet data365

Raw sequencing data were downloaded from SRA (experiment accession SRX1935938). In this366

experiment by Baron et al. (2016), inDrop was applied to pancreatic islet tissue from a human donor. Data367

was processed using the same pipeline used for the inDrop pure RNA data, and only profiles with a total368

UMI count of at least 1,000, resulting in a dataset containing UMI counts for 19,865 protein-coding genes369

across 2,109 cells.370

Download of Seq-Well PBMC data371

UMI counts were downloaded from nature.com (http://www.nature.com/nmeth/journal/v14/n4/extref/nmeth.4179-372

S2.zip from Gierahn et al. (2017)). The dataset consisted of UMI counts for 6,713 genes (pre-filtered by373

the authors) across 4,296 cells.374

Download and processing of mouse myeloid progenitor data375

UMI counts were downloaded from GEO, accession number GSE72857. The 19 clusters for cells are376

available at MAGIC’s (Dijk et al. 2017) code repository: https://github.com/pkathail/magic/issues/34.377

27,297 cells with cluster labels were used for performing k-nearest neighbor smoothing (see Algorithm 1),378

and smoothed values were normalized to UCPM (UMI counts per million). For visualization as a heatmap379

in Figure 6a-b, the z-score of every gene across cells was calculated. For scatter plots in Figure 6c-e, the380

expression of each gene was log2 (UCPM + 1).381

Prediction of scRNA-Seq noise characteristics based on Poisson statistics382

In this paper, we initially focus on the technical variation observed in scRNA-Seq data for droplets383

containing identical pools of pure mRNA. Let u′ij be the observed UMI count for the i’th gene (or ERCC384

spike-in) in the j’th droplet, for i = 1, ..., p and j = 1, ..., n. Similarly, let U ′ij be a random variable385

representing the UMI count for the i’th gene in the j’th cell. We assume that U ′ij is Poisson-distributed386

with mean λ′ij = miej , where mi is the number of mRNA molecules present for the i’th gene, and ej387

corresponding to the capture efficiency of the scRNA-Seq protocol for the j’th droplet (both mi and ej388

are unknown). We further assume that U ′i1, ..., U
′
in are independent, for all i. For the sake of simplicity,389

we assume that the read coverage (the number of reads sequenced per cell) is infinite, so that there are no390

cases in which a transcript is not observed due to limited read coverage. In practice, limited read coverage391

will not invalidate the Poisson assumption, but result in lower “effective” capture efficiencies.392

If all ej were identical (say, equal to eglobal), then U ′i1, ..., U
′
in

i.i.d∼ Poisson(λ′i), with λ′i = mie
global.393

Grün, Kester, and Oudenaarden (2014) have proposed to normalize the expression profile of each cell to394

the median total UMI count across cells (Model I in Grün et al.), in order to counteract the differences in395

capture efficiency (“efficiency noise”). Median-normalization consists of calculating the total UMI count396

per profile (cell or droplet), tj =
∑
i u
′
ij , calculating the median tmed = median{t1, ..., tn}, and then397

multiplying each u′ij by the factor tmed/tj .398

Based on the results by Grün et al., we hypothesized that median-normalized data would be ap-399

proximately Poisson-distributed, as long as the differences in capture efficiency were not too extreme.400

Therefore, we let N ′i1, ..., N
′
in represent the UMI counts for the i’th gene after median-normalization, and401

assume them to be i.i.d. Poisson(λ′i).402

For Poisson-distributed variables, the variance is always equal to the expectation (defined by λ). Let
Ni ∼ Poisson(λ′i). For the coefficient of variation (CV) of Ni, we have:

CV (Ni) =

√
var(Ni)

E(Ni)
=

√
E(Ni)

E(Ni)
=

1√
E(Ni)

= E(Ni)
−0.5

Taking the logarithm on both sides gives:

logCV (Ni) = −0.5 ∗ logE(Ni)

Therefore, the relationship between logE(Ni) and logCV (Ni) is linear with a slope of -0.5. This is403

indicated by the gray lines in Figure 1a-f.404

The probability of observing a count of zero for Ni is given by the Poisson PMF:

f(x) =
λxi e
−λi

x!
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Therefore, P (Ni = 0) = e−λi values are shown as the orange lines in Figure 1g-i.405

If a computational pipeline used to determine UMI counts reports systematically inflated values,
then the median-normalized UMI counts for the i’th gene can be approximately represented by a scaled
Poisson variable N inf

i = cN ′i , where c is the inflation factor. N inf
i then has mean cλ′i and variance c2λ′i,

so for CV (N inf
i ), we have:

CV (N inf
i ) =

√
var(N inf

i )

E(N inf
i )

=

√
cE(N inf

i )

E(N inf
i )

=
√
c

1√
E(N inf

i )
=
√
cE(N inf

i )−0.5

Taking the log on both sides gives:

logCV (N inf
i ) = −0.5 logE(N inf

i ) + 0.5 log c

Therefore, the relationship between logE(N inf
i ) and logCV (N inf

i ) will still be linear, but with an y-axis406

intercept of 0.5 log c instead of 0, which is consistent with Figure 3b,e.407

Prediction of the effect of aggregating scRNA-Seq expression profiles from technical408

replicates409

We again assume that for droplets containing identical pools of pure mRNA, the median-normalized
UMI counts N ′i1, ..., N

′
in

i.i.d∼ Poisson(λi). Let S′i =
∑
j N
′
ij , and Ni ∼ Poisson(λ′i). It is clear that

CV (S′i) = CV (N ′i)/
√
n:

CV (S′i) =

√
var(S′i)

E(S′i)
=

√
n ∗ var(Ni)
nE(Ni)

=
1√
n
CV (Ni)

Similarly, for averaged UMI counts A′i =
∑
j Nij/n:

CV (A′i) =

√
var(A′i)

E(A′i)
=

√
(1/n2) ∗ var(Ni)

E(Ni)
=

1√
n
CV (Ni)

This effect is demonstrated in Figure 2.410

Smoothing of scRNA-Seq expression profiles from biological samples based on Poisson411

statistics412

In real data, genes can exhibit differential expression across cells. Therefore, we define λij = mijej ,413

wheremij is the number of mRNA molecules present for the i’th gene in the j’th cell, and ej is the capture414

efficiency of the scRNA-Seq protocol for the j’th cell. Let Uij be a random variable representing the UMI415

count for the i’th gene in the j’th cell. We again assume that Uij is Poisson-distributed with mean λij , and416

that Ui1, ..., Uin are independent, for all i. Let Zj = {zj1, ..., zjk} be the set of k nearest neighbors of the417

j’th cell, as determined in Algorithm 1. Let λsmooth
ij = λij +

∑
z∈Zj

λij . We then define the aggregated418

expression levelAij = Uij+
∑
z∈Z|

Uiz , and note thatAij ∼ Poisson(λsmooth
ij ). From the aforementioned419

discussion, it follows that if the k neighbors have transcriptomes that are sufficiently similar to that of420

the j’th cell, and if the efficiency noise is not too strong, then CV (Aij) ≈ CV (Uij)/
√
k + 1. Similarly,421

we can calculate the averaged expression level Sij = Aij/(k + 1). Then Sij is a Poisson variable with422

mean λsmooth
ij , scaled by a factor of 1/(k + 1), and therefore has the same CV as Aij . The point here is423

that even if the Uij are not identically distributed (due to expression differences and/or efficiency noise),424

simple aggregation or averaging will always result in Poisson-distributed smoothed values. The same is425

not true for weighted sums or averages. Let {wj0, wj1, ..., wjk} represent weights (all positive), and let426

Wij = wj0Uij +
∑
z∈Z|

wj1Ujz . Then the weighted sum Wij is neither a Poisson nor a scaled Poisson427

variable, unless all weights are identical.428
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Figure 1. Noise profiles of three high-throughput single-cell RNA-Seq platforms. (a-c) Relationship
between mean UMI count and coefficient of variation (CV) in pure RNA replicates, analyzed using
inDrop (a) Drop-seq (b), and 10x Genomics (c). For inDrop, RNA was extracted from cultered
cells (Klein et al. 2015). For Drop-Seq and 10x Genomics, ERCC spike-in RNA was analyzed
(see Macosko et al. (2015) and Zheng et al. (2017)). (d-f) The same relationship after normalizing each
profile to the median transcript count (see Methods). (g-i) Expected vs. observed fraction of zeros, as a
function of mean expression (after median-normalization). For inDrop data (a, d and g), a randomly
sampled subset of 1,000 genes is shown for better readability.
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Figure 2. Simple averaging of scRNA-Seq expression profile replicates reduces the coefficient of
variation in a manner predicted by Poisson statistics. (a) Effect of averaging on the coefficient of
variation, for 1,000 randomly selected genes in the inDrop pure RNA dataset (Klein et al., 2015). Solid
lines represent the theoretical relationship based on the Poisson distribution. After averaging of 16
profiles at a time, the CV can be seen shifted downwards by about 0.6 units, which corresponds to a factor
of 4 on the log10-scale used. (b) Distribution of UMI counts for the GAPDH gene, before and after
averaging. Bars show the observed UMI distributions. The solid lines show the theoretical distributions
for a Poisson-distributed variable representing the original values (blue), and a scaled Poisson-distributed
variable representing the averaged values (orange). To eliminate efficiency noise, both original and
averaged profiles were normalized to the median transcript count (Grün et al., 2014).
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Figure 3. Effect of scRNA-Seq data transformations on mean-variance relationships in technical
replicates from the inDrop protocol. (a-c) Gene mean-variance relationships in the pure RNA samples
(Klein et al., 2015) without transformation, with log(CPM+1) transform, and with Freeman-Tukey
transform (y =

√
x+
√
x+ 1), respectively. (d-f) Mean-variance relationships after aggregating the

expression profiles of randomly selected, non-overlapping batches of 4 cells, for the same
transformations. All plots show data for the same 1,000 randomly selected genes.
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Figure 4. Application of k-nearest neighbor smoothing to scRNA-Seq data from human
pancreatic islet tissue. Shown is inDrop data from Baron et al. (2016). Smoothing was performed using
k = 15. (a, b) Principal component analysis (PCA) with (a) and without (b) smoothing. (c, d) t-SNE
analysis with (c) and without (d) smoothing. PCA and t-SNE were performed on Freeman-Tukey
transformed (FTT’ed) data of all 19,865 protein-coding genes, and cell types were identified based on
ad-hoc expression thresholds for the same marker genes used by Baron et al. (2016). Beta cells were
defined as having expression of INS ≥ 40,000 CPM (UMI counts per million); alpha cells, GCG ≥ 5,000
CPM; delta cells, SST ≥ 40,000 CPM; acinar cells, CPA1 ≥ 1,000 CPM. Cells that exceeded none of the
thresholds, or more than one, were labeled as “other / unclassified”. For t-SNE, the Barnes-Hut
algorithm (Van Der Maaten 2014) was applied with perplexity=100 and default parameters otherwise. (e,
f) Hierarchical clustering of genes and cells with (e) and without (f) smoothing. Clustering was
performed using correlation distance on genes and Euclidean distance on cells, both with average linkage,
on smoothed and FTT’ed data, filtered for the 1,000 most variable genes. (g, h) Expression of cell
type-specific marker genes (Baron et al. 2016) with (g) and without (h) smoothing. Cells are ordered as in
(e, f).
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Figure 5. Effect of k-nearest neighbor smoothing on correlations between peripheral T cell and
monocyte marker genes. Shown is Seq-Well data from human peripheral blood mononuclear
cells (Gierahn et al. 2017). All panels show data for the same randomly selected sample of 1,000 cells
(out of 4,296), but smoothing was performed on the full dataset. (a-c) Correlations of the T cell receptor
genes CD3G and CD3E, for different degrees of smoothing. (d-f) Correlations of CTSB and SOD2 that
were used by Gierahn et al. (2017) as monocyte marker genes. (g-i) Correlations between CTSB and
CD3E.

17/18

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/217737doi: bioRxiv preprint 

https://doi.org/10.1101/217737
http://creativecommons.org/licenses/by-nc/4.0/


c

d

e

a

b

Figure 6. Application of k-nearest neighbor smoothing to scRNA-Seq data of mouse myeloid
progenitors. This figure is directly comparable to Figure 3 from Dijk et al. (2017). (a, b) Heatmaps of
the expression matrices for (a) 33 key hematopoietic genes, and b) 15 surface marker genes of immune
cells, as defined in Paul et al. (2015), before smoothing (left) and after smoothing (right). Gene are
ordered as same as shown in Dijk et al. (2017), Figure 3. Cells from left to right are ordered in clusters
(C1-C19) as defined in Paul et al. (2015). c-e) Scatter plots of expressions showing the recovery of
relationships of three pairs of immune marker genes after smoothing with different k (k=0, 10, 50, 100,
200, 400). Each dot is an individual cell colored by the 19 clusters used in a. See Methods for details.
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