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Abstract 12 

 By killing cattle and otherwise complicating management, the many species of larkspur 13 

(Delphinium spp.) present a serious, intractable, and complex challenge to livestock grazing 14 

management in the western United States. Among the many obstacles to improving our 15 

understanding of cattle-larkspur dynamics has been the difficulty of testing different grazing 16 

management strategies in the field, as the risk of dead animals is too great. Agent-based models 17 

(ABMs) provide an effective method of testing alternate management strategies without risk to 18 

livestock. ABMs are especially useful for modeling complex systems such as livestock grazing 19 

management, and allow for realistic bottom-up encoding of cattle behavior. Here, we introduce a 20 

spatially-explicit, behavior-based ABM of cattle grazing in a pasture with a dangerous amount of 21 

Geyer’s larkspur (D. geyeri). This model tests the role of herd cohesion and stocking density in 22 

larkspur intake, finds that both are key drivers of larkspur-induced toxicosis, and indicates that 23 

alteration of these factors within realistic bounds can mitigate risk. Crucially, the model points to 24 

herd cohesion, which has received little attention in the discipline, as playing an important role in 25 

lethal acute toxicosis. As the first ABM to model grazing behavior at realistic scales, this study also 26 

demonstrates the tremendous potential of ABMs to illuminate grazing management dynamics, 27 

including fundamental aspects of livestock behavior amidst ecological heterogeneity.  28 

 29 

Introduction 30 

The many species of larkspur (Delphinium spp. L.) present a serious, intractable, and complex 31 

challenge to livestock grazing management in the western United States [1–3]. Larkspur plants 32 

contain numerous norditerpinoid alkaloids, which are potent neuromuscular paralytics that, for 33 

reasons that are not entirely understood, are particularly effective at killing cattle, with yearly herd 34 

losses estimated at 2-5% for those grazing in larkspur habitat [3,4]. To avoid such losses, producers 35 
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will often abandon or delay grazing in pastures with larkspur, which creates a substantial opportunity 36 

cost and an impediment to achieving management objectives [1,4]. 37 

Among the many challenges to improving our understanding of cattle-larkspur dynamics has 38 

been the difficulty of testing different grazing management strategies in the field. Not only is risking 39 

dead cattle impractical and unethical, but the complexity of livestock grazing management, especially 40 

when considered across the wide range of habitats and management regimes in which larkspur is 41 

found, suggests that results from individual field experiments would be unlikely to be broadly useful 42 

anyway [5,6]. What is needed instead is a method of realistically testing grazing management 43 

strategies without risk to livestock and with the flexibility to test multiple scenarios. Agent-based 44 

models (ABMs) provide such a method. 45 

ABMs are computational simulation tools that focus on the behavior of individual “agents” 46 

as they interact with one another and the environment [7]. They differ from other types of 47 

simulation models in being bottom-up (versus top-down) with group-level behaviors emerging from 48 

(usually) realistic individual behaviors rather than deterministic formulae [8]. ABMs are thus 49 

particularly useful in modeling complex systems, where the results of the interactions among system 50 

elements are not easily predicted or understood [9,10].  Indeed, it has been suggested that bottom-51 

up-simulation may be the best way to increase our understanding of complex systems, which is one 52 

of the most important challenges confronting modern science [9,11,12].  53 

As noted by Dumont and Hill [11], ABMs are “particularly suited to simulate the behavior of 54 

groups of herbivores foraging within a heterogeneous environment”. The authors encourage the use 55 

of ABMs in situations where experimentation is impractical, and those where comparison of 56 

different management strategies is needed. Despite this encouragement, and despite the growing 57 

enthusiasm for ABMs in other disciplines, they have been little used in livestock grazing 58 

management research, despite the existence of relevant studies to parameterize such a model [e.g., 59 
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13–18]. This is at least partly due to confusion about the purpose and role of models in improving 60 

our understanding of complex systems.  61 

Models can never be complete simulacra, and do not need to be in order to be useful. 62 

Instead, “models are neither true nor false but lie on a continuum of usefulness for which credibility 63 

can be built up only gradually” [19]. This credibility is built not just by model output but also, more 64 

importantly, through thoughtful model development. This ensures that the necessary simplification 65 

that occurs in modeling focuses in on rather than obscures the system processes of interest [20]. As 66 

noted by Augusiak et al. [19], in well-designed models the important question is the extent to which 67 

the model achieves its purpose in the light of existing evidence, rather than a binary yes or no 68 

regarding its validity.  69 

Previous research into the relationship between grazing management and larkspur toxicosis 70 

has largely focused on timing of grazing, with some attention paid to mineral supplementation, pre-71 

grazing with sheep, and, increasingly, genetic susceptibility [3,4,21–24]. Some papers have suggested 72 

that cattle behavior, influenced by management, can play a role in mitigating larkspur deaths [25,26], 73 

but these ideas have received little empirical study. Only anecdotally has it been observed that, 74 

regardless of timing of grazing, it may be possible to eliminate losses to larkspur by increasing 75 

stocking density, due to a dilution effect (same amount of alkaloids, more cattle) or perhaps changes 76 

in herd behavior [27]. 77 

In this paper, we introduce a spatially-explicit, behavior-based ABM of cattle grazing in a 78 

pasture with a dangerous amount of Geyer’s larkspur (Delphinium geyeri Green), in which MSAL-type 79 

alkaloids are the dominant toxin [28,29]. This model provides significant management-relevant 80 

insight for producers dealing with larkspur and demonstrates the great potential of ABMs to credibly 81 

model livestock grazing management dynamics, including fundamental aspects of livestock behavior 82 

amidst ecological heterogeneity. 83 
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Methods 84 

The model description follows the updated Overview, Design Concepts, and Details (ODD) 85 

protocol, an accepted method for standardizing published descriptions of ABMs [30].  86 

Purpose 87 

We developed this model to test the effect of co-varying instantaneous stocking density [31] 88 

and herd cohesion (also known as troop length) [32] on cases of lethal acute alkaloid toxicosis 89 

caused by D. geyeri. Cases of lethal acute toxicosis are a product of intensity of exposure to alkaloids 90 

(via consumption) with passing time as a mitigating factor (via metabolism). Conceptually, this 91 

model functions as a mechanistic effect model (MEM) aimed at understanding the processes 92 

whereby toxic alkaloids kill grazing cattle. MEMs have been recognized for their potential to “close 93 

the gap between laboratory tests on individuals and ecological systems in real landscapes” [20].  We 94 

developed and executed the model in NetLogo 6.01, using the BehaviorSpace tool to implement 95 

simulations [33].  96 

Basic principles 97 

Behavior-based encoding of cattle activities was the guiding principle of model design. As 98 

noted by Mclane et al. [7], “the behavior-based approach leads to a more complex web of decisions, 99 

and the responses of the animal to stimuli are often more multifaceted”. We add that the behavior-100 

based approach is also more likely to allow for instructive emergent properties. In practice, the 101 

behavior-based approach means that at every step of the coding process we sought literature on 102 

actual cattle behavior and then encoded that behavior as realistically as possible. When literature was 103 

lacking we used our knowledge of cattle behavior from our years as livestock managers and 104 

researchers. The behavior-based approach also found expression in model evaluation, when one 105 
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mode of evaluation was whether the cows in the model “act like cows”. This was achieved through a 106 

lengthy process of visual debugging and other implementation verification [19,34].  107 

A second core design principle was parsimony. Because this is the first ABM that we know 108 

of to incorporate cattle at the individual scale of interaction with the environment (1 m2) and 109 

extended to a realistic pasture size, we were initially tempted to include every cattle behavior we 110 

could. However, our focus on parsimony to the question at hand meant that we instead included 111 

only those behaviors relevant to the consumption of larkspur. A final guiding principle was that 112 

when a judgement call was needed, we erred on the side of making the effects of alkaloid toxicosis 113 

more prominent. If the model was to show an effect of grazing management on reducing larkspur-114 

induced toxicosis, we wanted to be sure that we had taken every precaution against preconditioning 115 

it to do so.  116 

Overall, we followed as closely as possible the process of “evaludation” laid out by Augusiak 117 

et al. [19], which is aimed at moving beyond insufficient and often counterproductive ideas about 118 

model validation to a more thorough process of generating credible models. Specifically, we 119 

incorporated data evaluation, conceptual model evaluation, implementation verification, output 120 

verification, and other analysis of model output.  121 

Entities and state variables 122 

The model has two kinds of entities: pixels representing 1 m2 patches of land and agents 123 

representing 500 kg adult cows (1.1 animal-units). The patches create a model landscape that is 1663 124 

x 1580 patches (1.66 km x 1.58 km, equal to 262.75 ha, of which 258.82 ha are within the pasture 125 

under study and 3.93 ha are outside the fence line and thus inaccessible). This landscape aims to 126 

replicate pasture 16 at the Colorado State University Research Foundation Maxwell Ranch, a 127 

working cattle ranch in the Laramie Foothills ecoregion of north-central Colorado that is a transition 128 

zone between the Rocky Mountains and the Great Plains. Several pastures on the ranch, including 129 
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pasture 16, have significant populations of D. geyeri, which generate ongoing management challenges 130 

and have fatally poisoned cattle. 131 

To make the model appropriately spatially explicit we included three sets of geographic data. 132 

First, using data from the Worldview-2 satellite (8-band multispectral, resolution  2 m) from July 10, 133 

2016, we created an index of non-tree/shrub vegetation distribution within the pasture using a soil-134 

adjusted vegetation index (SAVI) within ERDAS Imagine 2016 software at a resolution of 1 m 135 

[35,36]. Second, as there are no developed watering locations in pasture 16, with ArcGIS Desktop 136 

10.4 we digitized and rasterized (at 1 m) all locations of naturally occurring water as of July 2017 137 

[37].  138 

Lastly, in June and July of 2017 we mapped larkspur distribution and density in pasture 16 139 

using a hybrid approach. We began by digitally dividing the pasture into 272 1-ha sampling plots. 140 

Because we knew larkspur to be of patchy distribution, in each plot we first mapped all larkspur 141 

patches (defined as areas with >1 larkspur plant • m-2) using an iPad equipped with Collector for 142 

ArcGIS 17.01 [38] and a Bad Elf Pro+ Bluetooth GPS receiver accurate to 2.5 m. To sample areas 143 

outside of larkspur patches for larkspur density, we counted all living larkspur plants in a 6-m-wide 144 

belt transect running horizontally across the plot, with the origin randomly assigned and any patches 145 

excluded [39]. Using ArcGIS Desktop we then extended the belt-transect-derived larkspur density to 146 

the rest of the plot (excluding patches), and both sets of data were integrated into a 1 m raster of 147 

larkspur distribution.  148 

The number of cows (individual agents) in the model varies according to the chosen 149 

stocking density (SD, in AU • ha-1). Cows are assigned the role of “leader” (5%), “follower” (85%), 150 

or “independent” (10%) [16,40,41]. Each cow is also assigned a value for MSAL-tolerance and 151 

larkspur-attraction. MSAL-tolerance determines the MSAL-level at which a cow will “die” and is 152 

randomly assigned to create a normal distribution with 99.9% of values falling within 25% of the 153 
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mean ( 𝑥=4,000 mg, σ=333.33 mg) [42]. In this model, death does not result in the removal of a cow 154 

from the herd; instead, in order to preserve herd and other model functions it is recorded as having 155 

died, its MSAL-level is set to zero, and it continues to graze. Note that MSAL-tolerance can be 156 

understood as modeling genetic, physiological, and situational susceptibility.  157 

Larkspur-attraction determines how much larkspur the individual cow will consume when in 158 

a patch with MSAL-content and is also randomly assigned to create a normal distribution with 159 

99.9% of values falling within 25% of the mean ( 𝑥=1.0, σ=0.083). A value of 1.0 means that the 160 

cow will consume larkspur at the same rate as other forage, while values greater or less than 1.0 161 

cause the animal to, respectively, prefer or avoid larkspur. All functionally relevant state variables for 162 

patches and cows, as well as global variables and inputs, are described in Table 1. 163 

Table 1. Relevant model variables.  164 

Entity Variable Description 

Patches forage-mass Amount of currently available forage (g)  
n-forage-mass Mean initial available forage in patches within a radius of 3 m (g)  
MSAL-content Amount of toxic alkaloids currently in patch (mg)  
times-grazed Number of times patch has been grazed 

Cows role Role in the herd: leader, follower, or independent 

 MSAL-level Current amount of MSAL alkaloids in cow’s body (mg); metabolized 

with a half-life of one grazing-day 

 MSAL-tolerance Level at which cow will be recorded as having died (MSAL-level>MSAL-

tolerance); assigned randomly from a normal distribution ( 𝑥=4,000 mg, 

σ=333.33 mg) 

 larkspur-attraction Factor determining the relative amount of larkspur a cow will eat when 

in a patch with MSAL-content; assigned randomly from a normal 

distribution ( 𝑥=1, σ=0.083)  
herdmates Agent-set consisting of nearest 20 cows  
mean-herd-distance Mean distance to herdmates 

 total-MSAL-intake Total amount of MSAL alkaloids consumed during model run (mg)  
daily-MSAL-intake Amount of MSAL alkaloids consumed during current day (mg)  
hydration Hydration level, decreases to zero between visits to water  
ready-to-go Used by leader cows only, a measure of their inclination to move on 

from an overgrazed site 

Globals waterers Patch-set of all watering locations 
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site-tolerance Herd-size-dependent variable determining leader cows' tolerance for 

relatively overgrazed sites  
site-radius Radius of site when choosing a new site; product of herd-cohesion-

factor and herd size resulting in space per cow ranging from 10 m2  to 

1000 m2  
herd-distance Desired mean-herd-distance; product of herd-cohesion-factor resulting 

in range from 10 m to 100 m 

Inputs kgs-per-hectare Mean amount of usable forage (kg • ha-1) 
 

mean-larkspur-mass Mean mass of larkspur plants (g)  
MSAL-concentration MSAL alkaloid concentration in larkspur plants (mg • g-1) 

  herd-cohesion-factor 

(HCF) 

Determines herd-distance and site-radius; range 1-10, increase leads to 

more cohesive herd 

 stocking-density (SD) Instantaneous stocking density (AU • ha-1) 

 165 

Scales 166 

The model simulates cow activities at multiple temporal and spatial scales. In each tick (one 167 

cycle through the model code), each cow interacts with a single 1 m2 patch (a feeding station) by 168 

grazing (>99% of the time) or drinking water (twice per day) [13]. A tick does not represent time, 169 

but rather the occurrence of this interaction. This is because the duration of this interaction will vary 170 

depending on the amount of forage available, among other factors. Instead, time is represented by 171 

consumption of forage. When the average consumption of the grazing herd is equal to the average 172 

daily consumption of a 500 kg cow (12.5 kg), the model counts a grazing-day as having passed [43]. 173 

Total model run time is measured in animal-unit-months (AUMs) [44]. 174 

The narrowest scale of spatial interaction is the eating interaction occurring within a single 175 

patch (1 m2). When determining the next patch to graze, the cow’s decision is based on a desire 176 

either to move closer to its herdmates or to choose a nearby patch with maximum available forage. 177 

This decision happens on the scale of 2-25 m. Finally, leader cows make decisions on the scale of 178 

the entire pasture by deciding when it is time to visit water or time to move from the current feeding 179 

site to a new site.  180 
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Thus, there are four programmed spatial scales (additional scales may be emergent) at which 181 

the cows interact with the landscape: 1) the individual patch; 2) the scale of herd cohesion, set by the 182 

user; 3) the current feeding site; and 4) other feeding sites, identifiable by leader cows. The number 183 

of ticks that will pass before reaching a stopping point (say, 150 AUMs) depends on the number of 184 

animals grazing, their herd cohesion, the amount and distribution of available forage, and stochastic 185 

emergent properties of the model. For an expanded discussion of temporal and spatial scales of 186 

foraging behavior of large herbivores, see Bailey and Provenza [13]. 187 

Process overview and scheduling 188 

Fig 1 illustrates the model execution process for each tick. Each cow moves through each step of 189 

the process, but only performs those steps linked to its role. 190 

 191 

Fig 1. Pseudo-coded flow chart of model processes, with role of cows executing each process in parentheses. 1= leader, 192 
2=follower, 3= independent. 193 

Check hydration 194 
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 Each leader cow checks it hydration level, which is tied to forage consumption such that it 195 

depletes to zero twice per day. We chose two water visits per day based on personal communication 196 

about GPS collar data for the region [D. Augustine, USDA ARS, pers. communication; see 45]. If an 197 

individual leader detects its hydration level as less than or equal to zero, it initiates a movement to 198 

water for the whole herd. 199 

Go to water 200 

 The water source in pasture 16 is a stream that is intermittently below ground. The go-to-201 

water procedure directs each cow to go to the nearest waterer patch with two or fewer cows already 202 

present. The hydration value for each cow is then set to maximum, and the value for ready-to-go for 203 

leader cows is set to site-tolerance – 1. This reflects the understanding that cattle will quickly graze 204 

and trample areas around water, rendering them unsuitable for grazing. Instead, they will pick 205 

desirable foraging areas in proximity to but not directly surrounding a watering site, expanding 206 

outward as these areas are grazed [13]. The model thus encourages a site change upon drinking 207 

water, but only if the area surrounding the watering site meets the criteria for increasing ready-to-go 208 

(explained below). A global variable ensures that no other processes occur during a tick when 209 

watering occurs. 210 

Check site change 211 

 This process is only executed by leader cows, each of which assesses the mean number of 212 

times patches within a radius of 10 m have been grazed. If these patches have been grazed relatively 213 

more (defined as >0.5 • mean times-grazed of all patches + 1.2) than the pasture as a whole, the 214 

value of ready-to-go increases by one. If this value reaches a pre-defined threshold (which increases 215 

with herd size), the individual then initiates a site change, but only if the individual’s hydration value 216 

is not approaching zero, in which case it instead initiates the go-to-water procedure. We arrived at 217 

the threshold formula for increasing the value of ready-to-go by using visual debugging and 218 
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evaluation related to site change frequency, as well as theory on the optimization of grazing effort 219 

[13,46].  220 

If conditions for a site change are satisfied, the deciding leader cow first identifies the best 221 

five available sites, using criteria of number of times-grazed, forage-mass, and n-forage-mass to 222 

determine a centroid patch. The nearest of these patches is then used to create a new site at a radius 223 

that is linked to the user selected herd-cohesion-factor and the size of the herd, resulting in 10-1,000 224 

m2 • cow-1 in the new site. The leader cow then initiates the change-site procedure for itself and all 225 

other cows.  226 

Change site 227 

 This procedure is initiated according to role, so that leader cows have first choice of their 228 

location in the new site, followers second, and independents third. Within the allocated new site, 229 

each cow chooses the patch with the most forage that has no cows on it or any of its four direct 230 

neighbors. 231 

Assess herd 232 

In combination with the environmental-movement procedure, this process represents >99% 233 

of cow actions in the model. Each cow first sets its herdmates as the nearest 20 other cows [47]. For 234 

leader and follower cows, if the individual’s mean distance to these herdmates is greater than herd-235 

distance, it “herds up”. This is achieved by facing the centroid of the herdmates and moving to the 236 

patch with maximum available forage that is 10-25 m in the direction of this centroid, within a cone 237 

of vision of ±45 degrees [14]. For independent cows, the same process occurs but is only initiated if 238 

the distance from herdmates is greater than 2.5 times the herd-distance of the other cows. 239 

Independent cows are also repelled from the center of their herdmates by moving away by the same 240 

procedure when they are within one-half of the herd-distance.  241 

Environmental movement 242 
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If none of the above procedures are implemented, each cow will make a movement decision 243 

based on local grazing conditions. If the patches within a radius of 10 m are relatively ungrazed 244 

(mean times-grazed < 0.5) the cow will move to the patch with the most available forage within 2 m, 245 

within a ±45 degree cone of vision [13]. If the same area is relatively well grazed (mean times-grazed 246 

≥ 0.5), the cow then looks further afield, choosing the patch with the most available forage within 247 

10 m, within a cone of vision of ±45 degrees.  248 

Eat 249 

 The eat procedure is the core interaction between the cows and the forage, both non-250 

larkspur and larkspur. Behavior varies slightly depending on how many times the patch has 251 

previously been grazed. If the current visit is the first time it has been grazed, the cow eats 40% of 252 

the available forage [15,18]. If it is the second visit, it eats 50% of what remains. In the third and any 253 

subsequent visits, it eats 60%. Each cow then increases its consumption-level by the same amount 254 

and decreases its hydration value. If there is larkspur present (in the form of MSAL-content), that is 255 

consumed according to the individual cow’s larkspur-attraction value, increasing the MSAL-level of 256 

the cow. The corresponding patch values are decreased to account for consumption. Lastly, times-257 

grazed in the patch is increased by one. 258 

Assess toxicosis 259 

 This process is triggered at the end of each grazing-day for all cows in order to assess their 260 

toxicosis status, which is measured as their MSAL-level relative to their MSAL-tolerance. Note that 261 

MSAL-level is measured continuously throughout the model run, and has an elimination half-life of 262 

one grazing-day [48]. If MSAL-level exceeds MSAL-tolerance, the count of deaths for the model run 263 

is increased by one, MSAL-level is set to zero, and the cow continues. Numerous other data on 264 

toxicosis status are recorded for all cows at this point. Lastly, the MSAL-level for each cow is 265 

multiplied by 0.5.   266 
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Design concepts 267 

Emergence 268 

Because the actions of the cows are encoded via simple behavior-based processes, nearly all 269 

model patterns can be considered emergent. These include the stochastic distribution of the herd 270 

and subherds, forage consumption, larkspur consumption, grazing pressure and patterns, and site 271 

changes. Assessment of these un-coded emergent properties and patterns was critical to establishing 272 

the credibility of the model [20]. 273 

Adaptation, objectives, learning, and predictions 274 

The cows adapt to the grazing environment as they and their fellow cows graze, continually 275 

seeking their main model objective of maximizing forage consumption within behavioral limits [14]. 276 

There is no encoded learning or prediction, as the cows are programmed to be familiar with the 277 

location of forage and water in the pasture. However, it may be that learning and prediction are 278 

emergent, in that activities that we might consider to be evidence of those behaviors are visible in 279 

the model as a result of the simple encoded behaviors. 280 

Sensing and interaction 281 

The cows sense each other and their environment at multiple spatial scales. Interaction 282 

occurs with other cows whenever moving to a new patch, both via sensing if a patch is already 283 

occupied and by seeking to herd up when too far from their herdmates. 284 

Stochasticity 285 

There is no environmental stochasticity in this model iteration, as we sought to make the 286 

landscape as realistic as possible by incorporating relevant data from the real pasture 16. However, 287 

cattle interactions with the forage and larkspur demonstrate moderate stochasticity.  288 

Initialization 289 
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Landscape initialization begins by loading the SAVI layer and a user-input value for available 290 

forage per ha (kgs-per-hectare). The model uses a nonlinear exponential formula to distribute forage 291 

such that the patches with the least forage contain one-third of the mean forage, while the patches 292 

with the most contain three times the mean forage. Next, the model incorporates the larkspur 293 

distribution layer, using inputs of median larkspur mass (g) and mean MSAL concentration (mg • g-1) 294 

to generate an MSAL alkaloid (hereafter simply “alkaloid”) content for each patch. These values are 295 

based on our unpublished data on D. geyeri mass and toxicity at the Maxwell Ranch such that 296 

larkspur plants in areas of high SAVI were 50% larger than the median, and larkspur plants in areas 297 

of low SAVI were 50% smaller than the median. Finally, the model incorporates the water location 298 

layer. All other patch variables are derived from these inputs. Fig 2 shows the initialized landscape. 299 

 300 

Fig 2. Model landscape, 1.66 km x 1.58 km. (a) Initialized full model landscape, with darker green indicating areas with 301 
greater aboveground forage biomass. (b) Landscape with larkspur locations only, with darker purple representing higher 302 
MSAL-content and with results of hybrid sampling method evident. (c) Landscape with watering locations only, pointed 303 
out by arrows.  304 

The final step in model initialization is to create the cows by using the input of stocking-305 

density multiplied by the area of the pasture. All cows are initially in the same random location in the 306 
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pasture. This location is largely irrelevant as the cows immediately go to water, but we did not want 307 

it to be the same location each time because this would be unrealistic (pasture 16 has multiple 308 

entrances for cattle) and would limit stochasticity. At this point, the model is fully initialized and is 309 

executed following the processes laid out above. 310 

Simulation 311 

We used the BehaviorSpace tool in NetLogo to run a full factorial simulation of four 312 

different levels of both herd-cohesion-factor (1, 4, 7, and 10) and stocking-density (0.25, 0.5, 1.0, 313 

and 2.0 AU • ha-1). We replicated each combination 30 times, for a total of 480 simulations. Input 314 

median larkspur mass was 3.5 g and input MSAL alkaloid concentration was 3.0 mg • g-1. We chose 315 

these values to be representative of an excellent growing year with larkspur plants at bud stage, when 316 

the alkaloid pool (total available mg) is highest—arguably the most dangerous possible conditions. 317 

This is also a time of year that cattle grazing in larkspur habitat is frequently avoided, despite being a 318 

highly desirable time for grazing [1,4,49]. Input value for kgs-per-hectare was 500 kg, based on 319 

current ranch usage and typical values for the area. 320 

Observation 321 

Of primary importance were data related to alkaloid consumption, assessed according to 322 

dose-response data from previous research [42]. Most interesting was the number of times in a 323 

model run that any individual cow crossed the threshold into potentially lethal acute toxicosis, 324 

during which they would be expected to be recumbent and unable to stand, with a high likelihood of 325 

death [42].  To measure the number of such cases, the model counted cows whose MSAL-level 326 

exceeded their MSAL-tolerance at the end of a grazing-day. 327 

The model also recorded data underlying the trends found for lethal acute toxicosis, most 328 

importantly data on daily, total, and maximum alkaloid intake. These data assisted in identifying 329 

potential mechanisms for the role of herd cohesion and stocking density in influencing deaths. 330 
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Additional data, such as forage consumption, number of site changes, travel distance per day, and 331 

evenness of grazing impact, provide additional insight and model output verification.  332 

Statistical analysis 333 

We used both JMP Pro 13.0.0 and R statistical software, version 3.3.3 for data analysis and 334 

presentation [50,51]. Data for daily alkaloid intake, which amounted to 1.88 million data points, were 335 

organized and cleaned using OpenRefine 2.8 [52]. We began by assessing the role and relative 336 

influence of HCF and SD in generating lethal acute toxicosis, within two contexts: first, using their 337 

16 combinations as “management levels” to explore overall trends in a management-relevant 338 

manner; and, second, using HCF and SD as continuous variables within a regression framework to 339 

provide more information on the relative influence of each. To regress the lethal acute toxicosis 340 

count data we used a generalized linear model (GLM) with a negative binomial distribution and a 341 

log-link function using the MASS package in R [53,54]. To confirm that the negative binomial 342 

distribution was the correct choice, we compared it to a GLM with a Poisson distribution and a log-343 

link function. The GLM with the negative binomial distribution was superior, using residual 344 

deviance and Aikaike’s information criterion (AIC) as judgment criteria [55]. 345 

To identify mechanisms for how HCF and SD were influencing deaths, we used the same 346 

negative binomial GLM approach to analyze the relationship between various intake data and lethal 347 

acute toxicosis. We did so by first hypothesizing which factors were driving deaths, and then looked 348 

at single-factor models for each, assessed using AIC values and model coefficients [55]. Because the 349 

goal was to identify key mechanisms rather than determine the best predictive model, this provided 350 

more insight than examining a global model or various permutations of factors.  351 

Finally, we analyzed the relationship of HFC and SD to the identified mechanisms using 352 

multiple linear regression (R base package). While there were some indications of heteroscedasticity 353 

and outliers, we determined that linear regression was robust to those errors in these cases. We 354 
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confirmed this by also fitting alternate models within other regression frameworks (robust and non-355 

parametric), which returned very similar results. Interaction effects are shown when significant; 356 

otherwise, they were excluded from the models. 357 

Results 358 

Model output verification 359 

A core element in the evaluation of behavior-based mechanistic effect models is a 360 

comparison between multiple emergent model patterns and observed patterns in the real system 361 

[20]. In this case, this helped to establish that the modeled cows, coded for individual behaviors, 362 

acted like real cows when interacting with one another and the landscape, at least in regard to 363 

behaviors relevant to larkspur consumption. Toward this end, first we offer Fig 3 to illustrate how 364 

varying HCF influences herding patterns, and to show how grazing was distributed across the 365 

pasture in one model run.  366 
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 367 

Fig 3. The effect of varying herd-cohesion-factor (HCF) on herd patterns, displayed at different levels of pasture usage 368 
(AUMs). Note that the cows depicted in these images are drawn 200 times larger than they really are to aid visualization, 369 
which makes them appear closer to one another than they are. Pasture size is 1.66 km x 1.58 km, and stocking density 370 
for all images is 1.0 AU • ha-1. White cows are leaders, black followers, and gray independents. Yellow indicates patches 371 
that have been grazed twice, red three times. (a) HCF=10, AUMs=14; (b) HCF=7, AUMs=68; (c) HCF=4, AUMs=119; 372 
(d) HCF=1, AUMs=163. Typical usage for this pasture (258.82 ha) is 150 AUMs.  373 

Decreasing HCF increases overall herd separation and leads to more wandering among the 374 

independent cows and others. Note that in Fig 3a the cows have formed distinct subherds. This 375 

appears to be an emergent property of cows grazing with high herd cohesion (herd-distance ≤ 20 376 

m).  377 

The cows initially graze the areas with high forage amounts (dark green) in relative proximity 378 

to the water, and gradually extend their impact outward, targeting high productivity areas. By the end 379 
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of the grazing cycle (Fig 3d), they have visited the entire pasture, though areas furthest from water 380 

have been grazed less [56]. Areas of initial high forage mass have been grazed two or more times, 381 

while many areas of low forage mass have not been grazed at all. These results are in line with well-382 

established qualitative understanding of grazing patterns in large pastures [13,44]. 383 

The variation in forage consumption among individuals also aligned well with the variation 384 

seen in real cows foraging native pasture. While a grazing-day for the whole herd was defined as 385 

mean consumption of 2.5% of body weight (12.5 kg), the mean 99.9% daily range of consumption 386 

for all model runs was 2.34-2.66% of body weight. This range of consumption aligns well with 387 

common “rules of thumb” and predictive formulae [43,57,58].  388 

The mean value for site changes per day for the 16 management levels varies from 2.3 for 389 

few cows grazing very loosely (HCF=1, SD=0.25) to 6.0 for many cows grazing very cohesively 390 

(HCF=10, SD=2.0). These values are in line with the estimate of 1-4 hours per feeding site by Bailey 391 

and Provenza [13]. For runs with few cows grazing with little cohesion (HCF=1, SD=0.25), mean 392 

daily travel was 4.16 km, while many cows grazing very cohesively (HCF=10, SD=2.0) traveled an 393 

average of 7.40 km per day. These numbers and the positive trend also track well with data from 394 

previous studies [59]. 395 

As a last point of output verification, we were interested to see if the number of modeled 396 

cases of larkspur-induced lethal acute toxicosis would parallel numbers from the literature when we 397 

modeled grazing to be similar to the current management scheme. When modeled to reflect current 398 

management practices, with HCF=4, SD=0.5, and for 150 AUMs (removing approximately 45% of 399 

available forage), we recorded a mean of 2.8 cases of lethal acute toxicosis across 30 model 400 

iterations. This amounts to 2.4% of cows, which falls within the estimate of 2-5% in pastures with 401 

dangerous amounts of larkspur [4]. Additionally, individual model runs of zero deaths occurred in all 402 
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but four of the management levels, which aligns with our anecdotal understanding of producer 403 

experience.  404 

Lethal acute toxicosis 405 

On its own, increased herd cohesion demonstrated the potential to significantly reduce 406 

deaths. For example, at a stocking density of 0.5 AU • ha-1, mean deaths declined from 4.33 at 407 

HCF=1 to 1.37 at HCF=10. Similarly, increased stocking density in the absence of changes in herd 408 

cohesion also greatly reduced deaths, for example from a mean of 7.5 at SD=0.25 to 0.70 at SD=2 409 

at a constant HCF of 4. Working together, increases in both herd cohesion and stocking density 410 

from the minimum to the maximum achieved a 99.6% reduction in deaths (Fig 4). The mean value 411 

for MSAL-tolerance among dead cows was 3,725.8 mg, while the mean value for larkspur-attraction 412 

was a factor of 1.06. Of 1,132 total deaths in the simulation, 3.9% were among cows with the role of 413 

leader, 78.7% were among followers, and 17.4% were among independents. 414 
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 415 
Fig 4. Box plots of distribution of counts of lethal acute toxicosis cases (MSAL-level ≥ MSAL-tolerance at end of 416 
grazing-day).  From 30 model runs for each combination of herd-cohesion factor (HCF) and stocking-density (SD), 417 
ordered by median count of lethal acute toxicosis cases, with outliers as jittered circles. 418 

 419 

The coefficient for HCF (Table 2), as a log odds ratio, indicates that an increase of one in 420 

HCF resulted in a 13.5% decrease in occurrences of lethal acute toxicosis. The coefficient for SD 421 

indicates that an increase of one in SD resulted in a 54.8% decrease. Lastly, the coefficient for the 422 

interaction of HCF with SD indicates that an increase in either HCF or SD slightly increases the 423 

effect of the other. The GLM β coefficients indicate that HCF had 91.8% of the influence of SD in 424 

reducing deaths.  425 

 426 
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Table 2. Results of GLM with negative binomial distribution and log-link function for count of lethal acute toxicosis as 427 
predicted by herd-cohesion-factor (HCF) and stocking-density (SD). β coefficients are from the same GLM without the 428 
interaction present. GLM fit: Fisher scoring iterations=1; residual deviance=516.94 on 476 degrees of freedom; 429 
AIC=1686.3. 430 

Coefficient Estimate Std. error p-value β 

Intercept 2.341 0.128 <0.001  

HCF -0.145 0.024 <0.001 -0.225 

SD -0.793 0.136 <0.001 -0.245 

HCF:SD -0.079 0.029 0.007  

 431 

Identifying mechanisms 432 

 We hypothesized that five factors might explain how HCF and SD were reducing deaths: 433 

mean individual daily alkaloid intake (the average single-day alkaloid intake in a model run), standard 434 

deviation of individual daily alkaloid intake, mean maximum individual daily alkaloid intake (each 435 

cow’s worst day), standard deviation of maximum individual daily alkaloid intake, and the coefficient 436 

of variation for individual total alkaloid intake. Results for the comparison of single-factor models 437 

reveal varying influence on lethal acute toxicosis among these factors (Table 3). 438 

Table 3. Results for comparison of single-factor negative binomial generalized linear models with a log-link function 439 
using corrected Aikaike’s information criterion. All values for quartiles are in mg, except for CV total, which is unitless. 440 
Percent Δ deaths from Q1 to Q3 is observed percent change in lethal acute toxicosis count between quartile one and 441 
three. 442 

Mechanism AICc 
GLM 

coefficient Quartile 1 Quartile 3 
Pct. Δ deaths 
from Q1 to Q3 

σ Maximum 1473.3 0.0072 410.3 591.2 130.70% 

σ Daily 1510.1 0.0265 363.8 435.4 192.36% 

Mean maximum 1671.2 0.0019 1275.0 1987.7 135.55% 

Mean daily 1911.4 -0.0374 527.9 543.0 -55.58% 

CV total 1930.2 -7.044 0.118 0.185 -6.69% 

 443 

Because they had the most significant effect on lethal acute toxicosis, and were scored lowest for 444 

AICc, we focused the rest of the analysis on examining the relationship of HCF and SD to standard 445 

deviation of maximum individual daily alkaloid consumption, standard deviation of individual daily 446 

alkaloid consumption, and mean maximum individual daily alkaloid consumption. A model for lethal 447 

acute toxicosis count that contained these three mechanisms had an AICc score of 1368.3. 448 
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Daily alkaloid intake 449 

 Mean individual daily alkaloid intake represents the mean of every single-day alkaloid intake 450 

for every cow, and ranged from a low of 525.1 mg (HCF=4, SD=0.25) to a high of 550.9 mg 451 

(HCF=10, SD=0.25). Multiple linear regression results indicate that HCF and SD had limited 452 

influence on mean daily intake (adj. R2<0.19), with both associated with slight increases. On the 453 

other hand, the standard deviation of daily alkaloid intake, which quantifies the spread of the 454 

distribution of daily alkaloid intake values, differed significantly between management levels, from a 455 

high mean of 460.5 mg (HCF=1, SD=0.25) to a low mean of 301.3 mg (HCF=10, SD=2). Multiple 456 

linear regression results indicate that HCF and SD were strongly influential, with HCF exerting 457 

93.0% more influence than SD (Table 4). 458 

Table 4. Results of multiple linear regression for the standard deviation of individual daily alkaloid intake as predicted by 459 
herd-cohesion-factor (HCF) and stocking-density (SD). Adj. R2=0.76. 460 

Coefficient Estimate Std. error p-value β 

Intercept 487.79 2.61 <0.001  

HCF -11.33 0.33 <0.001 -0.774 

SD -29.38 1.64 <0.001 -0.401 

 461 

 A box plot showing the distribution of all individual daily alkaloid intake values (n=1.88 • 105) at 462 

each management level further illustrates these patterns (Fig 5).  463 
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 464 
Fig 5. Box plots of distribution of individual daily alkaloid intake (mg; n=1.88 • 10-5).  From 30 model runs for each 465 
combination of herd-cohesion factor (HCF) and stocking-density (SD), ordered by median standard deviation of daily 466 
alkaloid intake, with outliers as jittered circles. 467 
 468 

Maximum daily alkaloid intake 469 

 Mean maximum individual daily alkaloid intake quantifies the mean worst day for all cows 470 

during a model run, and ranged from 1,045.6 mg (HCF=10, SD=2) to 2,450.2 mg (HCF=1, 471 

SD=0.25). The standard deviation of maximum individual daily alkaloid intake quantifies how widely 472 

dispersed this value was among the herd members, and ranged from 303.0 mg (HCF=10, SD=2) to 473 

704.0 mg (HCF=4, SD=0.25). Regression results for both factors provide further insight into the 474 

relationship of HCF and SD to lethal acute toxicosis (Tables 5-6). 475 
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Table 5. Results of multiple linear regression for the mean of maximum individual daily alkaloid intake as predicted by 476 
herd-cohesion-factor (HCF) and stocking-density (SD). Adj. R2=0.82. β coefficients are from the same model without 477 
the interaction present. 478 

Coefficient Estimate Std. error p-value β 

Intercept 2547.56 28.58 <0.001  

HCF -61.86 4.44 <0.001 -0.31 

SD -686.15 24.80 <0.001 -0.84 

HCF:SD 22.75 3.85 <0.001   

 479 

Table 6. Results of multiple linear regression for the standard deviation of maximum individual daily alkaloid intake as 480 
predicted by herd-cohesion-factor (HCF) and stocking-density (SD). Adj. R2=0.47. No significant interaction was 481 
present. 482 

Coefficient Estimate Std. error p-value β 

Intercept 718.57 11.33 <0.001  

HCF -22.34 1.42 <0.001 -0.52 

SD -96.06 7.12 <0.001 -0.45 

 483 

Distinct persistent subherds 484 

 Model outputs (Fig 6) suggested an apparent scalar behavioral discontinuity between 485 

HCF=7 and HCF=10, which we believe results from the emergent property of distinct persistent 486 

subherds. 487 
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 488 
Fig 6. Box plots of various model evaluation data demonstrating effect of distinct persistent subherds. (a) Mean 489 
individual travel distance per grazing day (m) by herd cohesion factor (HCF); (b) Proportion of use of assess herd 490 
procedure (versus environmental movement) to choose a new grazing patch, a measure of herd-based versus individual 491 
optimization, by HCF; (c) Standard deviation of times-grazed count for all patches at end of model run, a measure of 492 
grazing heterogeneity, by HCF; (d) Total model run length, an inverse indicator of grazing efficiency, by HCF at 493 
stocking density=0.5. 494 
 495 

Discussion 496 

Research into best practices for grazing management in larkspur habitat has long focused on 497 

either attempts to eliminate larkspur or on phenological avoidance (what we term “fight or flight”). 498 

Because elimination through herbicides or mowing is costly and often impractical [60], most 499 

research and current recommendations focus on avoiding grazing in larkspur habitat at times of year 500 

when it is considered most dangerous to cattle, exemplified by the toxic window concept [3,4,23]. 501 
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While this approach has certainly helped many producers better understand larkspur toxicity 502 

dynamics, there is no evidence that it has reduced the overall number of deaths. There are many 503 

reasons for this, and interactions are complex and place-based, but we suggest that a reliance on a 504 

static view of palatability is largely to blame.  505 

An alternative to fight or flight is to manage grazing such that larkspur intake remains below 506 

the threshold where there is an observable negative effect on the cattle. This study provides an 507 

indication that this may be possible even in pastures with dangerous amounts of Geyer’s larkspur. 508 

For the first time, this model suggests that herd cohesion and stocking density are key drivers of 509 

larkspur-induced toxicosis, and that management decisions that influence these factors hold 510 

potential to limit deaths. Of crucial importance is the observation that herd cohesion, which has 511 

received almost no consideration in the broader grazing management literature, is an important 512 

determinant of risk of death from larkspur.  513 

An essential point for understanding how increased herd cohesion and stocking density 514 

reduced deaths is that Geyer’s larkspur grows most densely in relatively productive areas, which are 515 

thus desirable areas for foraging. Functionally, increased herd cohesion and stocking density lead to 516 

increased competition for forage, making it more difficult for any individual to monopolize a 517 

resource- and larkspur-rich area. Additionally, increased herd cohesion leads to less wandering 518 

among individuals, making it less likely an individual cow will wander into a dense larkspur patch 519 

alone. Evidence for the danger of wandering behavior is found in the disproportionate death rate of 520 

cows with the role of independent. Lastly, increased stocking density does appear to lead to dilution, 521 

but in the form of lowered maximum individual daily intake rather than lowered mean individual 522 

daily intake.  523 

Mechanistically, decreased risk of lethal acute toxicosis occurred through: 1) a narrowed 524 

distribution of individual daily alkaloid intake, 2) lowered mean and narrowed distribution of outlier 525 
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alkaloid intake days. Herd cohesion played a stronger role in narrowing the distribution of daily 526 

intake, stocking density was more influential in lowering the mean of outlier intake, and both played 527 

a relatively equal role in narrowing the distribution of outlier intake events. Strong evidence for the 528 

role of these as mechanisms is provided by the much lower AICc score for the model with the 529 

mechanisms than for the model with HCF and SD (1386.3 vs. 1686.3). This suggests that other 530 

management interventions that succeed in influencing these mechanisms would have similar success 531 

in reducing deaths.  532 

When we recognize that even in the worst-case scenario lethal acute toxicosis is a rare event 533 

among thousands of grazing-days, it becomes clear why narrowing the distribution of individual 534 

intake and reducing outliers is so important. With a mean MSAL-tolerance of 4,000 mg, an average 535 

bad day in a herd with low herd cohesion and low stocking density would put an individual 536 

(especially one with lower tolerance or higher attraction to larkspur) in danger. Meanwhile, 537 

individuals grazing in a herd with high herd cohesion and at a high stocking density in the same 538 

pasture, even those with low tolerance, would need at least a few upper-end intake days in a row to 539 

risk death—an unlikely occurrence. 540 

Note that we selected the bounds of herd cohesion and stocking density to align with what 541 

we believe to be realistically achievable by managers in the western US. While stocking density is 542 

easily understood, it may be worthwhile to describe how we think the various levels of herd-543 

cohesion-factor (HCF) could be achieved (reference Fig 3).  We think of HCF values of 1 and 4 as 544 

representative of most current extensive management, such that there is a small to moderate amount 545 

of herding behavior but in which animals are often spread out across a large area. The difference 546 

between these two might be accounted for by differences in breeding history, carnivore pressure, or 547 

genetic drift. To achieve an HCF of 7, we think cattle would need to be selected for strong herding 548 

instinct or be regularly, but not necessarily continually, herded. An HCF of 10 is comparable to 549 
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many herds of wild ungulates and is achievable through the continual presence of a herder or a 550 

sustained effort at selecting for herding behavior.  551 

There are two additional ways that a rapid increase in herd cohesion may be achieved. First, 552 

a drastic increase in stocking density (via increased animal-units or subdivided pastures) to a level 553 

that approaches “mob” grazing can forcibly increase cohesion. Second, the emerging technology of 554 

virtual fencing holds tremendous promise for achieving rapid changes in grazing behavior, including 555 

herd cohesion [61]. 556 

 An unexpected emergent phenomenon occurred at HCF=1, in the form of distinct 557 

persistent subherds (see Fig 3a). These subherds are small groups of >20 but usually <35 cows that 558 

stick closely together for an entire inter-watering period, with some exchange of individuals or 559 

combining when two groups meet. This does not occur at higher levels of HCF. Cows in distinct 560 

persistent subherds traveled significantly greater distances, spent more time seeking to be closer to 561 

herdmates rather than maximizing forage intake, and grazed more heterogeneously (Figs 6a-c). 562 

Nevertheless, these cows reached 150 AUMs of forage consumption in 94.3% of the model run 563 

time of cows at lower herd cohesion levels, suggesting higher grazing efficiency (Fig 6d). We believe 564 

that these data are evidence of a scale-dependent behavioral discontinuity that may hold relevance to 565 

other grazing management challenges [62].  566 

Model parsimony and study limitations 567 

Perhaps the most obvious omissions from the model are those behaviors that we determined 568 

to hold little to no relevance to larkspur consumption, at least in this pasture. These include 569 

response to slope, resting, and some inconsistently understood aspects of dominance behaviors. 570 

While there is nothing preventing them from being included, we decided that in this case these 571 

behaviors would introduce uncertainty while adding little realism to cattle-larkspur dynamics. The 572 

model also excludes plant regrowth. For Geyer’s larkspur, this is not an issue, as plants that are 573 
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clipped or grazed during the bud stage exhibit very little regrowth [K. Jablonski, pers. obs.]. For 574 

other forage, we determined that regrowth in July in this semi-arid climate would not be substantial 575 

enough within a single grazing period to warrant inclusion.  576 

The occurrence and measurement of death in the model might strike some as unrealistic. 577 

However, given that deaths in a herd would change herd behavior in unknown ways, and that the 578 

owner of the cattle would likely intervene once one death-event had occurred, we believe that 579 

counting the death and resetting the cow’s MSAL-level is the most accurate way to assess risk at 580 

different management levels. 581 

Another potential limitation concerns the model used for alkaloid metabolism. While there 582 

has been some effort at the generation of such a model [e.g., 48], these efforts have been limited to 583 

highly controlled settings using hay and other stored feeds and periodic dosing with alkaloids. 584 

Additionally, little to nothing is known about the role of other forage in exacerbating or mitigating 585 

the effects of larkspur consumption. As such, we had no confidence that a continuous metabolic 586 

model would be more useful than the simple daily half-life model that we used.  587 

Despite these limitations, we are confident that we have realistically modeled cattle-larkspur 588 

dynamics, that increased herd cohesion and stocking density lower the risk of lethal acute toxicosis, 589 

and that variations in mean and maximum daily alkaloid intake are the predominant mechanism for 590 

this reduction. However, the exact values for when risk approaches zero may be dependent on the 591 

circumstances of this model iteration—that of D. geyeri, at the input values for mass and toxicity, on 592 

a ranch in northern Colorado.  593 

It is worth noting that dangerous levels of D. geyeri are typically found on a limited number 594 

of a single operation’s grazing units. This means that the inclusion of herding to increase herd 595 

cohesion, for example, would usually only be necessary for a relatively brief period. In addition, it 596 

means that any potential secondary effects of sub-lethal larkspur consumption, such as appetite 597 
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suppression or lethargy (whether and how these would occur is unclear), would be of similarly 598 

limited duration. Nevertheless, in pastures with a dangerous amount of larkspur, negative sub-lethal 599 

effects may be unavoidable even (or especially) when death is avoided. 600 

As with any research where cattle lives and producer livelihoods are at stake, it is most 601 

important to emphasize that producers should exercise caution when incorporating our findings into 602 

their own management, including careful assessment of other potential effects of increased herd 603 

cohesion or stocking density. Those with low amounts of Geyer’s larkspur or with no history of 604 

losses might find comfort in altering their grazing management to incorporate this study’s findings. 605 

Those with a great deal of larkspur (Geyer’s or other species) or a history of losses should be more 606 

careful.  607 

Other model implications and future directions 608 

There is a broad literature on the effect of stocking rate/stocking density on many outcomes 609 

(though not larkspur-induced toxicosis) but very little on the effects of herd cohesion, nor on the 610 

interaction of these factors [44]. This is likely due to the relative ease of varying cattle numbers 611 

versus manipulating cattle behavior. Because this study provides evidence that it is not only the 612 

number of animals but also how they behave that affect the likelihood of death by larkspur, we are 613 

excited to explore the role of herd cohesion, particularly the emergent property of distinct persistent 614 

subherds, in other aspects of grazing ecology. If herd cohesion is genetically encoded, matrilineally-615 

oriented, or management-determined (or a combination thereof), what role might it play in other 616 

negative outcomes, such as overgrazing of riparian areas or exposure to predation by carnivores [63], 617 

and how might we influence it in different scenarios? The evolving promise of affordable GPS tags 618 

means that we may also start to be able to test this through direct observation of entire herds [64]. 619 

For cattle-larkspur dynamics, our next step is to place these modeling results in context with 620 

ongoing plant experiments and producer surveys to better formulate management recommendations 621 
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that work. Additionally, we would like to improve our understanding of alkaloid metabolism and 622 

tolerance, as well as the role of preference in larkspur intake. For alkaloid metabolism and tolerance, 623 

this means building upon previous studies [e.g., 21], which have been undertaken in highly 624 

controlled settings using periodic high dosing, to model the stochastic dosing in a dynamic 625 

environment that occurs in reality. For larkspur preference, this means moving beyond the entirely 626 

anecdotal evidence of bouts of larkspur consumption [e.g., 65] to a more sophisticated 627 

understanding of the role of preference, diet mixing, and satiation in larkspur-induced toxicosis 628 

[66,67].  629 

A final next step for the model presented here is what Augusiak et al. [19] term model 630 

output corroboration, wherein model outputs are compared to new, independent data and patterns. 631 

As noted above, this is very difficult when cattle lives are at risk. However, the results presented here 632 

have encourage us to start to think about how such corroborative data could be collected. This will 633 

likely entail a combination of full-herd GPS with careful on-the-ground monitoring by a herder.  634 

Though ABMs have some limitations, we believe they offer an exciting new tool for 635 

understanding the grazing behavior of livestock. Indeed, the synergistic emergence of financially 636 

viable GPS technology [64] and “virtual fencing” [61], along with the increasing power of desktop 637 

computers, suggests that the time is right for a computational revolution in livestock grazing 638 

management. We are excited that this study provides a first example of the potential of agent-based 639 

models to contribute to this revolution.  640 
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