bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Johns Hopkins University
Applied Physics Laboratory
INTELLIGENT SYSTEMS CENTER

- 00000000
The Block Object Storage Service (bossDB): A
Cloud-Native Approach for Petascale Neuro-

science Discovery

Robert Hider Jr.*, Dean M. Kleissas*, Derek Pryor, Timothy Gion, Luis Rodriguez, Jordan Matelsky, William

Gray-Roncal*, Brock Wester*

Johns Hopkins University Applied Physics Laboratory; Laurel, Maryland.

Correspondence: brock.wester, william.gray.roncal@jhuapl.edu
* Authors contributed equally

October 25, 2019

Abstract

Large volumetric neuroimaging datasets have grown
in size over the past ten years from gigabytes to
terabytes, with petascale data becoming available
and more common over the next few years. Cur-
rent approaches to store and analyze these emerg-
ing datasets are insufficient in their ability to scale
in both cost-effectiveness and performance. Addi-
tionally, enabling large-scale processing and annota-
tion is critical as these data grow too large for man-
ual inspection. We provide a new cloud-native man-
aged service for large and multi-modal experiments,
with support for data ingest, storage, visualization,
and sharing through a RESTful Application Program-
ming Interface (API) and web-based user interface.
Our project is open source and can be easily and cost-
effectively used for a variety of modalities and appli-
cations.

1 Introduction

Mapping the brain to better understand cognitive
processes and the biological basis for disease is a fun-
damental challenge of the 21st century that is only
now emerging as a realistic endeavor, realizing the
dreams of early neuroscientists such as Ramoén y Ca-
jal, who were limited to sketching brain maps in ink,
one neuron atatime. Technological advances in neu-
roscience have exploded over the last ten years, mak-
ing it almost routine to image high-resolution (sub-
micron) brain volumes in many laboratories around
the world [1, 2, 3, 4, 5].

As new tools for interrogating tissue at these reso-

lutions advance and become more common, a cen-
tralized data archive is needed to enable the large
(tera- to petascale) storage, visualization, and discov-
ery processes, and address some of the challenges
identified by the community [3, 6]. While research
groups are beginning to embrace data archives, most
treat the system as simply a place to deposit finalized
data, with raw datasets generated and stored in a cus-
tom format and analyzed and inspected with custom
software. At this scale, it is quickly becoming impos-
sible for researchers to characterize many of the un-
derlying properties; indeed, for petascale volumes, it
is likely that most of a data volume is never viewed
in detail by a human. Additionally, conventional ap-
proaches for automatically or semi-automatically re-
constructing neuronal maps focus on building meth-
ods for small volumes, and scaling these tools to op-
erate on multi-terabyte or petabyte data volumes is
often either unachievable or significantly beyond the
capabilities and budgets of a research group.

Large datasets are a resource incredibly rich in sci-
entific content, which should be shared with oth-
ers to best leverage the investment of time and re-
sources and to fully exploit the value of the data. Due
to the challenges in collection, storage, and analysis
of terascale and petascale data volumes, few public
datasets of this size are routinely shared, although
many such volumes exist on local storage and a del-
uge of new data is forthcoming [7, 8, 9].

We considered use cases such as the first fully-
automated pipelines for processing and assessing X-
ray Microtomography (XRM) [10] and electron mi-
croscopy (EM) datasets [1, 2, 4] and work by many
academic laboratories around the world to under-
stand state-of-the-art approaches and their limita-


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

@ Tools
Mgt Console

Single Sign-On
v 4
> ] api

$SO Management

Redis Cache

. Web-Based na
Visualization User Authorization

[N <«
Dataset Management : —_— ||

Ingest Service DynamoDB Lambda Call(s)

H@)| spk (Python)

Metadata Service l T

Cutout Service

Image Service

Ingest Client

Downsample

Figure 1: A high-level schematic of bossDB platform.

tions, and emphasize that high-performance and
scalable data storage is an essential component of
any modern connectomics effort. In designing our
Block and Object Storage Service Database (bossDB),
we researched several related efforts, including DVID
[11] which excels in versioned terascale storage and
CATMAID [12] which provides a mature manual an-
notation platform. We previously worked with Neu-
roData to develop ndstore [13], which originated and
implemented many of the design principles neces-
sary to store and access high-dimensional imaging
datasets, including an efficient internal data repre-
sentation and associated spatial indexing scheme;
the Reusable Annotation Markup for Open Neuro-
science (RAMON), an annotation schema for connec-
tomics [14]; an API to remotely access services; and
MATLAB and Python toolkits to facilitate usability.
Based on this prior research and an understanding of
the evolving requirements driven by new and matur-
ing imaging modalities, we created a robust, cloud-
native petascale datastore with a number of services
and support tools (Figure 1).

2 Methods

To enable large-scale, collaborative research we de-
veloped and deployed a cloud-native data archive to
support the storage, analysis, and sharing of large
spatial datasets. Service-oriented architectures have
continued to grow in popularity and possess many
appealing properties when designing a cloud-based
data archive [15]. Our solution, called the Block and
Object Storage Service (bossDB), is currently deployed
in the Amazon Web Services (AWS) cloud and has
been robustly architected to leverage cloud capabili-
ties and ensure a highly-available, scalable, and cost-
efficient system.

21 Spatial Database

The spatial database is the foundation of bossDB, and
uses the strengths of the cloud to efficiently store

and index massive multi-dimensional image and an-
notation datasets (i.e. multi-channel 3D image vol-
umes). A core concept is our managed storage hier-
archy, which automatically migrates data between af-
fordable, durable object storage (i.e. Amazon S3) and
an in-memory data store (i.e. Redis), which operates
as read and write cache database for faster IO perfor-
mance. This allows for storage of large volumes at a
low cost, while providing low latency to commonly
accessed regions. We utilize AWS Lambda to per-
form parallel IO operations between the object store
layer and memory cache layer and DynamoDB for in-
dexing. These serverless technologies allow bossDB
to rapidly and automatically scale resources during
periods of heavy operation without incurring addi-
tional costs while idle.

Figure 2: An illustration showing image slices (left)
being composed into 3D cuboid volumes (middle).
Arbitrary requests may be made to extract image re-
gions of interest (right).

Figure 3: An illustration showing annotations, com-
posed of voxel labels (left) and how a unique anno-
tation identifier can represent a unique object in the
image data (right).

The bossDB spatial database is designed to store
petascale, multi-dimensional image data (i.e. multi-
channel 3-dimensional image volumes, with op-
tional time series support, Figure 2, 3) and associ-
ated co-registered voxel annotations. In this context,
voxel annotations are unsigned 64-bit integer labels
stored in a separate channel that is in the same coor-
dinate frame as the source image data. Each unique
uint64 value represents a unique object (e.g., neuron,
synapse, organelle). A user can then label voxels that
have some semantic meaning, typically the result of


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Cuboid

Morton Store

Index:12

'
@

Cuboid Index
Table

Figure 4: An illustration showing how large 2D image slices generated by an electron microscope are re-
formatted as cuboids, which fit into a larger 3D volume, indexed using a z-order curve.

manual annotation or automated processing. The
database maintains an index of annotation locations,
enabling efficient spatial querying and data retrieval
(Figure 4).

The internal representation of volumetric data is
inherited from previous collaborative work with the
NeuroData ndstore project[13, 16]. Here, we operate
on small cuboids, or 3D chunks of data (e.g., 512 x
512 x 16 voxels), which are stored in Amazon S3 as
compressed C-order arrays. Cuboids are indexed us-
ing a Morton-order space-filling curve, which maps
the 3D location of each cuboid to a single dimension.
In addition, annotations are indexed so bossDB can
quickly retrieve which annotation IDs exist in an in-
dividual cuboid, and in which cuboids a unique ID
exists. With these indices, all of which are stored in
auto-scaling Amazon DynamoDB tables, the bossDB
API can provide spatial querying of annotations by ID
and efficient retrieval of arbitrary data volumes. The
database will also render and store a resolution hi-
erarchy through down sampling of a dataset, which
is critical for visualization applications to efficiently
provide low-resolution views and useful when pro-
cessing large datasets.

The spatial database supports various bit-depths
(i.e. uint8, uint16 image channels and uint64 anno-
tation channels) and we will provide additional bit-
depth and data formats as needed.

2.2 Single Sign-0n (SS0) Identity Provider

A centralized and standalone authentication server
provides single sign-on functionality for bossDB
and integrated tools and applications. This allows
bossDB to control permissions internally and oper-
ate securely, while maintaining the ability to federate
with other data archives in the future.

A robust authentication and authorization system
provides many important benefits, such as the abil-
ity to keep some data private while other data public
and to control what actions individual users are per-
mitted to perform. We use the open source software
package Keycloak as an identity provider to manage
users and roles. We created a Django OpenID Con-

nect plugin to simplify the integration of services
with the SSO provider.

Our identity provider server intentionally runs in-
dependently from the rest of bossDB system, forc-
ing the bossDB API to authenticate just like any other
SSO integrated tool or application, and making fu-
ture federation with other data archives or authenti-
cation systems easy. The Keycloak server is deployed
in an auto-scaling group that sits behind an Elastic
Load Balancer.

2.3 Application Programming Interface (API)

As the primary interface to bossDB, the API provides
a collection of versioned, RESTful web services. It en-
forces access permissions and organizes data in a log-
ical data model for spatial and functional results. Be-
cause the API is versioned, the bossDB storage engine
can support significant changes while still maintain-
ing backwards compatibility with legacy applications
and tools. All requests to the API are authenticated
through the SSO service or via a long-lived API token,
which enables tracking usage and throttling requests
as needed to manage cost and ensure reliable perfor-
mance (e.g., high bandwidth power user vs. a limited
guest user). The services bossDB provides are sum-
marized below:

2.31 SSO Management and User Authorization

A set of services to manage users, roles, groups, and
permissions. Roles limit what actions a user can per-
form on the system, while permissions limit what
data users can access or manipulate. Permissions are
applied to bossDB datasets via groups, making it easy
to manage and control access for both individuals
and teams. Through the application of permissions,
a researcher or administrator can choose to keep a
dataset private, share with collaborators, or make it
publicly available.

2.3.2 Dataset Management

The bossDB API organizes data into a logical hierar-
chy to group related data together (e.g., source image


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

data and associated annotations, 2-photon and EM
datasets from the same tissue sample). This service
provides interfaces to create and manage datasets
and their properties.

2.3.3 Ingest

A critical challenge when using a centralized data
archive is the ingest of large datasets, as users will
always locally organize and store data they generate
in unique ways. The Ingest Service facilitates mov-
ing large datasets from local storage into bossDB by
decoupling the upload of data to the cloud and in-
gesting of data into the spatial database, allowing in-
dependent scaling and failure recovery. The service
provides methods to create a new ingest job, monitor
the status of a job, join an upload client worker to a
job, and cancel a job.

(1]
=5 | Ingest Client 4;} API | € Spatial DB

StLé’r(aagle 0/ ¢ @Ti‘iﬁ
(s}

Upload Indexing Ingest

Temporary
Lambda

Queue S3 Bucket @ ] Lambda

Figure 5: A diagram outlining the ingest process.

2.3.3.1 Tile ingest

As demonstrated in Figure 5, the ingest process di-
rectly leverages AWS infrastructure, massively scal-
ing on demand. First, using the ingest client a user
uploads an ingest job configuration file to the API
(1) which populates a task queue, enumerating all
tiles that must be uploaded, and returns temporary
AWS credentials. Next, the ingest client retrieves a
task from the Upload Task Queue (2), and loads the
requested local file into memory as an image tile
(3) and uploads the tile data to an S3 bucket (4).
The ingest client then writes a message to the index
queue signaling it is finished with this tile (5). An
AWS Lambda automatically fires when a message en-
ters the Index Queue and it uses DynamoDB to track
which tiles are successfully written to the tile bucket
(6)(7) and when enough tiles in a region have arrived
to generate the bossDB cuboid data representation, a
second Lambda function is triggered (8). This Ingest
Lambda function then loads the specified tiles, refor-
mats them into cuboids, inserts them into the Spatial
DB S3 bucket, updates the Spatial DB cuboid index,
and finally marks the temporary tiles for deletion
(9). The ingest client supports both parallel and dis-
tributed operation, allowing users to maximize their
network bandwidth.

2.3.3.2 Volumetric ingest

The ingest process also supports uploading three-
dimensional chunks of data in the CloudVolume for-
mat [17]; this interface can be straightforwardly ex-
tended to other formats. Similar to Tile Ingest, the
ingest-client is used to upload an ingest-job config-
uration file to the API, populating a task queue with
all chunks to be uploaded. The ingest client then re-
trieves a task from the Upload Task Queue, and loads
that chunk into memory. The memory chunk is di-
vided into multiple bossDB cuboids (512 x 512 x 16)
and each cuboid is uploaded to an AWS S3 bucket.
Upon uploading, the S3 update will trigger an AWS
Lambda that copies the cuboid into main s3 store,
adds an entry in DynamoDB and marks the original
cuboid for deletion.

2.3.4 Dataset Metadata

bossDB can store arbitrary key-value pairs linked to
data model items, which is useful to track experimen-
tal metadata and provenance (e.g., voxel size, animal
information, annotation algorithm used). This ser-
vice provides an interface to query, create, update,
and delete key-value pairs associated with a dataset.

2.3.5 Cutout

A service to interact with the Spatial Database by
reading and writing arbitrary data volumes. While
bossDB stores all data internally using a standardized
format, the cutout service uses HTTP content negoti-
ation to determine the data format of a request, al-
lowing bossDB to easily support user-specified for-
mats when uploading or downloading data (e.g.,
compressed C-order blob, hdf5 file, pickled numpy
array). This service enables scalable analytics by let-
ting users access arbitrary chunks of data in parallel,
perform automated processing, and write the anno-
tation result back to bossDB. It also supports query-
ing for the spatial properties of annotations, such
as the bounding box of an annotation or identifying
which annotations exist within a region.

2.3.6 Image

In addition to our volumetric cutout service, we pro-
vide an image service to meet common user needs,
which retrieves a 2D slice of data from the spatial
database, along one of the three orthogonal planes
(i.e., XY, XZ, YZ), encoded as an image file. Again,
HTTP content negotiation is used to determine the
format of the response (e.g., png, jpeg). The ser-
vice supports arbitrary image sizes or a fixed tile size,
which is often used by visualization tools.


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

2.3.7 Downsample

To allow users to quickly assess, process, and in-
teract with their data, we need to iteratively build a
resolution hierarchy for each dataset by downsam-
pling the source data. This is a workflow that is
run infrequently and on-demand, and needs to scale
from gigabytes to petabytes of data. We developed
a serverless architecture built on AWS Step Func-
tions to manage failures and track process state.
AWS Lambda is used to perform the underlying im-
age processing in an embarrassingly parallel, scal-
able fashion. This approach allows us to minimize
resource costs while scaling on-demand in a fully-
automated paradigm. It is also possible to perform a
partial downsample when only a portion of the origi-
nal dataset has changed, saving the time and expense
of re-running the process on the entire database.

24 User Tools

User facing tools are required to make a data archive
truly useful, easy to use, and well documented. We
currently offer a web-based management console, an
ingest client, and a client-side Python module for
programmatic interaction. We have also integrated
3rd-party web-based data visualization tools. While
bossDB API provides a rich interface to interact with
the system, user friendly tools built on top of the API
are critical to increase utility and adoption by the
community. We expect this tool library to grow as
users build on the core bossDB technologies.

241 Web-based Management Console

bossDB has a web interface that lets users perform
common actions directly in their browser (e.g., create
a dataset, monitor an ingest job, share a dataset with
auser). This console is the primary interface for most
users and will expose much of the API’s functional-
ity through an intuitive graphical interface. From the
console, a researcher is able to manage datasets, dis-
cover new data, and launch the visualization tool.

2.4.2 \Web-based Visualization

A critical capability to any data archive is the abil-
ity to easily visualize stored data. Whether inspect-
ing ingested data, exploring a dataset, or sharing
an interesting sample with a collaborator, often the
most common interaction with stored data will be
through visualization. We integrated a version of
Neuroglancer [18] to let users visually explore data
stored in bossDB.

2.4.3 Ingest Client

We have developed an open source ingest client in
Python to manage uploading data to bossDB. The in-
gest process operates on a upload task queue which
contains tasks specifying individual 2D tiles or 3D
chunks of data to upload. To deal with the unique for-
mats and file organization methods of diverse users,
the client uses a simple plug-in design to import cus-
tom snippets of code responsible for taking a task,
finding the right file, and loading the data into mem-
ory, which is then uploaded by the client. The work
queue design allows copies of the client to be run dis-
tributed across compute nodes and in parallel on a
single machine, substantially increasing throughput.

2.4.4 Python Software Development Kit (SDK)

To support developers and researchers who want to
programmatically interact with bossDB, we provide
a pip-installable Python library that abstracts much
of the API's complexity away from the user. Data
cutouts of arbitrary size can be efficiently retrieved
from our archive, enabling easy integration with ana-
lytics tools. The current SDK, called intern, will con-
tinue to be expanded and supported to accommodate
updates and additions to the existing bossDB system
and user requests.

3 Results

3.1 Motivating Application

Many of our design requirements were motivated by
the Machine Intelligent from Cortical Networks (MI-
CrONS) Program [7]. This effort seeks to rapidly
advance machine learning capabilities by creating
novel machine learning algorithms that use neurally-
inspired architectures and mathematical abstrac-
tions of the representations, transformations, and
learning rules employed by the brain. To guide the
construction of these algorithms, the program cen-
ters around massive co-registered functional (e.g.,
two-photon calcium imaging) and structural (e.g.,
EM and XRM) neuroimaging experiments aimed at
estimating the synapse-resolution connectome of a
1mm? volume of cortex, represented by 2 petabytes
of data, and using that information to constrain ma-
chine learning architectures. Our goal was to orga-
nize, store, and support the analysis of these large
functional and anatomical datasets while enabling
public dissemination.

3.2 Deployment

We envision that this data archive will facilitate neu-
roscience inquiries through an extensible, scalable


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

process, with a sample process outlined in Figure 6.
Below we describe our results to date for the MI-
CrONS program datasets. Currently we serve approx-
imately 50 regular users and 2 PB of compressed im-
age data in our hosted system. In addition bossDB
has 13TB of data from other collaborators.

-

[%] ngest service

[£%] Ingest client

3.21 Implementation

Figure 7 shows the architecture of bossDB. The sys-
tem has two user facing services: Authentication and
Web Server Endpoint, both of which sit behind AWS
elastic load balancers. The system uses Keycloak
servers in a high-availability configuration for single
sign-on authentication. The web server endpoints
use Django API, to provide access to the majority of
the services in bossDB.

bossDB uses serverless computing and storage,
with AWS Lambda, SQS, S3 and DynamoDB to pro-
vide all of the other services mentioned in Section 2:
Ingest, Metadata, Cutout, Image and Downsample.
Using serverless computing and storage for these
components will automatically scale with demand
and eliminate the need to maintain components.

bossDB is installed using the AWS CloudFormation
service along with Salt and Packer to manage our in-
frastructure. This allows us to quickly duplicate the
environment for testing and development and even
change instance sizes within the new environments.

Data Data s
Generation Ingest “
3 4
[ ] [
o M [mHzmwnise o M [mimentee
' Image Service Image Service
[ ] [ ]
[ .
N Weh Based
Data L iz
Data Visualization | 2 i ¥
Analytics & Publication

Figure 6: A diagram outlining an example user story
showing utilization of the bossDB infrastructure. A
typical research group collecting data for a hypothe-
sis will move sequentially from (1)-(4). Other groups
will extend these analyses using steps (3) and (4).

Elastic Load

Balancer
apitheboss.io

—9

m f
Endpoml —

RDS,MySQL Instance S
(data model objects & ervers -

/
I

|

|

|

|

|

|

|

|

| .
| permissions)

|

| * *
|

| 1]

| A

|

|

|

|

|

I

|

|

|

|

\

auth.theboss.io / \ .; ]
—3— © —[J

‘ Single Sign-On :

RDS MysQL
: Server :

Auto-scaling group
with DNS Failover

@

. Vault Servers |

. Consul Servers

Read Cache / DyanmoDB

Write Buffer

Cache Manager

e —- @
- Bastion S
E astion Server

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
I
|
|
|
|
|
|
|

* High-availability
managed AWS service

Additional AWS |
ServicesinUse |

e 0

CloudWatch CloudFormation

Figure 7: A high-level architecture diagram of bossDB
as deployed using Amazon Web Services architecture.

cremi-example /A

Channels

‘Add Channel

Channel Name Actions

. =

LABELS

Showing 1to 2 of 2rows

Experiment Properties
Creator  will

Experiment A

Astring identifier, unique to this Collection

Description ~ cremi-test-A

Optional

Figure 8: An example screenshot from our bossDB
console.

3.2.2 Data Generation

Researchers collect experimental data; stitching,
alignment, and registration take part prior to upload
to bossDB. Users create new resources in bossDB to
identify and store their datasets, recording their ex-
perimental parameters and dataset properties (e.g.,
voxel dimensions, bit depth, spatial extent) prior to
upload. An example screenshot from our web con-
sole is shown in Figure 8; this setup can be accom-
plished programmatically using intern as well.

3.2.3 Datalngest

Once available, a researcher uploads image data via
one of several methods supported by bossDB (e.g.,
REST API, ingest client), safely and efficiently storing


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

data in bossDB. Large datasets can be uploaded in-
crementally, with data available for read as soon as it
has been ingested, providing access to collaborators
in minutes, not months.

300

250

N
=}
=}

Ingest Speed (GB/min)
= o
(=) 1%
o o

50

Ingest Duration (min)

Figure 9: Volumetric Ingest throughput

16

14

=100 pods

12
200 pods

=
£
= 10 —400 pods
=)
T 8
by
o
@
% 6
41
a0
£
4 vv«AﬁAmJ\»\yv/\
2
0
0 10 20 30 40 50 60 70

Ingest Duration (min)

Figure 10: Tile Ingest throughput on demand

The ingest client has already been used to upload
petabytes of EM and calcium imaging data; many
of these uploads proceed without any intervention
from the developer team with the system automati-
cally scaling to meet user’s needs.

Recent testing of the ingest process reached a max-
imum sustained ingest throughput of 230 GB/Min
(Figure 9) using the volumetric ingest-client into
bossDB. The ingest client was run on 750 kubernetes
pods across eight large servers uploading data from
an AWS Bucket. AWS Lambda scaled to over 5000
concurrent executing functions to handle the load.

To perform at this speed we were running 12 End-
point servers sized with m4.2xlarge instances, a RDS
database backed with a db.m4.xlarge instance, and
DynamoDB table sized at 2000 read / 4000 write ca-
pacity.

This test shows the how bossDB will autoscale to
meet demands (Figure 10). The same 3.2 million
tiles were uploaded during each test. Each one used

a different number of kubernetes pods running the
ingest-client (100, 200, 400). bossDB automatically
scaled endpoints, dyanmoDB read and write demand
to handle the throughput efficiently.

bossDB has monitoring capability at several levels.
In Figure 11 you see a snippet of our Ingest Dash-
board which allows the administrator to see how
much stress any one component of the system is un-
der. Notifications will also go out if any key compo-
nents fail, and when the system hits cost milestones.

3.24 Data Analytics

Many big data research analyses are enabled by
bossDB features (e.g., standardized interfaces, arbi-
trary cutouts, spatial indexing), accelerating the sci-
entific process.

One common use for bossDB is acting as a back-
end for local data analysis pipelines. Users download
chunks of data from bossDB using intern and pro-
cess it to create annotation labels using humans or
machines. The resulting annotation data is uploaded
via a choice of methods (python API, ingest client),
below we include an example of such use case.

% # import intern package
% from intern.remote.boss import BossRemote
% import numpy

% # initialize BossRemote
% rmt = BossRemote ()

% # specify data location

% COLL_NAME = 'test_collection'
% EXP_NAME = 'test_experiment'
% CHAN_NAME = 'test_channel'

% chan = rmt.get_channel (CHAN_NAME, COLL_NAME,
EXP_NAME)

% # specify download coordinates and resolution

% x_rng = [0, 1024]
% y_rng = [0, 512]
% z_rng = [0, 10]

% res = 0

% # Download the cutout from the channel
% data = rmt.get_cutout(chan, res, X_rng, y_rang,
z_rng)

# import intern package
from intern.remote.boss import BossRemote

# initialize BossRemote

rmt = BossRemote ()

# specify data location

COLL_NAME = 'test_collection'
EXP_NAME = 'test_experiment'
CHAN_NAME = 'test_channel'

# Create a reference to the channel resource:

chan = rmt.get_channel (CHAN_NAME, COLL_NAME,
EXP_NAME)

# Or use a URL to identify the channel:


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

API ELB CPU API ELB Instances and Requests

Percent 400 40p Count Count 4 gy

150 150 H 988

0 l M 1.00
1103

1104 11005
@ RequestCount

0

1103 11104 1105

@ ASG CPUULtilization

@ UnHealthyHostCount
@ HealthyHostCount

Redis Memory and CPU Redis Evictions and Connections

1156 Bytes Percent 49

100 Count Count 4 o

234G
1103

@ BytesUsedForCache

0475 0 400
1003 11/04 11105

@ CurrConnections

1104 1105
@ CPUUtzation Avg

@ CPuUtiization Max @ Evictions reclsmadwrv2xmn-{

E:B Latency S3 Index Table
05 Seconds s Count Count 1 g1
102 179 J -‘ ‘ 6.90k
l J
t
l ! } 100 = . . 100
0.001 - e 1103 11104 1105
11103 11/04 1105
@ Latency @c apacityUnitsl C apacityUnits
SQs ConsumedWriteCapacityUnits, Provisioned...

800 Sount Count 55 l Count 5y g

f
175 il

B .
400 &y ’ .
0 l 0 — 200
1103 1108 11105 1103 11104 1105

@ S3 Flush Visible @ 53 Flush Notvisible @ Provisionedwrit=CapacityUnits
@ Deadietter Visible @ ConsumedwriteCapacityunits

110k

Figure 11: A CloudWatch dashboard monitoring during ingestion.

chan = f"bossdb://{COLL_NAME}/{EXP_NAME}/{
CHAN_NAME}"

# specify download coordinates and resolution

x_rng = [0, 1024]
y_rng = [0, 512]
z_rng = [0, 10]
res = 0

# Download the cutout from the channel
data = rmt.get_cutout(chan, res, x_rng, y_rng,
z_rng)

3.2.5 Data Visualization and Publication

Data can be quickly visualized using applications
such as NeuroGlancer (Figure 12).

Data are published along with initial analysis, and
made widely accessible through bossDB. Other re-
search teams conduct additional analysis, extending
and validating the existing scientific findings. By
providing a standardized data format, it is easy for
researchers to apply new techniques and test addi-
tional hypotheses.

4 Discussion

Our data archive will enable scientists to easily access
and process large datasets, and to scale up their ap-
proaches with minimal alterations and without need-
ing large local storage. Because the results are an-
chored to a universally-accessible datastore, it is eas-
ier for others to inspect the results, improve upon
them, and reproduce processing pipelines by lever-
aging common interfaces.

When considering a cloud-native approach, ven-
dor lock-in is one potential concern — as we not only
use the AWS cloud to deploy bossDB, but have inte-
grated many of its services into the system to sub-
stantially accelerate development and performance.

2157 Y 1544 z 101 8

1EM 134 2LABELS 0

750 nm

Figure 12: An example neuroglancer web visualiza-
tion backended by bossDB, showing data from the re-
cent CREMI challenge (www.cremi.org).

To minimize the development impact of expanding
to an additional cloud provider or on-premise clus-
ter, future work is needed to create a layer of abstrac-
tion between the core software and AWS services. We
plan to continue to develop towards a microservices
style architecture, which will decrease coupling be-
tween sub-components. This will allow bossDB to be
able to independently scale sub-components and in-
crease the ability to easily deploy, update, and man-
age services. We believe that storage engines will
continue to specialize around datatypes (e.g., multi-
dimensional image data, video data, gene sequence
data) and be applicable to multiple research commu-



https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

nities through the creation of domain-specific APIs
that maintain the unique formats, organization, and
needs of that community.

We expect that as the community uses our data
archive, additional tools will be developed to address
new researcher needs, such as a universal, robust
object-level metadata system and additional visual-
ization engines. Several other research groups have
leveraged bossDB deployments, including NeuroData
[19] which serves approximately diverse collabora-
tors in several new modalities (e.g., light microscopy,
array tomography, Clarity) and added several new
tools and capabilities to the bossDB ecosystem.

One concern about running a cloud data archive is
estimating and managing cost. bossDB architecture
was designed to allow dynamic scaling of resources
to balance cost with performance and throughput ca-
pacity. As our software stack continues to mature, we
plan to further optimize our tiered storage architec-
ture (e.g., automatic migration data between S3 Stan-
dard, Infrequent Access, and Glacier tiers). The pro-
posed system will provide a framework that is able to
trivially scale from terabytes to petabytes while main-
taining a balance between cost efficiency and perfor-
mance.

As modern neuroscience datasets continue to grow
in size, the community is fortunate to have several
options to store and share their data. The precom-
pute format [18] offers a flexible, lightweight option
that is readily deployable in both local and cloud
settings. As mentioned above, DVID [11] is used to
manage immutable and versioned annotations at the
terascale level. We believe that our bossDB solution
offers key advantages in scalability (adaptable from
gigabyte to petabyte storage); authentication to man-
age user access workloads and costs; indexing to pro-
mote data exploration and discovery; and managed
services to ensure that data is maintained and avail-
able in an efficient manner for a variety of user work-
flows. For a given research lab (or even within the
lifecycle of a scientific question), one or more of these
storage solutions may be most appropriate to enable
and share results.

The standardization and scalability provided by
our data archive will support a fundamental change
in how researchers design and execute their exper-
iments, and will rapidly accelerate the processing
and reuse of high-quality neuroscience, most imme-
diately for the large, petascale image and annotation
volumes produced by IARPA MICrONS. No previously
existing platform met the operational and scaling
requirements of the program, including managing
an estimated 3-5 petabytes of image and annotation
data - much larger than public neuroanatomical data
archives. The bossDB software and documentation is
open source and we are eager to expand the user com-

munity, supported modalities, and features. More
information, examples and support are available at
bossdb.org and https://github.com/jhuapl-boss/.

References

[1] D.D.Bock, W.-C. A. Lee et al., “Network anatomy
and in vivo physiology of visual cortical neu-
rons,” Nature, vol. 471, no. 7337, pp. 177-182,
2011.

N. Kasthuri, K. J. Hayworth et al., “Saturated
Reconstruction of a Volume of Neocortex,” Cell,
vol. 162, no. 3, pp. 648-661, 2015.

M. Helmstaedter, “Cellular-resolution connec-
tomics: challenges of dense neural circuit
reconstruction.” Nature methods, vol. 10, no. 6,
pp. 501-507, Jun 2013.

W.-C. A. Lee, V. Bonin et al., “Anatomy and
function of an excitatory network in the visual
cortex,” Nature, vol. 532, no. 7599, pp. 370-374,
2016.

[5] C.Dupre and R. Yuste, “Non-overlapping neural
networks in hydra vulgaris,” Current Biology,

vol. 27, no. 8, pp. 1085 - 1097, 2017.

[6] J. W. Lichtman, H. Pfister, and N. Shavit, “The
big data challenges of connectomics,” Nature
Neuroscience, vol. 17, no. 11, 2014.

MICrONS: Machine intelligence from cortical
networks. http://iarpa.gov/index.php/research-
programs/microns. retrieved 2017-10-31.

S. Mikula, “Progress Towards Mammalian
Whole-Brain Cellular Connectomics,” Frontiers
in Neuroanatomy, vol. 10, p. 62, Jun 2016.

S. Takemura, C. S. Xu et al., “Synaptic circuits
and their variations within different columns in
the visual system of Drosophila.” Proceedings of
the National Academy of Sciences of the United
States of America, vol. 112, no. 44, pp. 13 711-
13716, Nov 2015.

E. L. Dyer, W. Gray Roncal et al., “Quantifying
mesoscale neuroanatomy using X-ray microto-
mography,” eNeuro 2017, 2016.

[11] Distributed, versioned, image-oriented dataser-
vice. https://github.com/janelia-flyem/dvid. re-

trieved 2017-10-31.

[12] S. Saalfeld, A. Cardona, V. Hartenstein, and
P. Tomancak, “CATMAID: collaborative annota-
tion toolkit for massive amounts of image data,”
Bioinformatics, vol. 25, no. 15, pp. 1984-1986,

2009.


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/217745; this version posted October 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

[13] R. Burns, W. Gray Roncal et al., “The Open
Connectome Project Data Cluster: Scalable
Analysis and Vision for High-Throughput Neu-
roscience,” Proceedings of the 25th Interna-
tional Conference on Scientific and Statistical
Database Management (SSDBM), Jun 2013.

[14] W. Gray Roncal, D. M. Kleissas et al., “An Au-

tomated Images-to-Graphs Framework for High

Resolution Connectomics,” Frontiers in neu-

roinformatics (in press), pp. 1-13, 2015.

[15] ]J. T. Vogelstein, B. Mensh et al., “To the Cloud! A
Grassroots Proposal to Accelerate Brain Science
Discovery,” Neuron, vol. 92, no. 3, pp. 622-627,
2016.

[16] K. Lillaney, D. Kleissas et al., “Building nd-

store through hierarchical storage management

and microservice processing,” in 2018 IEEE

14th International Conference on e-Science (e-

Science), Oct 2018, pp. 223-233.

Cloudvolume is a python library for reading
and writing chunked numpy arrays from neu-
roglancer volumes in ”precomputed” format.
https://github.com/seung-lab/cloud-volume.

e. a. Maitin-Shepard, Jeremy, “Neuroglancer.
https://github.com/google/neuroglancer. re-
trieved 2017-06-10.”

[19] J. T. Vogelstein, E. Perlman et al., “A community-
developed open-source computational ecosys-
tem for big neuro data,” Nature Methods,
vol. 15, no. 11, pp. 846-847, 2018.

5 Acknowledgements

We would like to gratefully acknowledge our collab-
orators at NeuroData, including Alex Baden, Kunal
Lillaney, Randal Burns, Joshua Vogelstein, Ben Falk,
and Eric Perlman; Daniel Xenes at JHU/APL; Priya
Manavalan, Jacob Vogelstein, and Denise D’Angelo;
and our user community.

This material is based upon work supported
by the National Institutes of Health (NIH) grant
R24MH114785 under the Data Archives Program,
and by the Office of the Director of National In-
telligence (ODNI), Intelligent Advanced Research
Projects Activity (IARPA), via IARPA Contract No.
2017-17032700004-005 under the MICrONS pro-
gram. The views and conclusions contained herein
are those of the authors and should not be inter-
preted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of
the NIH, ODNI, IARPA, or the U.S. Government. The

U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright annotation therein.

10


https://doi.org/10.1101/217745
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Spatial Database
	Single Sign-On (SSO) Identity Provider
	Application Programming Interface (API)
	SSO Management and User Authorization
	Dataset Management
	Ingest
	Dataset Metadata
	Cutout
	Image
	Downsample

	User Tools
	Web-based Management Console
	Web-based Visualization
	Ingest Client
	Python Software Development Kit (SDK)


	Results
	Motivating Application
	Deployment
	Implementation
	Data Generation
	Data Ingest
	Data Analytics
	Data Visualization and Publication


	Discussion
	Acknowledgements

