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Counting DNA or RNA molecules using next-generation sequencing
(NGS) suffers from amplification biases. Counting unique molecular iden-
tifiers (UMIs) instead of reads is still prone to over-estimation due to
amplification and sequencing artifacts and under-estimation due to lost
molecules. We present an algorithm that corrects for these errors, based
on a mechanistic model of the PCR and sequencing process whose param-
eters have an immediate physical interpretation and are easily estimated.
We demonstrate that our algorithm outputs essentially unbiased counts
with substantially improved accuracy.

Experimental methods like RNA-seq, ChIP-Seq and many others depend on
NGS to measure the abundance of DNA or RNA molecules in a sample. The PCR
amplification step necessary before sequencing often amplifies different molecules
with different efficiencies, thereby biasing the measured abundances. This prob-
lem can be alleviated by ensuring that all molecules are distinguishable before
amplification by some combination of factors comprising a unique molecular iden-
tifier (UMI)1, which usually includes a distinct molecular barcode ligated to each
molecule before amplification (figure 1A, , , , , ). After amplification and
sequencing, instead of counting reads, reads are grouped by UMI, and each distinct
UMI is taken to reflect a distinct molecule in the original sample (figure 1A). But
while the number of distinct UMIs may be a better proxy for the molecule count, it
is still biased, for two reasons:

(a) Molecules that are amplified with low efficiency will have fewer copies made,
hence fewer reads per UMI, and thus a higher chance of being left entirely unse-
quenced (figure 1A, ).

(b) Sequencing errors, PCR chimeras, and index miss-assignment2 in multi-
plexed sequencing runs can produce phantom UMIs which do not correspond to
any molecule in the original sample (figure 1A, ).
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Figure 1: A. The relevant steps of library preparation when the UMI method is
used. The sample initially contains 3 copies of molecule and 2 copies of ,
which are made unique by labeling with UMIs ( , , , , ). Each of those molecules
is expanded into a molecular family during amplification, and a random selection of
molecules from these families are sequenced. Counting unique UMIs then counts
unique molecules, unless UMIs have read-count zero ( ) or phantom UMIs are
produced ( ). B. PCR as a Galton-Watson branching process. Molecule failed
to be copied during the 1st cycle and the final family size is thus reduced compared
to . C. Normalized family size distribution for efficiency 10%, 50% and 90%.
The arrows mark the most likely normalized family sizes for the two molecules from
(B), assuming a reaction efficiency of 90%, and taking their distinct fates during
the 1st cycle into account. D. Distribution of reads per UMI for efficiency 10%, 50%
and 90% assuming D = 4 Reads per UMI on average.

Chimeric PCR products are typically produced during later reaction cycles, and
can therefore be expected to have smaller copy numbers and hence a lower read-
count than non-chimeric PCR products. Index miss-assignment and sequencing
errors typically happen randomly, and are unlikely to produce a larger number of
reads showing the same phantom UMI. For these reasons, phantom UMIs can be
expected to have a markedly lower read count than most true UMIs, i.e. UMIs of
actual molecules in the original sample.

We present the three-step bias-correction and phantom-removal algorithm
TRUmiCount that exploits this difference in expected read counts:

1. We first filter out phantom UMIs by removing any UMI whose read count
lies below a suitable chosen error-correction threshold (T).

2. We then estimate the loss (`), i.e. the fraction of molecules that were not se-
quenced at all, or whose UMIs were removed by the error-correction threshold. This
estimate is computed using a stochastic model of the amplification and sequencing
process whose parameters are the PCR efficiency (E), and the sequencing depth
(D), expressed as the average number of reads per UMI in the initial sample. From
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the observed distribution of reads per UMI, we estimate both (raw) gene-specific
as well as library-wide values for these parameters, and compute corresponding
estimates of the loss.

3. Finally, we add the estimated number of lost UMIs back to the the observed
number of true UMIs (those UMIs with ≥ threshold reads) to find the total number
of molecules in the original sample. Since the loss can vary between genes, to
yield unbiased counts, the correction must be based on gene-specific loss estimates.
Because the raw gene-specific estimates are noisy for genes with only few observed
true UMIs, we employ a James-Stein-type3 shrinkage estimator, adjusting the raw
gene-specific parameter and loss estimates towards the library-wide ones (thus
shrinking their difference). We choose the amount of shrinkage based on each
estimate’s precision, in such a way that the expected overall error is minimized4.

We start the construction of our model of the amplification and sequencing
process with a model of PCR amplification introduced by Krawczak et al.5. Here,
each molecule is assumed to be duplicated in each cycle with probability E, also
called the reaction’s efficiency (figure 1B). While this model has been extended
by Weiss & von Haeseler6 to include the possibility of substitution errors during
amplification, exhaustively modeling all possible sources of phantom UMIs seems
futile. We therefore pursue a different approach, and model only the error-free case,
trusting the error-correction threshold to remove phantoms. Over multiple cycles,
each molecule is thus assumed to be expanded into a molecular family of identical
copies. Since each UMI is initially represented by a single molecule, random
successes or failures to copy during early cycles lead to a variation in the final
family sizes, even between identical (expect for their molecular barcode) molecules.
As the family size of each initial molecule grows, the proportion of successful copy
operations approaches the efficiency E, therefore reducing the amount of noise
added by each additional cycle. The total number of cycles thus has little influence
on the final family size distribution, and is therefore not a parameter of our model.
The final distribution does, however, depend strongly on the reaction efficiency,
with fluctuations in family size decreasing as the efficiency grows towards 100%.

For efficiencies close to 100%, most molecular families are thus of about average
size, except for those (approximately 100−E percent) families for which the first
copy failed. These are about half the average size, and form a distinct secondary
peak in the family size distribution (figure 1C, brown curve). We emphasize that due
to this, even at efficiencies close to 100%, the distribution still shows considerable
dispersion, meaning that even at high efficiencies stochastic PCR effects are not
negligible. At lower efficiencies, the family sizes vary even more wildly, as extreme
family sizes (on both ends of the scale) become more likely (figure 1C, blue and
green curves).

To complete our model of amplification and sequencing, we combine the stochas-
tic PCR model outlined above with a model of sequencing as random Poissonian
sampling7. The variability of per-UMI read counts thus has two sources – the
variability of molecular family sizes and the Poissonian sampling introduced by
sequencing. While the latter is reduced by increasing the sequencing depth, the
former is independent of the sequencing depth but is reduced by increasing the
reaction efficiency. For all reasonable error-correction thresholds T the predicted
fraction of true UMIs filtered out by the error-correction step thus grows with
diminishing efficiency E.
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We validated this model using two published RNA-seq datasets. Kivioja et al.1
labeled and sequenced transcripts in D. melanogaster S2 cells using 10bp random
molecular barcodes from the 5’ end. Shiroguchi et al.8 labeled and sequenced
transcript fragments in E. coli cells on both ends, using (on each end) one of 145
molecular barcodes carefully selected to have large pairwise edit distances. The
Y-shaped sequencing adapters used in the E. coli experiment were designed such
that each strand of a labeled double-stranded cDNA molecule produces a related
but distinguishable molecular family.

To see whether our algorithm offers an advantage over existing UMI error-
correction strategies, we pre-filtered the observed UMIs in each of the two repli-
cates of these datasets using the following existing algorithms: We first merged
UMIs likely to be erroneously sequenced versions of the same molecule, using the
algorithm proposed by Smith et al.9. For the E. coli experiment we also removed
UMIs for which the complementary UMI corresponding to the second strand of the
same initial template molecule was not detected, as proposed by Shiroguchi et al.8.

To this pre-filtered set of UMIs we then applied our algorithm. Above the error-
correction threshold (figure 2A, black bars), the observed library-wide distribution
of reads per UMI closely follows the model prediction, and the E. coli data even
shows traces of the secondary peak that represents molecules not duplicated in the
first reaction cycle. We thus conclude that our model captures the main stochastic
behavior of the amplification and sequencing processes, and accurately models the
read-count distribution of true UMIs.

The UMIs removed by our filter, i.e. those with fewer reads than the error-
correction threshold demands, (figure 2A, grey bars) are over-abundant compared to
our prediction. This over-abundance increases further as per-UMI read counts drop,
indicating the existence of a group of UMIs with significantly reduced molecular
family sizes. While wemay expect some systematic variation of family sizes between
true UMIs (on top of the stochastic variations that our PCR model predicts), we
would expect these to be gradual and not form distinct groups. We conclude that
the UMIs contributing to the observed over-abundance are indeed phantoms that
are rightly removed by our algorithm. We note that none of these phantoms were
removed by either the UMI merging algorithm of Smith et al.9, or (for the E. coli
data) by filtering UMIs for which the complementary UMI (representing the second
strand of the template molecule) was not detected.

The gene-specific (shrunken) estimates for amplification efficiency, average
reads per UMI, and loss, that our algorithm produces, vary between genes to
different degrees (figure 2B). We observe the smallest amount of variation for the
average number of reads per UMI (figure 2B, left) – the estimates of this parameter
are virtually identical for a large majority of genes, and differs only for a few
outliers.

The estimated amplification efficiencies on the other hand can vary substan-
tially between genes, for the two D. melanogaster replicates from ≈ 50% up to
≈ 70% (figure 2B, middle). Considering that in this experiment only the 3’ ends of
transcripts were sequenced, and all fragments contributing to a gene hence share a
similar sequence composition, this is not unexpected. These differences in efficiency
cause the loss to vary heavily between genes as well (figure 2B, right), from ≈ 5%
in the best case to ≈ 30% in the worst case. Without gene-specific loss corrections,
abundance comparisons between genes will thus suffer from systematic biases
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Figure 2: A. Observed and predicted library-wide distribution of reads per UMI
and parameter and loss estimates. Filtered UMIs (grey bars, left of threshold T)
are over-abundant and thus assumed to contain both phantom and true UMIs (red
dots). UMIs surviving the filter (black bars) closely follow the predicted distribution
(black dots) and are assumed to be true UMIs. B. Variability of the (shrunken)
model parameters and resulting loss between genes. Includes parameter for 7481
detected genes in D. mel. R1, 8001 genes in R2, 2380 genes in E. coli R1 and 2308
genes in R2.
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Figure 3: Relative error of estimated total number of UMIs depending on the
true number of UMIs. Left panel uses the observed number of UMIs without any
correction. Middle panel uses the raw gene-specific loss estimates to correct for lost
UMIs. Right panel uses the shrunken gene-specific estimates to correct for losses.
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against certain genes of up to ≈ 30%−5%≈ 25%.
In contrast, fragments from all parts of the transcript were sequenced in the E.

coli experiments, and together with the high sequencing depth (≈ 300 reads per
UMI), we now expect little variations of efficiency, and small and highly uniform
losses across genes. Our efficiency and loss estimates reflects this (figure 2B, middle
and right), and as the lack of outliers shows, they do so even for genes with only
few UMIs. Yet for these genes, the raw (unshrunken) gene-specific estimates are
noisy (figure S1), proving that shrinking the raw estimates successfully reduces
the noise to acceptable levels.

To further verify the accuracy of the corrected transcript counts computed by our
algorithm, we conducted a simulation study. We use the (loss-corrected) estimated
total transcript abundances of D. melanogaster replicate 1, rounded to 10, 30, 100,
300, 1000, 3000 or 10000 molecules as the true transcript abundances. We then
simulated amplification and sequencing of these transcripts, using for each gene
the previously estimated gene-specific efficiency and average number of reads per
UMI (figure 2B). To the resulting list of UMIs and their read-counts for each gene
we applied our algorithm to recover the true transcript abundances (threshold
T = 5 as before), and determined for each gene the relative error of the recovered
abundances compared to the simulation input.

Figure 3 shows these relative errors (a) if no correction is done (b) if the correc-
tion is based soley on the raw gene-specific loss estimates (i.e. no shrinkage) and (c)
for the complete algorithm as presented (i.e. using shrunken loss estimates). The
uncorrected counts systematically under-estimate the true transcript counts, in
50% of the cases by at least ≈ 10%, independent of the true number of transcripts
per gene. And even at high transcript abundances, the relative error still varies
between genes, biasing not only absolute transcript quantification, but also relative
comparisons between different genes. The counts corrected using raw gene-specific
estimates are unbiased and virtually error-free for strongly expressed genes, but
exhibit a large amount of additional noise for weakly expressed genes. The com-
plete presented algorithm using shrunken loss estimates successfully controls the
amount of added noise, and shows no additional noise for weakly expressed genes,
while still being unbiased and virtually error-free for more strongly expressed
genes.

Thus, the TRUmiCount algorithm we presented successfully removes the biases
inherent in rawUMI counts, and produces unbiased and low-noise measurements of
transcript abundance, allowing for unbiased comparisons between different genes,
exons, and other genomic features. It does so even in the presence of various types
of phantom UMIs and varying amplification efficiencies, both between samples
and along the genome. Compared to other error-correction techniques, it is not
restricted to particular types of phantom UMIs, or to a special Y-shaped design of
the sequencing adapters.

Our model of the amplification and sequencing process is mechanistic, and
its two parameters have an immediate physical interpretation. They can both
be determined from the experimental data without the need for either guesses
or separate calibration experiments. The TRUmiCount algorithm thus does not
require any changes to library preparation over the basic UMI method. By in-
specting the estimated parameters – in particular the amplification efficiency, the
amplification reaction itself can be studied. For example, by estimating model
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parameters separately for sequenced fragments of different lengths, the drop of
reaction efficiency with increasing fragment lengths can be quantified (figure S3).

The TRUmiCount algorithm can thus help to increase the accuracy of many
quantitative applications of NGS, and by removing biases from comparisons between
genes can aid in the quantitative unravelling of complex gene interaction networks.
To make our method as easily accessible as possible to a wide range of researchers,
we provide two readily usable implementations of our algorithm. Our R package
gwpcR enables a flexible integration into existing R-based data analysis workflows.
In addition, we offer the command-line tool TRUmiCount which is designed to
work in conjunction with the UMI-Tools of Smith et al.9. Together they provide a
complete analysis pipeline which produces unbiased transcript counts from the raw
reads produced by an UMI-based RNA-Seq experiment (http://tuc:tuc@www.cibiv.
at/~pflug_/trumicount).
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METHODS

A stochastic model of PCR
We follow the single-strandedmodel of Krawczak et al.5 and view PCR as a stochastic
process that during each cycle duplicates each molecule independently with a
particular probability E, called the reaction’s efficiency. For simplicity, we further
assume that a molecule is copied perfectly or not at all, i.e. that neither partial
copies nor copies with a slightly different base-pair sequence are produced, that no
molecules are destroyed or lost, and that the efficiency E stays constant throughout
the reaction. Since we use the single-stranded model, molecule for us always means
a single-stranded piece of DNA, and we do not distinguish between a strand and
its reverse complement. For our purposes, a piece of double-stranded DNA thus
consists of two indistinguishable molecules.

Before amplification, we assume all molecules in the sample to be distinguish-
able by some UMI. During amplification, each of those molecules gives rise to a
molecular family of (indistinguishable) copies. The initial size of such a family (i.e.
the number of copies it is comprised of) is 1. During the first cycle, the size increases
to 2 if the single initial molecule is copied successfully, i.e. with probability E. Con-
tinuation of this process, always using all existing molecules as potential templates
that are copied with probability E, produces a random sequence M0, M1, M2, . . .
of molecular family sizes after the 0th, 1st, 2nd, . . . cycle. This sequence forms a
Galton-Watson branching process10, and follows the recursion

M0 = 1, Mi = Mi−1 +∆i where ∆i ∼ Binom (Mi−1,E). (1)
While we are not aware of a way to obtain an explicit formula for the distribution
of the family size Mi after i cycles, the expected value and variance of Mi can be
computed explicitly. According to Harris11 (Ch. 1, Eq. 5.3), VMi = σ2mi(mi−1)

m2−m where
m respectively σ are the mean respectively standard deviation of M1. In our case
these are m = 1+E respectively σ2 = E · (1−E) and we find

EMi = (1+E)i (2)

VMi = 1−E
1+E

· (1+E)i((1+E)i −1
)

(3)

Equation 2 shows the well-known exponential growth of expected family sizes
during PCR. But apart from recovering this well-known property of PCR, the Galton-
Watson model also predicts the likelihood of deviations from this expectation due to
random failures of copy operations, and by simulation allows us to find the actual
distribution of Mi.

The normalized family size F

Due to the exponential growth of the expectation of Mi, the distribution of Mi
depends heavily on the cycle count i. That dependency, however, effects mostly only
the scale, not the shape of the distribution of Mi. To see the effects on the shape
more clearly, the effects on the scale is removed by replacing Mi with a re-scaled
version which has an expected value of one,

M̃i = Mi

EMi
= Mi

(1+E)i . (4)
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These re-scaled family sizes can be sensibly compared across cycles. We observe
that with growing cycle counts, the additional stochasticity introduced by each
additional cycle drops rapidly. The re-scaled family size after the first cycle varies
by a factor of two depending on whether the (single) copy operation during the
first cycle succeeds or fails. Later on there are more templates to copy from, and
thus the success or failure to copy any particular molecule averages out, making
the behavior of the reaction more deterministic. Finally, M̃i ≈ M̃i+1, because the
family size Mi increases during each cycle almost exactly by a factor of 1+E, which
matches the decrease of the re-scaling factor in M̃i. This informal argument can
be turned into a formal proof (see Harris11, Ch. 1, Th. 8.1) of the convergence of
the re-scaled family size as i tends towards ∞, which allows us to remove the cycle
count as a parameter entirely from what we call the normalized family size

F = lim
i→∞

M̃i. (5)

While there is again no explicit formula known for the distribution of the
normalized family size F, we find its variance from equations 3, 4 and 5 to be

VF = 1−E
1+E

. (6)

Computing the distribution of F

To find the actual distribution (in terms its density dPCR(· |E) with the reaction
efficiency E as a parameter) of the normalized family size F for a particular efficiency
E we resorted to simulation. We simulated the PCR process for efficiencies from 0.01
to 0.99 (steps of 0.01 up to 0.90, steps of 0.005 up to 0.94, steps of 0.002 up to 0.99).
Each time, we simulated 109 independent trajectories, and ran each simulation
until the expected family size was 107 molecules (i.e. for n = 7/log10(1+E) cycles).
At that point the stochasticity further cycles would introduce is negligible and we
may thus assume M̃n ≈ M̃n+1 ≈ F.

For each efficiency E, we normalized the simulated raw family sizes using
equation 4 to obtain 109 independent samples of F. Using kernel density estimation,
we then estimated values of the density function dPCR(λ |E) of the normalized family
size distribution on a grid of 318 values of λ between 0 and 50. The grid points are
spaced non-uniformly, being finest (distance 0.0025) around 0 and 1 and getting
coarser elsewhere.

This procedure resulted in a 123× 318 matrix of densities, i.e. dPCR(λ |E)
evaluated for each combination of one of the 123 simulated efficiencies E, and one
of the 318 normalized family sizes λ. Using this (pre-computed and stored) matrix,
the density function dPCR(λ |E) can be evaluated quickly for arbitrary values of E
and λ by two-dimensional polynomial interpolation12.

The Sequencing Process
The normalized family size distribution models the abundance of molecules with
a particular UMI. To model the read count of a particular UMI after sequencing
(i.e. the number of reads stemming from a particular pre-amplification molecule),
we model next-generation sequencing with a poissonian sampling model7. This
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amounts to assuming that (a) each individual copy has the same probability of
being sequenced, (b) this probability is small compared to the sequencing depth
and (c) there were many (distinguishable) original molecules. We further assume
that an UMI is on average represented by D reads. Then the read count C of an
UMIs with known normalized molecular family size F is Poisson distributed,

C
∣∣ F ∼Poisson (F ·D),

P
(
C = k

∣∣ F
)= e−F·D

(
F ·D)k

k!
. (7)

In general, however, the exact family size F of any particular UMI is unknown
– we only know the distribution of F. To compute the probability of an UMI hav-
ing coverage k, we average over all possible family sizes, taking their respective
probabilities according to the stochastic PCR process into account,

P(C = k)=
∫

x
P
(
C = k

∣∣ F = x
) ·dPCR(x | E) dx. (8)

The probabilities P(C = k) can be computed efficiently by numerical integration.
Since we impose an error-correction threshold T and drop UMIs with fewer

than T reads, the read-count distribution we actually observe is a censored version
of C where the possible outcomes C < T are removed. For the mean and variance
of this censored distribution with threshold T we write

E
(
C

∣∣ C ≥ T
)= 1

P(C ≥ T)
·

∞∑
k=T

k ·P(C = k),

V
(
C

∣∣ C ≥ T
)= 1

P(C ≥ T)
·

∞∑
k=T

(
k−E

(
C

∣∣ C ≥ T
))2 ·P(C = k)

In general, we compute the censored mean and variance numerically. For
the uncensored case T = 0 (were even unsequenced molecules would somehow be
observed) we explicitly find

E
(
C

∣∣ C ≥ 0
)=EC = D,

V
(
C

∣∣ C ≥ 0
)=VC = D+D2 1−E

1+E
(9)

The expected loss ` is the expected fraction of true UMIs that either remain
completely unsequenced, or that are removed by the error-correction threshold,
meaning

`=P
(
C < T

)
. (10)

Estimating parameters and correcting for loss
Given nobs experimentally observed UMIs (after applying the error-correction
threshold T to filter out phantoms) and their read count vector c = (c1, . . . , cnobs),
we estimate the reaction efficiency E and the mean number of reads per UMI D.
We use the method of moments, i.e. we find E and D such that the predicted mean
equals the sample mean m̂ of c, and the predicted variance its sample variance
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v̂. Since we only take observed UMIs with at least T reads into account, we must
compute the predictions using the censored distribution, i.e. find E, D such that

m̂ =E
(
C

∣∣ C ≥ T, E, D
)
,

v̂ =V
(
C

∣∣ C ≥ T, E, D
)
. (11)

If T = 0, i.e. if m̂ and v̂ reflect the uncensored mean respectively variance, these
equations can be solved explicitly by inverting equation 9, which yields the method
of moments estimator

D̂ = m̂, Ê = 1−v′

1+v′
where v′ =min

{
max

{
0,

v̂− m̂
m̂2

}
,1

}
. (12)

If T > 0, we solve the system of equations numerically to find E and D. With
these parameter estimates, we then compute an estimate ˆ̀ of the loss ` using equa-
tion 10, and use it to correct for the expected number of lost molecules. Assuming
that we observed nobs UMIs and given ˆ̀, we estimate the total number of molecules
in the original sample to have been

n̂tot = nobs

1− ˆ̀ . (13)

Gene-specific estimates & corrections
Since the reaction efficiency E and depth D, and hence also the loss, will usually
vary between individual genes (or other genomic features of interest), to correct the
observed number of transcripts of some gene g ∈ 1, . . . ,K for the loss, a gene-specific
loss estimate ˆ̀g should be used. In principle, such estimates are found by applying
the described estimation procedure to only the UMIs found for transcripts of gene g,
i.e. by computing a gene-specific mean m̂g and variance v̂g of the number of reads
per UMI, solving equations 11 to find a gene-specific Êraw

g and D̂raw
g , and computing

ˆ̀raw
g using equation 10. If the number nobs

g of observed UMIs (i.e. transcripts)
stemming from gene g is large, a correction based on ˆ̀raw

g yields an (approximately)
unbiased and accurate estimate of the total number of transcripts of that gene.
But if nobs

g is small, the error of the estimator ˆ̀raw
g easily exceeds the variability

of the true gene-specific value `g between genes. In such cases, correcting using
the library-wide estimate ˆ̀all computed from all UMIs found in the library will
yield an more accurate (although biased) estimate of the total number transcripts
of gene g.

Somewhat surprisingly, by combining these two flawed estimators of the true
gene-specific loss `g, we obtain a so-called shrinkage estimator ˆ̀shr

g that improves
upon both in terms of mean squared error (MSE, Carter & Rolph4 Eq. 2.4),

ˆ̀shr
g =λg · ˆ̀raw

g + (1−λg) · ˆ̀all. (14)

The gene-specific coefficient λg determines how much the raw gene-specific
estimate is shrunk towards the global estimate, and its optimal choice (with respect
to the MSE) depends on the variances the two constituent estimators. To determine
the optimal λg we make the following assumptions about these estimators:
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(a) the library-wide estimate ˆ̀all is a good proxy for the true average loss taken
over all genes 1, . . . ,K . This seems reasonable given the size of a typical library,
comprising millions of UMIs.

(b) the estimation error of the raw gene-specific estimator ˆ̀raw
g depends only

on the number nobs
g of observed UMIs for gene g, and does so in an inversely

proportional manner. This is certainly true asymptotically for large numbers of
observations, for small numbers it should still provide a reasonable approximation.

We write s for the variance of the true loss between genes (i.e. for the mean
squared difference of `g and ˆ̀all), and u for the proportionality constant between
the error of ˆ̀raw

g and 1/nobs
g . According to Carter & Rolph4 (Eq. 2.4 ff.) the optimal

choice for λg is then
λg = s

s+u/nobs
g

(15)

To compute the gene-specific shrinkage estimators ˆ̀shr
g , it remains to find con-

stants u and s. Towards that end, we observe that the expected squared deviation
of the raw gene-specific loss estimate ˆ̀raw

g from its average ¯̀= 1
n

∑K
g=1

ˆ̀raw
g is the

total variance of ˆ̀raw
g , which is comprised of the between-gene variance s and the

estimator variance u/nobs
g , or in other words

E
( ˆ̀raw

g − ¯̀)2 = s+u/nobs
g .

This allows us to estimate s and u using least squares regression, i.e. by minimizing

K∑
g=1

(( ˆ̀raw
g − ¯̀)2 − s−u/nobs

g

)2 ·w(nobs
g ). (16)

Without weighting (i.e. for w(n)= 1), the considerable drop in magnitude of
( ˆ̀raw

g −
¯̀)2 as nobs

g increases would allow genes with small number of observations to yield
an unduly large influence over the estimates. Since it is the genes with a low to
moderate number of observations that benefit from shrinking, some modest bias
of this sort is actually desired – but not as strong a bias as w(n)= 1 exhibits, and
one not so purely focused on genes with very few observations. We therefore use
the weights w(n) = n

1+n/100 , which initially increase linearly with the number of
observations, but eventually converge to 100 instead of increasing further. This
has the desired effect of shifting the focus away from rarely observed genes, and
concentrating it on genes with a moderate number of observations.

Multiple initial copies
If of each distinct molecules the sample initially contains R > 1 identical copies
(e.g. R = 2 if the initial molecules are double-stranded), each of these copies can
be imagined to be amplified by a separate and independent PCR processes. But
since the molecules are indistinguishable, these processes cannot be observed
individually – we can observe only the (re-normalized) sum of the resulting family
sizes. These observed normalized family size distribution is thus the average of
R independent versions of F, and its variance is thus one R-th of the variance in
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equation 6, i.e.

VF = 1−E
1+E

· 1
R

, (17)

VC = D+D2 · 1−E
1+E

· 1
R

. (18)

The density of distribution of F for R > 1 is the R-fold self-convolution of the
density of F with itself (re-scaled to again have expected value one), and can thus
be computed from the pre-computed matrix for the single-molecule case without
performing additional simulations.

Parameter estimation proceeds just as for R = 1, except that when computing
estimate v′ of VF, we must now account for the reduction of the observed variance
of F by a factor of 1

R and equation 12 is thus replaced by

D = m̂, E = 1−v′

1+v′
, where v′ =min

{
max

{
0,R · v̂− m̂

m̂2

}
,1

}
. (19)

Data Analysis
The reads from each of the downloaded sequenced libraries, were mapped (ig-
noring the barcode part) with NGM v0.5.213 to the reference transcriptome of
D. melanogaster (R6.08) respectively E. coli (strain K-12 MG1655). To avoid am-
biguities during mapping for genes with multiple isoforms, we filtered the D.
melanogaster transcriptome to contain only a single transcript per gene before
mapping. For each gene, we picked either the single transcript with a FlyBase
score of at least “moderately supported”, or the longest transcript (if multiple ones
had score “moderately supported” or higher). After mapping the reads, we used
the combination of mapping coordinates (both start and end for the paired-end E.
coli data, only start for the single-end D. melanogaster data) and barcode (on both
ends in the case of E. coli) as UMI. To account for sequencing errors, we merged
similar UMIs (barcodes differing at most in one position, mapping coordinates by
at most 30 bases for paired-end, 5 for sing-end libraries) using the graph-based
algorithm of Smith et al.9. For the E. coli data we additionally combined reciprocal
UMIs stemming from the two strands of a single template molecule, but stored the
read counts for plus- and minus-strand separately (see Shiroguchi et al.8).

This yielded, for each of the libraries, a table comprising the gene id, start- end
end position, barcode and read-count(s) of each detected UMI. Based on this table,
the error-correction thresholds (T = 5 for E. coli, T = 5 forD. melanogaster R1, T = 2
for D. melanogaster R2), and the initial number of molecules (actually, strands) for
each UMI (R = 1 for E. coli due to the Y-shaped adapters, R = 2 for D. melanogaster
due to secondary strand synthesis before amplification) our algorithm computed
library-wide and raw as well as shrunken gene-specific estimates of the reaction
efficiency, of the average number of reads per UMI, and of the loss. For the E. coli
data, the error-correction threshold was applied to the plus- and minus-strand read
counts separately, filtering out UMIs if either count lay below the chosen threshold.
This increased the loss of true UMIs, and we modified the definition of the loss
accordingly to `= 1− (1−P(C < T))2 (compare to equation 10). In addition to the
gene-specific parameter and loss estimates, our algorithm output the observed
number of UMIs nobs

g and the estimated total number of UMIs (i.e. transcript
molecules) ntot

g .
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Simulation
We determined the residual error of the corrected transcript counts using a simula-
tion approach. We started from the (loss-corrected) estimated transcript counts ntot

g
and (shrunken) gene-specific estimates for reaction efficiency Êg and sequenc-
ing depth D̂g of gene g ∈ {1, . . . ,K} that we computed for replicate 1 of the D.
melanogaster dataset. First we rounded ntot to the next number in the series
10,30,100,300, . . . and used the resulting number as the true number ntrue

g of tran-
scripts of gene g. For each gene g, we then used the amplification+sequencing
model (with parameters Eg, Dg and R = 2 meaning double-stranded molecules)
to simulate the sequencing of ntrue

g UMIs, which yielded for each gene ntrue
g read

counts, one for each UMI. To this list comprising gene id and (for each gene) ntrue
g

read counts, we applied our algorithm, using T = 5 and R = 2 as before (but passing
along no other information from the first run of the algorithm). The algorithm thus
dropped all UMIs with fewer than T = 5 reads, treated the remaining UMIs for
each gene g as the observed number of UMIs nobs

g , re-estimated the (shrunken)
gene-specific losses, and used them to correct nobs

g for these losses to arrive at
an estimated total transcript count ntot

g . Finally, we computed for each gene the
relative quantification error as ∣∣ntot

g −ntrue
g

∣∣
ntrue

g
. (20)
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SUPPLEMENTAL FIGURES
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Figure S1: Variability of the raw (unshrunken) model parameters and resulting
loss between genes. Includes parameter for 7481 detected genes in D. mel. R1,
8001 genes in R2, 2380 genes in E. coli R1 and 2308 genes in R2.
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Figure S2: Total variance of the raw gene-specific loss estimates. Total observed
variance was computed for bins containing 20 genes with a similar number nobs

g
of observed true UMIs. The regression curve s+u/nobs used to infer the optimal
gene-specific shrinkage factors λg comprises two components, the variance s of the
loss between genes, and the nobs

g -dependent error of the (raw) gene-specific loss
estimates u/nobs

g . See also Gene-specific estimates & corrections.
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Figure S3: Length dependence of PCR efficiency. For each experiment, the detected
UMIs were binned according to fragment length, and the PCR efficiency estimated
independently for each bin.
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