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Abstract4

Trial-to-trial variability is a reflection of the circuitry and cellular physiology that makeup a neuronal5

network. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring,6

population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse.7

Previous model cortical networks are at loss to explain this global variability, and rather assume it8

is from external sources. We show that if the spatial and temporal scales of inhibitory coupling9

match known physiology, model spiking neurons internally generate low dimensional shared vari-10

ability that captures the properties of in vivo population recordings along the visual pathway. Shifting11

spatial attention into the receptive field of visual neurons has been shown to reduce low dimensional12

shared variability within a brain area, yet increase the variability shared between areas. A top-down13
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modulation of inhibitory neurons in our network provides a parsimonious mechanism for this atten-14

tional modulation, providing support for our theory of cortical variability. Our work provides a crit-15

ical and previously missing mechanistic link between observed cortical circuit structure and realistic16

population-wide shared neuronal variability and its modulation.17

Introduction18

The trial-to-trial variability of neuronal responses gives a critical window into how the circuit structure19

connecting neurons drives brain activity1. This idea combined with the widespread use of population20

recordings has prompted deep interest in how variability is distributed over a population2,3. There21

has been a proliferation of data sets where the shared variability over a population is low dimen-22

sional4–9, meaning that neuronal activity waxes and wanes as a group. In accord, one dimensional23

measures such as local field potentials10,11 and summed population firing rates can predict a major-24

ity of pairwise correlations9,12. Further, the synthesis of diverse population datasets paints a picture25

where low dimensional shared variability is a signature of cognitive state, such as overall arousal, task26

engagement and attention2,3,13, as well as predictive of behavioral performance14. Such low dimen-27

sional dynamics portend a theory for the genesis and modulation of shared population variability in28

recurrent cortical networks.29

Theories of cortical variability can be broadly separated into two categories: ones where vari-30

ability is internally generated through recurrent network interactions (Fig. 1a, left) and ones where31

variability originates external to the network (Fig. 1a, middle). Networks of spiking neuron mod-32

els where strong excitation is balanced by opposing recurrent inhibition produce high single neuron33

variability through internal mechanisms15–17. However, these networks famously enforce an asyn-34

chronous state, and as such fail to explain population-wide shared variability18. This lack of success35

is contrasted with the ease of producing arbitrary correlation structure from external sources. Indeed,36

many past cortical models assume a global fluctuation from an external source3,7,19–21, and accurately37
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capture the structure of population data. However, such phenomenological models are circular, with38

an assumption of variability from an unobserved source explaining the variability in a recorded pop-39

ulation. Thus, while neuronal variability has a rich history of study, there remains an empoverished40

mechanistic understanding of the low dimensional structure of population-wide variability22.41

Determining whether output variability is internally generated through network interactions or ex-42

ternally imposed upon a network is a difficult problem, where single area population recordings may43

preclude any definitive solution (Fig. 1a, left vs middle). In this study we consider attention-mediated44

shifts in population variability obtained from simultaneous recordings of neuron pairs both within45

and between visual areas23,24. Attention reduces within area correlations (area V4) while simultane-46

ously increasing between area correlations (areas V1 and MT), thereby providing a novel constraint47

for how shared variability is distributed within and between neuronal populations (Fig. 1a, right). We48

present analysis showing that such a differential correlation modulation is difficult constraint to sat-49

isfy with a model where fluctuations are strictly external to the network. We thus focus our modeling50

on networks where population-wide shared variability can be internally generated.51

The asynchronous solution of classical balanced networks necessitates that inhibition dynami-52

cally tracks and cancels any correlations steaming from recurrent excitation18. This requirement has53

forced theorists to assume that the timecourse of inhibitory synapses is faster than that of excitatory54

synapses16,18,25–27, at odds with recorded synaptic physiology28. Recently, we have extended the the-55

ory of balanced networks to include a spatial component to network architecture25,26,29 and found56

network solutions where firing rate balance and asynchronous dynamics are decoupled from one an-57

other26. In this study, we consider multi-area models of spatially distributed balanced networks and58

show that when inhibition has slower kinetics than excitation these networks, matching physiology,59

they internally produce low dimensional population-wide variability. Unlike networks that lack spa-60

tial structure, these networks produce spiking activity that robustly captures the rich diversity of firing61

rate and correlated structure of real population recordings. Further, attention-mediated top-down62
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modulation of inhibitory neurons in our model provides a parsimonious mechanism that controls63

population-wide variability in agreement with the within and between area experimental results.64

There is a long standing research program aimed at providing a circuit-based understanding for65

cortical variability1,15–17,26. Our work is a critical advance through providing a mechanistic theory66

for the genesis, propagation, and modulation of realistic low dimensional population-wide shared67

variability based on established circuit structure and synaptic physiology.68

Results69

Externally imposed or internally generated shared variability?70

Directed attention reduces the mean spike count correlation coefficient between neuron pairs in visual71

area V4 during an orientation detection task (Fig. 1b;24). In V45, as with other cortices4,6,8,9,12, shared72

variability across a population is low dimensional, where coordinated fluctuations are driven by a73

common latent variable. Further, attention reduces pairwise correlation through attenuation of this74

global latent variable5,30. Thus motivated, we represent the aggregate population response with a75

scalar random variable R = X + βH , where X is a noisy stimulus input and H is a hidden source76

of fluctuations (with strength β; Fig. 1c, top). In this simple model the trial-to-trial fluctuations are77

inherited from both X and H , but we model attention as only reducing the variance of H (Var(H)).78

There is a large range of parameter values for our one-dimensional hidden variable model to readily79

explain the reduction in Var(R) reported in the V4 data (Fig. 1c, bottom, blue curve; see Supplemental80

Information). Certain parameter choices are unreasonable (pink region in Fig. 1c, bottom), such as β81

being overly large so that R is no longer driven by X , or Var(H)→ 0 in the attended state, requiring82

the area that produces H to be silent. Fortunately, there are moderate β and Var(H) choices that83

capture the data (section of the blue curve that is not in the pink region in Fig. 1c, bottom). In total, a84

latent variable model where the variability is external to the population can account for the attentional85

modulation reported in our V4 data, as has been previously remarked5,7.86
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Figure 1: Caption is on next page.
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Figure 1: Models of shared variability. a, Variability may either be internally generated within a
population (left) or externally imposed upon a population (middle). New model constraints emerge
by accounting how variability is distributed and modulated across several populations (right). b,
Mean spike count correlation rSC per session obtained from multi-electrode array recording from V4
was smaller when attention was directed into the receptive fields of recorded neurons (n=74 sessions,
two-sided Wilcoxon rank-sum test between attentional states P = 3.3 × 10−6, reproduced from24).
Grey lines are individual session comparisons and the red line is the mean comparison across all
sessions (error bars represent the SEM). c, Top: hidden variable model where the response variability
R (modeling V4) comes from a hidden variable H with influence β. Bottom: the attention-mediated
reduction in rSC gives a constraint that is a trade-off between the reduction in Var(H) and β (blue
curve). d, Same as b for the mean spike count correlation rSC between V1 units and MT units per
session (n=32 sessions, paired-sample t-test P = 0.0222; data reproduced from23). e, Top: hidden
variable model for connected areas X (modeling V1) and R (modeling MT); H projects to X with
strength κ. Bottom: the attention mediated changes in rSC give further constraints on H with the
increase in κ indicated. Light blue curve is the same as that in c for comparison. f, Schematic for
external (left) and internal (right) models of shared variability (H) along a processing hierarchy (R).

Recent multi-electrode recordings from two visual areas, MT and V1, during an attention task23
87

impose strong constraints on the simple hidden variable model. In addition to a reduction of mean88

spike count correlations between neuron pairs within an area (pairwise attention-related MT correla-89

tion decrease, 0.019, Wilcoxon rank sum test, p = 0.017; pairwise attention-related V1 correlation90

decrease, 0.008, Wilcoxon rank sum test, p = 4.9× 10−6;23), there is an attention-mediated increase91

of spike count correlations across areas V1 and MT (Fig. 1d). Returning to the population model92

with R modeling MT, we augment the model with V1 being the input X = X0 + κH (Fig. 1e, top;93

see Supplementary Information). Here κ denotes how much the hidden variable is directly shared94

between areas, and X0 is the variability in X that is independent of H . The constraint curves (Fig.95

1e, bottom blue) where Var(R) and Cov(R,X) match the MT-MT and V1-MT data sets require our96

model to assume both a large influence of H on R and a large attentional modulation of Var(H) (pink97

region in Fig. 1e, bottom). This tightening of model assumptions reflects the compromise between98

an attention-mediated increase in variability transfer from X → R so that Cov(R,X) increases and99

a simultaneous decrease in Var(H) so that Var(R) decreases. This compromise can be mitigated by100
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setting κ to be small, meaning that a large component of the fluctuations in R is private from those in101

X (Fig. 1e, bottom).102

While the source of private variability H to area R may still be external to the area, if we extrap-103

olate our model to a cortical hierarchy then each area requires an external variability ‘generator’ that104

projects privately to that area (Fig. 1f, left). This would require a tremendous amount of neuronal105

hardware. A more parsimonious hypothesis is that private variability is internally generated within106

each area (Fig. 1f, right). Below we investigate the circuit mechanics required for low dimensional107

population-wide shared variability to be an emergent property within a cortical network.108

Population-wide correlations with slow inhibition in spatially ordered networks109

Networks of spiking neuron models where strong excitation is balanced by opposing recurrent inhi-110

bition internally produce high single neuron variability (Fig. 2ai) with a broad distribution of firing111

rates (Fig. 2b, top purple curve)16–18. However, these networks enforce an asynchronous solution112

(Fig. 2c, top purple), and as such fail to explain population-wide shared variability8,18. Typically,113

balanced networks have disordered connectivity, namely where connection probability is uniform be-114

tween all neuron pairs. This approximation ignores the abundant evidence that cortical connectivity is115

spatially ordered with a connection probability falling off with the distance between neuron pairs31–33.116

Recently we have extended the theory of balanced networks to include such spatially dependent con-117

nectivity25,26. Briefly, we model a two dimensional array of integrate-and-fire neurons that receive118

both feedforward projections from a layer of external Poisson processes and recurrent projections119

within the network (see Methods); connection probability of all projections decays like a Gaussian120

with distance. If the spatial scale of feedforward inputs is narrower than the scale of recurrent pro-121

jections, the asynchronous state no longer exists26, giving way to a solution with spatially structured122

correlations (Fig. 2aii, Supplemental movie S1, Fig. S1b). Nevertheless, the mean correlation across123

all neuron pairs vanishes for large network size (Fig. 2c, bottom purple curve), in stark disagreement124
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with a majority of experimental studies2,3 (Fig. 1b,d).125

Many previous balanced network models assume that the kinetics of inhibitory conductances are126

faster than those of excitatory conductances16–18,26,34. However, this assumption is at odds with phys-127

iology where excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA)128

have faster kinetics than those of the inhibitory γ-Aminobutyric acid receptors (GABAa)28. When129

the timescales of excitation and inhibition match experimental values in networks with disordered130

connectivity the activity becomes pathologic, with homogeneous firing rates (Fig. 2b, top green) and131

excessive synchrony (Fig. 2aiii, and c, top green). This consequence is likely the ad-hoc justification132

for the faster inhibitory kinetics in disordered model networks.133

When a spatially ordered model has synaptic kinetics that match physiology, population-wide tur-134

bulent dynamics emerges (Fig. 2aiv, Supplemental movie S2), accompanying a small, but nonzero,135

mean pairwise spike count correlation across the population (rSC = 0.04). Further, firing rates are136

broad (Fig. 2b, bottom green curve) and pairwise correlations are reasonable in magnitude (Fig. 2c,137

bottom green). Indeed, as the timescale of inhibition grows, disordered networks show a rapid change138

in mean pairwise correlation while two dimensional spatially ordered networks show a much more139

gradual rise in correlation (Fig. 2d). We remark that networks constrained to one spatial dimen-140

sion also produce excessive synchrony (Fig. S2), meaning that two (or more) spatial dimensions are141

required for robustly low but nonzero correlations. In sum, when realistic spatial synaptic connec-142

tivity is paired with realistic temporal synaptic kinetics in balanced networks, internally generated143

population dynamics produces spiking dynamics whose marginal and pairwise variability conform to144

experimental results.145

Attentional modulation of low dimensional population-wide variability146

We model the V1 and MT network by extending the spatially ordered balanced networks with slow147

inhibition to include three layers: a bottom layer of independent Poisson processes modeling thala-148
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mus, and middle and top layers of integrate-and-fire neurons modeling V1 and MT, respectively (Fig.149

3a and see Methods). We follow our past work with simplified firing rate networks7 and model a150

top-down attentional signal as an overall static depolarization to inhibitory neurons in the MT layer151

(Fig. 3a). This mimics cholinergic pathways that primarily affect interneurons35,36 and are thought152

to be engaged during attention7,13. The increased recruitment of inhibition during attention reduces153

the population-wide fluctuations in the MT layer (Fig. 3b) and decreases pairwise spike count corre-154

lations of MT-MT neuron pairs (Fig. 3c), while simultaneously increasing the correlation of V1-MT155

neuron pairs (Fig. 3d). Thus, this simple implementation of attentional modulation7 nonetheless cap-156

tures the main aspects of the V1-MT dataset (Fig. 1d;23). Further, neuron pairs with larger firing rate157

increases also show larger correlation reductions (Fig. S3), in agreement with population recordings158

during both spatial and feature attention37.159

Before we expose the core mechanisms through which attention modulates correlated activity we160

first give a broader analysis of shared variability in both our data and model. To this end we use161

dimensionality reduction tools8,38 to study the population-wide structure of trial-to-trial variability,162

rather than focusing only on individual pairwise correlation coefficients. We partition the covariance163

matrix into the shared variability among the population and the private noise to each neuron; the164

eigenvalues of the shared covariance matrix represent the variance along each dimension (or latent165

variable), while the corresponding eigenvectors represent the projection weights of the latent variables166

onto each neuron (see Methods). Applying these techniques to the multi-electrode V4 data24 shows167

a single dominant eigenmode (Fig. 4a, top, single session result see Fig. S4). This mode influences168

most of the neurons in the population in the same way (Fig. 4a middle, weights are dominant positive),169

and after subtracting the first mode the mean residual covariances are very small (Fig. 4a bottom).170

Finally, attention affects population variability primarily by quenching this dominant mode (Fig. 4a171

top, orange vs green) and the attentional modulation in the dominant mode is highly correlated with172

the modulation in mean covariance (Fig. S4c). The low dimensional structure of shared variability in173
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our data is consistent with similar analysis in other cortices4,6,8, as well as alternative analysis of the174

same V4 data using generalized point process models5.175

The dimensionality of shared variability offers a strong test for our cortical model. We analyzed176

the spike count covariance matrix constructed from a subsampling of the spike trains in the third layer177

of our network model (n = 50 neurons). The network with slow inhibition produced shared variability178

with a clear dominant eigenmode that mimicked many of the core features observed in the V4 data179

(Fig. 4b). Further, the top-down attentional modulation of inhibition also suppressed this dominant180

mode (Fig. 4b top, orange vs green). The agreement between model and data broke down when181

inhibitory kinetics were faster than those of excitation, as was the case in our past studies25,26,29. Here,182

shared variability did not have a dominant mode (Fig. 4c, top), the raw mean correlation coefficient183

was near zero (Fig. 4c, bottom), and attentional modulation had a negligible effect on population184

variability (Fig. 4c, orange vs green). Experimental measurements of local cortical circuitry show that185

excitation and inhibition project on similar spatial scales31,33. When the model inhibitory projections186

in the third layer were spatially broader than those of excitation, thus at odds with experiment, then the187

model again disagreed with our V4 data (Fig. 4d). In sum, the low dimensional structure of shared188

variability requires inhibition that is neither faster nor anatomically broader than excitation – both189

features of real cortical circuits28,31,39. Further, a simple recruitment of inhibition through top-down190

drive can restore stability and quench low dimensional population variability.191

This success of our model is quite distinct from that of past studies where low dimensional corre-192

lated variability was imposed from outside sources3,7,19–21. Rather, the shared variability in our model193

is internally generated from recurrent network interactions. We next explore how the inherent nonlin-194

ear dynamics that produce this variability allow our model to satisfy the constraints imposed by the195

differential correlation modulation of the within area and between area pairs (Fig. 1e).196
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three layer model with slow inhibition (b), model with fast inhibition (c) and model with slow and
broad inhibition (d); n=10 samples of 50 neurons each. Two-sided Wilcoxon rank-sum test (attended
vs unattended): mean covariance, a, P = 0.0013, b, P = 1.78 × 10−22, c, P = 0.7798 and d,
P = 0.5850; residual, a, P = 0.7477, b, P = 5.40× 10−4, c, P = 0.8796 and d, P = 0.5326.
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Figure 5: Stability analysis of a two-dimensional firing rate model. a, Bifurcation diagram
of a firing rate model as a function of the inhibitory decay time scale τi and inhibitory projection
width σi. The excitatory projection width and time constant are fixed at σe = 0.1 and τe = 5
ms, respectively. Color represents the spatial frequency with the largest real part of eigenvalue and
the gray region is stable. Top-down modulation of inhibitory neurons modeling attention expands
the stable region (black dashed). b, Top left: the real part of eigenvalues as a function of spatial
frequency for increasing τi when σi = σe. Top right: three consecutive spike raster snapshots of
a spiking neuron network with σi = σe and slow inhibition (same network as in Fig. 4b in the
unattended state). Bottom: spatial structure of projection weights from the first three eigenmode from
Factor analysis of the spiking neuron network as in top right (n=500 neurons). c, Same as b for σi
larger than σe. Top right and Bottom: same network as in Fig. 4d in the unattended state.

Relating low dimensional variability to spatio-temporal pattern formation197

Networks of spiking neuron models produce rich activity that can be directly compared to population198

recordings. However, when these networks are outside the asynchronous regime they are not easily199

amenable to a deeper mechanistic analysis. An often used simplification to spiking dynamics are fir-200

ing rate models where network interactions are mediated only through dynamic firing rates1,40. While201

these models lack a principled connection to spiking network models, they do produce qualitatively202

similar dynamics in recurrent networks and their simplicity makes them amenable to analysis tech-203

niques from dynamical systems theory. To gain intuition about how recurrent circuitry shapes low204

dimensional shared variability we considered a firing rate model that incorporated both the spatial205

architecture and synaptic dynamics that were central to our spiking model (see Methods).206

Solutions where firing rates are constant over time are interpreted as asynchrony within the net-207

work, since only dynamical co-fluctuations in firing rates would mimic correlated spiking. We fo-208

cused on how the stability of the asynchronous firing rate solution depended upon the temporal (τi)209

and spatial (σi) scales of inhibition. A firing rate solution is stable if the linearized dynamics are such210

that every eigenmode has eigenvalues with strictly negative real part. Since our network is spatially211

ordered the eignemodes are also organized in space, each with their own distinct spatial frequency. If212

the solution loses stability at a particular eigenmode, then the spatio-temporal dynamics of the result-213
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ing network firing rates will inherit the spatial frequency of that eigenmode – this process is termed214

spatio-temporal pattern formation41.215

If τi and σi are near those of recurrent excitation, then a stable firing rate solution exists (Fig.216

5a, grey region; 5b, top left, black curve with τi = 5ms). Our past work explored activity within217

this regime26. When τi increases and excitation and inhibition project with the same spatial scale218

(σi = σe), firing rate stability is first lost at an eigenmode with zero spatial frequency (Fig. 5b, top219

left). This creates population dynamics with a broad spatial pattern, allowing variability to be shared220

over the entire network. Simulations of the three layered spiking network model in this regime shows221

turbulent dynamics that extend across the entire network (Fig. 5b, top right; Supplementary movie222

S3). The projection weights of the first eigenmode from factor analysis of the network of spiking223

neuron models (Fig. 4b) show a uniform distribution in space (Fig. 5b, bottom), consistent with224

shared fluctuations of low spatial frequency. In contrast to this case, when τi increases yet inhibition225

projects lateral to excitation (σi > σe), stability is first lost at a nonzero spatial frequency (Fig. 5c,226

top left). This creates population dynamics with coherence over a band of higher spatial frequencies,227

producing higher dimensional shared variability, as evident in the spatially patchy turbulent spiking228

dynamics of the three layered spiking network in this regime (Fig. 5c, top right; Supplementary movie229

S4). Correspondingly, the projection weights of the first three eigenmodes (Fig. 4d) show patterns230

of higher spatial frequency (Fig. 5c, bottom). Thus, the spatial and temporal scales of inhibition231

determine in large part the spatio-temporal patterns of network activity. Further, we now understand232

from a theoretical viewpoint why slow inhibition that does not project lateral to excitation is needed233

to account for the spiking data in both the network of spiking neuron models and experiment.234

Finally, in the firing rate network we can also model attention as a depolarization to the inhibitory235

neurons, as was done in the network of spiking neuron models. In the firing rate network, attentional236

modulation expanded the stable region in the bifurcation diagram (Fig. 5a, dashed black line). In237

other words, attention increased the domain of firing rate stability. Thus, with τi > τe chosen so238
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that in the unattended state the network was unstable at a low spatial frequency yet with attention239

the network was in the stable regime, our model captures the large attention-mediated quenching of240

population-wide shared variability reported in the population recordings (Fig. 4a) and network of241

spiking neuron models (Fig. 4b).242

Chaotic population-wide dynamics reflects internally generated variability243

The attention-mediated differential modulation of within and between area correlations lead us to244

propose that shared variability has a sizable internally generated component. Using our heuristic245

model we argued that attention must quench a significant component of the variability (Var(H)) to246

account for the population recordings (Fig. 1e, bottom). This is a difficult constraint to satisfy and247

requires the mechanisms that produce internally generated variability to sensitively depend on top-248

down modulations. The firing rate model captured this sensitivity through a spatio-temporal pattern249

forming transition in network activity. However, the firing rate model does not internally produce trial-250

to-trial variability that can be compared to experiment, and we thus return to analysis of the network of251

spiking neuron models to probe how trial-to-trial variability is internally generated through recurrent252

coupling.253

To isolate the sources of externally and internally generated fluctuations in the third layer of our254

network we fixed the spike train realizations from the first layer (thalamic) neurons as well as the255

membrane potential states of the second layer (V1) neurons, and only the initial membrane potentials256

of the third layer (MT) neurons were randomized across trials (Fig. 6a). This produced deterministic257

network dynamics when conditioned on activity from the first two layers, and consequently any trial-258

to-trial variability is due to mechanics internal to the third layer.259

The spike trains from third layer neurons in both the unattended and attended states have signif-260

icant trial-to-trial variability despite the frozen layer one and two inputs. This is reflective of a well261

studied chaotic network dynamic in balanced networks where the spike times from individual neu-262
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Figure 6: Chaotic population firing rate dynamics is quenched by attention. a, Schematic of the
numerical experiment. The spike train realizations in layer one and the initial states of the membrane
potential of layer two neurons are identical across trials, while in each trial we randomized the initial
states of the layer three neuron’s membrane potentials. b, Three representative trials of the layer
three excitatory population rates in the attended state (left row 1-3). Bottom row: difference of the
population rates across 20 trials. Right (row 1-3): Snapshots of the neuron activity at time point
1864 ms. Each dot is a spike within 2 ms window from the neuron at that location. Right bottom:
the synaptic current each layer three neuron receives from layer two at time 1864 ms. c, Same as b
for the network in the unattended state. d, Trial-to-trial variance of layer three population rates as a
function of time; right: mean variance across time. e, The layer three population rate tracks the layer
two population rate better in the attended state. Both outputs and responses are smoothed with a 200
ms window.
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rons are very sensitive to perturbations that affect the spiking of other neurons27,42. To investigate how263

this microscopic (single neuron) variability possibly manifests as macroscopic population activity, we264

considered the trial-to-trial variability of the population-averaged instantaneous firing rate. While the265

population firing rate is dynamic in the attended state, there is very little variability from trial-to-trial266

(Fig. 6b, left; Fig. 6d, orange). A consequence of this low population-wide variability is the faithful267

tracking of the spatiotemporal structure of layer two outputs by layer three responses (Fig. 6b, right;268

e, orange). This tracking reflects the higher correlation between layer two and three spiking in the269

attended state (Fig. 3c). In contrast, in the unattended state the asynchronous solution is unstable,270

resulting in population-wide recruited activity. These periods of spatial coherence across the network271

are not trial locked and rather contribute to sizable trial-to-trial variability of population activity (Fig.272

6c, left; d, green). This degrades the tracking of layer two outputs (Fig. 6c, right; e, green) and273

ultimately lowers the correlation between layer two and three spiking (Fig. 3c). Taken together, while274

the network model is chaotic in both the attended and unattended states, the chaos is population-wide275

only in the inhibition deprived unattended state.276

The nonlinear pattern forming dynamics of the spatially distributed recurrent network impart ex-277

treme sensitivity to the population-wide internally generated variability. Indeed, in our model the278

trial-to-trial population rate variability is almost extinguished with attention (Fig. 6d, right). In our279

heuristic model with hidden variable H this amounts to Var(H) reducing drastically with attention,280

which is precisely what is needed to account for the differential modulation of within and between281

area correlations (Fig. 1e).282

Discussion283

There is a longstanding research program aimed at understanding how variability is an emergent prop-284

erty of recurrent networks16,17,25–27,42. However, models are often restricted to simple networks with285

disordered connectivity. Consequently, population-wide activity is asynchronous, at odds with many286
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experimental findings2,3. A parallel stream of research focuses on spatiotemporal pattern formation287

in neuronal populations, with a rich history in both theoretical40 and experimental contexts43. Yet a288

majority of these studies consider only trial-averaged activity, with tacit assumptions about how spik-289

ing variability emerges (but see44 and26). In this study we combined these modelling traditions with290

the goal of circuit-based understanding of the genesis and modulation of low dimensional internally291

generated shared cortical variability.292

Population-wide variability in balanced networks293

Our model extends classical work in balanced cortical networks16,18 to include two well accepted ex-294

perimental observations. First, cortical connectivity has a wiring rule that depends upon the distance295

between neuron pairs31,32. Theoretical studies that model distance dependent coupling commonly as-296

sume that inhibition projects more broadly than excitation40,44,45 (but see34). However, measurements297

of local cortical circuitry show that excitation and inhibition project on similar spatial scales31,33, and298

long-range excitation is known to project more broadly than inhibition46. Our work shows that this299

architecture is required for internally generated population variability to be low dimensional (Fig.300

4b, d). The second observation is that inhibition has temporal kinetics that are slower than excita-301

tion28. Past theoretical models of recurrent cortical circuits have assumed that inhibition is not slower302

than excitation16,18,34,47, including past work from our group26. Consequently, these studies could303

only capture the residual correlation structure of population recordings once the dominant eigenmode304

was subtracted8,26; in these cases the residual accounted for less than ten percent of the true shared305

variability. The asynchronous solution is unstable when inhibition is slower than excitation, and in306

networks with two spatial dimensions the resulting dynamics are weakly correlated, matching experi-307

ments (Fig. 2 and 4). In total, by including accepted features of cortical anatomy and physiology, long308

ignored by theorists, our model network recapitulates low dimensional population-wide variability to309

a much larger extent than previous models.310

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/217976doi: bioRxiv preprint 

https://doi.org/10.1101/217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


The above narrative is somewhat revisionist; there are several well known theoretical studies311

in disordered networks where one dimensional population-wide correlations do emerge, notably in312

networks where rhythmic17 or ‘up-down’45,47 dynamics are prominent. Networks with dense yet dis-313

ordered connectivity ensure that all neuron pairs receive some shared inputs from overlapping presy-314

naptic projections. In such a network if the asynchronous state becomes unstable then this shared315

wiring will correlate spiking activity across the entire network. In other words, any shared variability316

will be one dimensional (scalar) by construction. In contrast, the ordered connectivity in our network317

is such that neuron pairs that are distant from one another have no directly shared presynaptic con-318

nections. Consequently, when asynchrony is unstable one dimensional population dynamics is not319

preordained, rather the spatial network can support higher dimensional shared variability depending320

on the temporal and spatial scales of recurrent coupling (Fig. 4b,c; Fig. 5). From the vantage of321

this model we discovered the conditions for recurrent architecture and synaptic physiology for low322

dimensional shared variability323

Internal versus external population variability324

Our circuit model assumed that the component of population-wide variability that is subject to atten-325

tional modulation was internally generated within the network. This was motivated by constraints326

imposed by the differential attentional modulation of within and between pairwise correlations in our327

population recordings23 (Fig. 1). While our model is a parsimonious explanation of the data, it does328

not definitively exclude mechanisms where variability is inherited from outside sources. In fact it is329

difficult to conceive of descending synaptic and cholinergic projections from higher areas that would330

not contribute some trial-to-trial variability to a receiving neuronal population.331

Fluctuations from external sources are an often assumed and straightforward mechanism for332

population-wide variability3,7,19–21,48. However, if this framework aims to capture a modulation in333

variability a further choice must be made3. One way to modulate population-wide variability is to334

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/217976doi: bioRxiv preprint 

https://doi.org/10.1101/217976
http://creativecommons.org/licenses/by-nc-nd/4.0/


simply allow the amplitude of input fluctuations to change. Such an ‘inheritance model’ is often as-335

sumed for how top-down feedback to either visual areas V148 or MT21 determines choice probability336

in ambiguous decision tasks. When V2 and V3 are inactivated through cooling the single neuron337

variability in MT is markedly reduced suggestive that a component of variability is feedforward prop-338

agated49. This is in contrast to the only slight reductions in V1 variability when feedback projections339

from V2 and V3 are inactivated49. Thus, there is limited experimental evidence for direct top-down340

contributions to single neuron variability. Additional multi-area population recordings between con-341

nected brain regions will be needed to probe how correlated variability flows along bottom-up and342

top-down pathways.343

The second way to change population output variability is to keep input fluctuations fixed yet344

shift the operating point of the network so that the nonlinearties inherent in spiking dynamics change345

input-output transfer of variability. This mechanism has been suggested for how top-down attentional346

modulation affects population variability in recurrent excitatory-inhibitory cortical networks7,19. Net-347

work models with either disordered connectivity or simple one dimensional spatial structure must348

have a stable asynchronous state, else the internally generated correlations are excessive (Fig. 2aiii,c).349

Consequently, when such networks are used to model attentional modulation both the attended and350

unattended states must be in the asynchronous regime7,19. In such cases, population-wide variability351

must be from outside the network and attention only changes how the network filters these external352

fluctuations.353

In contrast, the two dimensional spatial structure in our model supports rich chaotic network354

dynamics outside the asynchronous state, yet with population-wide correlations that are a reasonable355

mimic of experiment (Fig. 2aiv,c). Spatiotemporal chaos is a hallmark feature of systems that are far356

from equilibrium in physics, chemistry and biology41. In particular, low viscosity fluids produce a357

special brand of spatiotemporal chaotic behavior labelled turbulence, characterized by the presence358

of vortices and eddies in the fluid flow50. Like our network, the character of turbulent flow is very359
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dependent upon the dimension of the fluid, with one dimensional fluids not showing turbulence, and360

two dimensional turbulent flow having larger spatial scales than the flow in full three dimensional361

fluids50. The dynamics within recurrent networks of neurons are certainly not equivalent to that of362

fluids, in part because they possess both short and long range interactions in contrast to only the direct363

local interactions in fluids. Nevertheless, the fluid analogy to our work is tempting since the chaotic364

dynamics of our two dimensional network has a macroscopic character that permits low, but non-365

vanishing, microscopic correlations, in contrast to the unrealistic high correlation dynamics of one366

dimensional or disordered networks. While the top-down attentional signal in our model is similar367

to that used in simpler models7,19, the effect of top-down attention is to not only shift the operating368

point of the network but also dampen the macroscopic chaotic dynamics of the network. In other369

words, attention not only attenuates the transfer of population-wide variability but also quenches the370

variability that is to be transferred. This permits a near complete attention-mediated suppression of371

internally generated correlations (Fig. 6). This extreme sensitivity allows top-down inputs to easily372

control the processing state of a network.373

State dependent shifts in population-wide variability are widespread throughout cortex3, and are374

often a signature of cognitive control. The circuit structure of our network is not a special feature of375

the primate visual system, yet rather a generic property of most cortices. We thus expect that the basic376

mechanisms for population-wide variability and its modulation exposed in our study will be operative377

in many regions of the cortex, and in many animal systems.378

Methods379

Network model description The network consists of three layers. Layer 1 is modeled by a pop-380

ulation of N1 = 2, 500 excitatory neurons, the spikes of which are taken as independent Poisson381

processes with a uniform rate r1 = 10 Hz. Layer 2 and Layer 3 are recurrently coupled networks382

with excitatory (α = e) and inhibitory (α = i) populations of Ne = 40, 000 and Ni = 10, 000 neu-383
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rons, respectively. Each neuron is modeled as an exponential integrate-and-fire (EIF) neuron whose384

membrane potential is described by:385

Cm
dV α

j

dt
= −gL

(
V α
j − EL

)
+ gL∆T e

(V αj −VT )/∆T + Iαj (t). (1)

Each time V α
j (t) exceeds a threshold Vth, the neuron spikes and the membrane potential is held for386

a refractory period τref then reset to a fixed value Vre. Neuron parameters for excitatory neurons are387

τm = Cm/gL = 15 ms, EL = −60 mV, VT = −50 mV, Vth = −10 mV, ∆T = 2 mV, Vre = −65 mV388

and τref = 1.5 ms. Inhibitory neurons are the same except τm = 10 ms, ∆T = 0.5 mV and τref = 0.5389

ms. The total current to each neuron is:390

Iαj (t)

Cm
=

NF∑
k=1

JαFjk√
N

∑
n

ηF
(
t− tF,kn

)
+
∑
β=e,i

Nβ∑
k=1

Jαβjk√
N

∑
n

ηβ
(
t− tβ,kn

)
+ µα, (2)

where N = Ne +Ni is the total number of the network population. Postsynaptic current is391

ηβ(t) =
1

τβd − τβr

{
e−t/τβd − e−t/τβr , t ≥ 0
0, t < 0

(3)

where τer = 1 ms, τed = 5 ms and τir = 1 ms, τid = 8 ms. The feedforward synapses from Layer392

1 to Layer 2 have the same kinetics as the recurrent excitatory synapse, i.e. η(2)
F (t) = ηe(t). The393

feedforward synapses from Layer 2 to Layer 3 have a fast and a slow component.394

η
(3)
F (t) = pfηe(t) + psηs(t)

with pf = 0.2, ps = 0.8. ηs(t) has the same form as Eq. 3 with a rise time constant τ sr = 2 ms and395

a decay time constant τ sd = 100 ms. The excitatory and inhibitory neurons in Layer 3 receive static396

current µe and µi, respectively.397

Neurons on the three layers are arranged on a uniform grid covering a unit square Γ = [0, 1]×[0, 1].398

The probability that two neurons, with coordinates x = (x1, x2) and y = (y1, y2) respectively, are399

connected depends on their distance measured periodically on Γ:400

pαβ(x,y) = p̄αβg(x1 − y1;αβ)g(x2 − y2;αβ). (4)
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Here p̄αβ is the mean connection probability and401

g(x;σ) =
1√
2πσ

∞∑
k=−∞

e−(x+k)2/(2σ2) (5)

is a wrapped Gaussian distribution. Excitatory and inhibitory recurrent connection widths of Layer402

2 are α(2)
rec := α

(2)
e = α

(2)
i = 0.1 and feedforward connection width from Layer 1 to Layer 2 is403

α
(2)
ffwd = 0.05. The recurrent connection width of Layer 3 is α(3)

rec = 0.2 and the feedforward connection404

width from Layer 2 to Layer 3 is α(3)
ffwd = 0.1. A presynaptic neuron is allowed to make more than405

one synaptic connection to a single postsynaptic neuron.406

The recurrent connectivity of Layer 2 and Layer 3 have the same synaptic strengths and mean407

connection probabilities. The recurrent synaptic weights are Jee = 80 mV, Jei = −240 mV, Jie = 40408

mV and Jii = −300 mV. Recall that individual synapses are scaled with 1/
√
N (Eq. 2); so that,409

for instance, Jee/
√
N ≈ 0.36 mV. The mean connection probabilities are p̄ee = 0.01, p̄ei = 0.04,410

p̄ie = 0.03, p̄ii = 0.04. The out-degrees are Kout
ee = 400, Kout

ei = 1600, Kout
ie = 300 and Kout

ii = 400.411

The feedforward connection strengths from Layer 1 to Layer 2 are J (2)
eF = 140 mV and J (2)

iF = 100412

mV with probabilities p̄(2)
eF = 0.1 and p̄(2)

iF = 0.05 (out-degrees Kout
eF2 = 4000 and Kout

eF2 = 500). The413

feedforward connection strengths from Layer 2 to Layer 3 are J3
eF = 25 mV and J3

iF = 15 mV with414

mean probabilities p̄(3)
eF = 0.05 and p̄(3)

iF = 0.05 (out-degrees are Kout
eF3 = 2000 and Kout

iF3 = 500). Only415

the excitatory neurons in Layer 2 project to Layer 3.416

The spatial models in Fig. 2aii,aiv contain only Layer 1 and Layer 2. In the model with disordered417

connectivity, the connection probability between a pair of neurons is p̄αβ , independent of distance.418

Other parameters are the same as the spatial model. The decay time constant of IPSC (τid) was varied419

from 1 to 15 ms (Fig. 2d). The rise time constant of IPSC (τir) is 1 ms when τid > 1 ms and 0.5 ms420

when τid = 1 ms.421

The parameters used in Fig. 3c,d are µi = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4] pA and µE = 0 pA.422

The mean firing rates in Layer 2 are r(2)
e = 19 Hz and r(2)

i = 9 Hz. In the further analysis (Fig. 4b-d,423
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Fig. 5b and Fig. 6), we used µI = 0.2 pA for the unattended state and µI = 0.35 pA for the attended424

state. In simulations of the spatial model with fast inhibition (Fig. 4c), τir = 0.5 ms, τid = 1 ms. In425

simulations of the spatial model with broad inhibitory projection (Fig. 4d and Fig. 5c), α(3)
e = 0.1,426

α
(3)
i = 0.2. Other parameters are not changed.427

All simulations were performed on the CNBC Cluster in the University of Pittsburgh. All simula-428

tions were written in a combination of C and Matlab (Matlab R 2015a, Mathworks). The differential429

equations of the neuron model were solved using forward Euler method with time step 0.01 ms.430

Neural field model and stability analysis We use a two dimensional neural field model to describe431

the dynamics of population rate (Fig. 5). The neural field equations are432

τα
∂rα(x, t)

∂t
= −rα + φ(wαe ∗ re + wαi ∗ ri + µα) (6)

where rα(x, t) is the firing rate of neurons in population α = e, i near spatial coordinates x ∈ [0, 1]×433

[0, 1]. The symbol ∗ denotes convolution in space, µα is a constant external input and wαβ(x) =434

wαβg(x;σβ) where g(x;σβ) is a two-dimensional wrapped Gaussian with width parameter σβ , β =435

e, i. The transfer function is a threshold-quadratic function, φ(x) = [x2]+. The timescale of synaptic436

and firing rate responses are implicitly combined into τα. In networks with approximate excitatory-437

inhibitory balance, rates closely track synaptic currents18, so τα represents the synaptic time constant438

of population α = e, i.439

For constant inputs, µe and µi, there exists a spatially uniform fixed point, which was computed440

numerically using an iterative scheme25. Linearizing around this fixed point in Fourier domain gives441

a Jacobian matrix at each spatial Fourier mode25
442

J(~n) =

[
(−1 + gew̃ee(~n)) /τe gew̃ei(~n)/τe

giw̃ie(~n)/τi (−1 + giw̃ii(~n)) /τi

]
.

where ~n = (n1, n1) is the two-dimensional Fourier mode, w̃αβ(~n) = wαβ exp(−2‖~n‖2π2σ2
β) is the443

Fourier coefficient ofwαβ(x) with ‖~n‖2 = n2
1+n2

2 and ga is the gain, which is equal to φ′(rα) evaluated444
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at the fixed point. The fixed point is stable at Fourier mode ~n if both eigenvalues of J(~n) have negative445

real part. Note that stability only depends on the wave number, k = ‖~n‖, so Turing-Hopf instabilities446

always occur simultaneously at all Fourier modes with the same wave number (spatial frequency).447

For the stability analysis in Fig. 5a, τi varies from 2.5 ms to 25 ms, σi varies from 0.05 to 0.2,448

and τe = 5 ms and σe = 0.1. The rest of the parameters were wee = 80, wei = −160, wie = 120,449

wii = −200, µe = 0.48 and µi = 0.32. Depolarizing the inhibitory population (µI = 0.5) expands450

the stable region (Fig. 5a, black dashed).451

Experimental methods Each of the two datasets (recordings from V4 and recordings from V1452

and MT) was collected from two different rhesus monkeys as they performed an orientation-change453

detection task. All animal procedures were in accordance with the Institutional Animal Care and Use454

Committee of Harvard Medical School, University of Pittsburgh and Carnegie Mellon University.455

For analysis in Fig. 1b and Fig. 4a, data was collected with two microelectrode arrays implanted456

bilaterally in area V424. In our analysis, we include stimulus presentations prior to the change stimulus457

from correct trials, excluding the first stimulus in a trial to avoid adaptation effects. Spike counts458

during the sustained response (120 - 260 ms after stimulus onset) are considered for the correlation459

and factor analysis. Neurons recorded from either the left or right hemisphere in one session are460

treated separately. There are a total of 42,496 trials for 72,765 pairs from 74 recording sessions. Two461

sessions from the original study were excluded for factor analysis due to inadequate trials. The trial462

number and unit number of each session is summarized in Table S1.463

For analysis in Fig. 1d, data was collected with one microelectrode array implanted in area V1 and464

a single electrode or a 24-channel linear probe inserted into MT23. Again, our analysis includes full465

contrast stimulus presentations prior to the change stimulus from correct trials and excludes the first466

stimulus in a trial to avoid adaptation effects. Spike counts are measured 30 - 230 ms after stimulus467

onset for V1 and 50 - 250 ms after stimulus onset for MT to account for the average visual latencies468
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of neurons in both areas. There are a total of 1,631 V1-MT pairs from 32 recording sessions.469

Statistical methods To compute the noise correlation of each simulation, 500 neurons were ran-470

domly sampled without replacement from the excitatory population of Layer 3 and Layer 2 within471

a [0, 0.5]x[0, 0.5] square (considering periodic boundary condition). Spike counts were computed472

using a sliding window of 200 ms with 1 ms step size and the Pearson correlation coefficients were473

computed between all pairs. Neurons of firing rates less than 2 Hz were excluded from the compu-474

tation of correlations. In Fig. 3c,d, for each µi there were 50 simulations and each simulation was475

20 sec long. Connectivity matrices and the initial states of each neuron’s membrane potential were476

randomized in each simulation. The first 1 second of each simulation was excluded from the correla-477

tion analysis. Standard error was computed based on the mean correlations of each simulation. For478

simulations of Fig. 2d, there was one simulation of 20 seconds per τid and the connectivity matrices479

were randomized for each simulation. To compute the noise correlation, 1000 neurons were randomly480

sampled without replacement in the excitatory population of Layer 2 within a [0, 0.5]x[0, 0.5] square.481

Correlations are computed between firing rates that are smoothed with a Gaussian window of width482

10 ms.483

Factor analysis assumes spike counts of n simultaneously recorded neurons x ∈ Rn×1 is a multi-484

variable Gaussian process485

x ∼ N (µ, LLT + Ψ)

where µ ∈ Rn×1 is the mean spike counts, L ∈ Rn×m is the loading matrix of the m latent variables486

and Ψ ∈ Rn×1 is a diagonal matrix of independent variances for each neuron. We choose m = 5 and487

compute the eigenvalues of LLT , λi (i = 1, 2, . . . , 5), ranked in descending order. We compute the488

residual covariance after subtracting the first mode as489

Q = Cov(x, x)− L1 × L′1

where Cov(x, x) is the raw covariance matrix of x and L1 is the loading matrix when fitting with490
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m = 1. The mean raw covariance and residual (Fig. 4a-d, bottom) are the mean of the off-diagonal491

elements of Cov(x, x) and Q, respectively. When applying factor analysis on model simulations (Fig.492

4b-d), we randomly selected 50 excitatory neurons from Layer 3, whose firing rates were larger than493

2 Hz in both the unattended and attended states. There were 10 non-overlapping sampling of neurons494

and we applied factor analysis on each sampling of neuron spike counts. There were 15 simulations495

with fixed connectivity matrices, each of which was 20 seconds long. Spike trains were truncated496

into 140 ms spike count window with a total of 2,025 counts per neuron. In simulations with fast497

inhibition (Fig. 4c) and broad inhibitory projection (Fig. 4d), the feedforward connectivity from498

Layer 2 to Layer 3 was the same as the one in simulations of the original model (Fig. 4b).499

To study the chaotic population firing rate dynamics of Layer 3 (Fig. 6), we fixed the spike500

trains realizations from Layer 1 neurons, the membrane potential states of the Layer 2 neurons and501

all connectivity matrices. Only the initial membrane potentials of Layer 3 neurons were randomized502

across trials. There were 10 realizations of Layer 1 and Layer 2, each of which was 20 sec long. For503

each simulation of Layer 2, 20 repetitions with different initial conditions were simulated for Layer504

3. The connectivity matrices in Layer 3 were the same across the 20 repetitions but different for each505

realization of Layer 1 and Layer 2. The realizations of Layer 1 and Layer 2 and the connectivity506

matrices were the same for the attended and unattended states. Trial-to-trial variance of Layer 3507

population rates (Fig. 6d) was the variance of the mean population rates of the Layer 3 excitatory508

population, smoothed by a 200 ms rectangular filter, across the 20 repetitions. The first second of509

each simulation was discarded.510

Code availability Computer code for all simulations and analysis of the resulting data is included511

in Supplementary Software.512

Data availability The data that support the findings of this study are available from the correspond-513

ing author upon request.514
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