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The Bayesian model of confidence posits that confidence is the observer’s posterior
probability that the decision is correct. It has been proposed that researchers can
gain evidence in favor of the Bayesian model by deriving qualitative signatures of
Bayesian confidence, i.e., patterns that one would expect to see if an observer was
Bayesian, and looking for those signatures in human or animal data. We examine
two proposed qualitative signatures, showing that their derivations contain hidden
assumptions that limit their applicability, and that they are neither necessary nor
sufficient conditions for Bayesian confidence. One signature is an average confidence of
0.75 for trials with neutral evidence. This signature only holds when class-conditioned
stimulus distributions do not overlap and internal noise is very low. Another signature
is that, as stimulus magnitude increases, confidence increases on correct trials but
decreases on incorrect trials. This signature is also dependent on stimulus distribution
type. There is an alternative form of this signature that has been applied in the
literature; we find no indication that this is expected under Bayesian confidence, which
resolves an ostensible discrepancy. We conclude that, to determine the nature of the
computations underlying confidence reports, there may be no shortcut to quantitative
model comparison.

1 Introduction

Humans possess a sense of confidence about decisions they make, and asking human subjects for their
decision confidence has been a common psychophysical method for over a century31. But despite the
long history of confidence reports, it is still unknown how the brain computes confidence reports from
sensory evidence. The leading proposal has been that confidence reports are a function of the observer’s
posterior probability of being correct9,15,26,32, a hypothesis we call the Bayesian Confidence Hypothesis
(BCH)1.

In recent years, researchers have tested the BCH by formally comparing Bayesian confidence models
to other models1,3. Although this is the most thorough method to test the BCH, it can be painstaking
in practice. To avoid this approach, one could instead try to describe qualitative patterns that should
theoretically emerge from Bayesian confidence and then look for those patterns in real data. Following
this motivation, Hangya et al. 12 propose signatures of the BCH, some of which have been observed
in behavior16,20,35 and in neural activity16. They claim that these signatures are necessary conditions
for the BCH, i.e., that if confidence is Bayesian, these patterns will be present in behavior. They do
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not claim that the signatures are sufficient conditions for Bayesian confidence. If the signatures are
necessary but not sufficient conditions for the BCH, observation of a single signature does not imply
that the BCH is true; instead, one would need to observe several signatures in order to be reasonably
confident in the nature of confidencei. However, we show that two of these signatures are not necessary
conditions, reducing the overall value of the qualitative signature method for testing the BCH.

One signature is a mean confidence (i.e., the observer’s estimated probability of being correct) of 0.75
for trials with neutral evidence. We show that, under the Bayesian model, this signature will only be
observed when noise is very low and stimulus distributions do not overlap.

Another signature is that, as stimulus magnitude increases, mean confidence increases on correct trials
but decreases on incorrect trials. Here, we show that under the Bayesian model, this signature breaks
down when noise is low and stimulus distributions are Gaussian. We also explain and resolve a recent
discrepancy in the literature that is related to an alternative formulation of this signature27.

2 Binary categorization task

category
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Figure 1: Generative
model of the task.

We restrict ourselves to the following, widely used, family of binary percep-
tual categorization tasks11. On each trial, a category C ∈ {−1, 1} is randomly
drawn with equal probability. Each category corresponds to a stimulus dis-
tribution p(s | C), where s may specify the value of many possible kinds of
stimuli (e.g., an odor mixture16, the net motion energy of a random dot kine-
matogram17,28, the orientation of a Gabor1,6,33, or the mean orientation of a
series of Gabors27). The stimulus distributions are mirrored across s = 0, i.e.,
p(s | C = −1) = p(−s | C = 1). A stimulus s is drawn from the chosen stimulus
distribution and presented to the observer. The observer does not have direct
access to the value of s; instead, they take a noisy measurement x, drawn from
the distribution p(x | s) = N (x; s, σ), which denotes a Gaussian distribution
over x with mean s and standard deviation σ (Figure 1).

If the observer’s choice behavior is Bayes-optimal (i.e., maximizes accuracy), they compute
the posterior probability of each category by marginalizing over all possible values of s:
p(C | x, σ) =

∫
p(C | s)p(s | x, σ) ds. They then make a category choice Ĉ by choosing the category

with the highest posterior: Ĉ = argmaxC p(C | x, σ). For mirrored stimulus distributions, that amounts
to choosing Ĉ = 1 when x > 0, and Ĉ = −1 otherwise.

Furthermore, if the observer’s confidence behavior is Bayesian, then it will be some function of the
posterior probability of the chosen category. This probability is p(C = Ĉ | x, σ) = maxC p(C | x, σ).
Because it is a deterministic function of x and σ, we will refer to it as conf(x, σ).ii See Appendix A for
derivations of conf(x, σ) for all stimulus distribution types used in this paper.

i Restating this logic in probabilistic terms: If a signature is a necessary condition for the BCH,
then p(signature observed | BCH is true) = 1 and p(signature observed | BCH is false) > 0. By Bayes’ rule,
p(BCH is true | signature(s) observed) will increase with the observation of each signature but will never reach
1.

ii Note that our assumption that confidence and category choice are deterministic functions of x amounts to an
assumption that there is no noise at the action (i.e., reporting) stage.
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3 0.75 signature: Mean Bayesian confidence is 0.75 for neutral evi-
dence trials.

Hangya et al. 12 propose a signature concerning neutral evidence trials, those in which the stimulus s
is equal to 0 (i.e., there is equal evidence for each category), and observer performance is at chance.
Bayesian confidence on each individual trial will always be at least 0.5 (assuming that measurement
noise is nonzero). One can intuitively understand why this is: in binary categorization, if the posterior
probability of one option is less than 0.5, the observer makes the other choice, which has a posterior
probability above 0.5. Therefore, all trials have confidence of at least 0.5, and mean confidence at any
value of s is also greater than 0.5. Hangya et al. 12 go beyond these results and provide a proof that,
under some assumptions, mean Bayesian confidence on neutral evidence trials is exactly 0.75. We refer
to this prediction as the 0.75 signature, and we show that it is not always expected under a normative
Bayesian model.

3.1 The 0.75 signature is not a necessary condition for Bayesian confidence

To determine the conditions under which the 0.75 signature is expected under the Bayesian model, we
used Monte Carlo simulation with the following procedure. For a range of measurement noise levels σ,
we drew measurements x from N (x; s = 0, σ). Using the function conf(x, σ) that the observer would
use if they believed stimuli were being drawn from category-conditioned stimulus distributions p(s | C)
(rather than all s being zero), we computed Bayesian confidence for each measurement. We then took
the mean confidence, equal to Ex|s=0 [conf(x, σ)].

The 0.75 signature only holds if the SD of the noise is very low relative to the range of the stimulus dis-
tribution. Additionally, the observer must believe that the category-conditioned stimulus distributions
are non-overlapping (Figure 2a, dotted line). If the observer believes that the category-conditioned
stimulus distributions overlap by even a small amount, mean confidence on neutral evidence trials
drops to 0.5. Therefore, in an experiment with overlapping stimulus distributions, one should not
expect an optimal observer to produce the 0.75 signature. In experiments with non-overlapping dis-
tributions, an observer’s false belief about the distributions might also cause them to not produce the
0.75 signature. We use the example of overlapping uniform stimulus distributions (Figure 2a, solid
lines) to demonstrate the fragility of this signature, although such distributions are not common in the
literature. Overlapping Gaussian stimulus distributions (Figure 2b), however, are relatively common in
the perceptual categorization literature1,4,11,29,33 and arguably more naturalistic24. Because the 0.75
signature requires both low measurement noise and non-overlapping stimulus distributions, mean 0.75
confidence at neutral evidence trials is not a necessary condition for Bayesian confidence.

Additionally, the 0.75 signature is only relevant in experiments where subjects are specifically asked to
report confidence in the form of a perceived probability of being correct (or are incentivized to do so
through a scoring rule25, although in this case it has been argued1,23 that any Bayesian behavior might
simply be a learned mapping). In other words, in an experiment where subjects are asked to report
confidence on a 1 through 5 scale, a mean confidence of 3 only corresponds to 0.75 if one makes the
a priori assumption that there is a linear mapping between rating and perceived probability of being
correct35.
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Figure 2: The 0.75 signature is not a necessary condition for Bayesian confidence. The y-axis indicates mean Bayesian
confidence on trials for which s = 0. Each inset corresponds to a line, in the same top-to-bottom order. Dotted
and solid lines indicate, respectively, non-overlapping and overlapping categories. For each value of σ, 50,000 trials
were simulated. (a) Trials were simulated using uniform stimulus distributions defined by p(s | C = 1) = U(s; a, b),
with b − a = r = 2. When the stimulus categories are non-overlapping (i.e., with a = 0 and b = 2, top inset), the
0.75 signature can be observed at zero measurement noise (dotted black line). However, mean Bayesian confidence
decreases as a function of measurement noise. Additionally, when the distributions overlap slightly (bottom two
insets), the 0.75 signature will not be observed (solid black lines). (b) Moreover, when the stimulus categories are
Gaussian distributions defined by p(s | C = 1) = N (s;µC = 1, σC), the 0.75 signature will not be observed at any σC
or measurement noise level σ. One can intuitively understand why mean confidence is 0.5 for overlapping categories
at very low measurement noise and increases with measurement noise. At very low measurement noise, the observer
makes measurements that are very close to zero, which the observer “knows” are associated with a low probability of
being correct. However, as noise increases, the observer starts to make measurements that have higher magnitude,
leading the observer to believe that they have a higher probability of being correct.

3.1.1 Relevant assumptions in Hangya et al.

Hangya et al. 12 describe an assumption that is critical for the 0.75 signature: each category-conditioned
stimulus distribution is a continuous uniform distribution. However, the 0.75 signature depends on two
additional assumptions that they make implicitly.

Their proof depends on confidence for one category being equal to p(s > 0 | x, σ) (p. 1852). This equal-
ity further depends on their implicit assumption both of non-overlapping categories and of negligible
measurement noise; these assumptions are equivalent to only considering the leftmost point of the solid
line in Figure 2a. To understand why, we derive their definition of confidence as p(s > 0 | x, σ).

Without loss of generality, we look at trials with choice Ĉ = 1. First, Hangya et al. 12 make the assump-
tion that the categories are non-overlapping uniforms (i.e., p(s | C = 1) = U(s; 0, b), which denotes a
continuous uniform distribution over s between 0 and b). This allows them to write (Appendix A):

confĈ=1(x, σ) =
p(x | C = 1)

p(x | C = 1) + p(x | C = −1)

=

∫ b
0 p(x | s, σ) ds∫ b

0 p(x | s, σ) ds+
∫ 0
−b p(x | s, σ) ds
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Secondly, they make the assumption that b is very large relative to measurement noise σ. This allows
them to write:

confĈ=1(x, σ) ≈
∫∞
0 p(x | s, σ) ds∫∞

0 p(x | s, σ) ds+
∫ 0
−∞ p(x | s, σ) ds

≈
∫ ∞
0

p(x | s, σ) ds

≈ p(s > 0 | x, σ).

If the stimulus distributions overlap by even a small amount or if measurement noise is non-negligible,
confidence cannot be written as p(s > 0 | x, σ), and the proof of the 0.75 signature breaks down.

3.2 The 0.75 signature is not a sufficient condition for Bayesian confidence

We have shown that the 0.75 signature is not a necessary condition for Bayesian confidence, but is it a
sufficient condition? It is possible to show that a signature is a sufficient condition if it is not possible to
observe it under any other model. However, one could construct a model that always produces exactly
midrange confidence on each trial, regardless of the measurement. Therefore, the 0.75 signature is not
a sufficient condition.

4 Divergence signature #1: As stimulus magnitude increases, mean
confidence increases on correct trials but decreases on incorrect
trials

Hangya et al. 12 propose the following pattern as a signature of Bayesian confidence: On correctly
categorized trials, mean confidence is an increasing function of stimulus magnitude (here, |s|), but on
incorrect trials, it is a decreasing function (Figure 3a). We refer to this pattern as the divergence
signatureiii. The signature is present in Bayesian confidence when category-conditioned stimulus dis-
tributions are uniform, in both high- and low-noise regimes (Figure 3a–b). The intuition for why this
pattern may occur is as follows. On correct trials, as stimulus magnitude increases, the mean mag-
nitude of the measurement x increases. Because measurement magnitude is monotonically related to
Bayesian confidence, this increases mean confidence. However, on incorrect trials (in which x and s
have opposite signs), the mean magnitude of the measurement decreases (Figure 5a), which in turn
decreases mean confidence (Figure 5b–c).

The divergence signature has been observed in some behavioral experiments16,19,20,35. However, we
demonstrate that, as with the 0.75 signature the divergence signature is not always expected under a
normative Bayesian modeliv. Therefore, the appearance of the signature in these papers should not be
taken to mean that it should be generally expected.

iii Kepecs and Mainen 15 (2012), Insabato et al. 14 (2016), and Fleming and Daw 10 (2017) call it the (folded) “X-
pattern.”

iv Our finding is distinct from that of Insabato et al. 14 (2016), who show that the divergence signature would not be
predicted under a non-Bayesian model in which the observer uses two measurements on each trial. Our analyses only
concern Bayesian models in which the observer has a single measurement on each trial.

Our finding is also distinct from that of Fleming and Daw 10 (2017), who show that the divergence signature would not
be predicted if the experimenter could plot confidence as a function of the internal measurement x. Our analyses only
concern confidence as a function of stimulus magnitude |s| which, unlike x, is known by the experimenter.
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Figure 3: The divergence signature is not a necessary condition for Bayesian confidence. For two stimulus distribution
types, we simulated 2 million trials. (a) With uniform stimulus distributions defined by p(s | C = 1) = U(s; 0, 2),
the divergence signature is predicted under both high- and low-noise regimes. The fadedness of the line indicates
conditions for which there are few trials. (b) Heatmap indicates the slope of the pink lines in a. At all values of σ
and distribution range, the slope is negative. Slopes were obtained by generating binned mean confidence values as in
a and fitting a line to those values. Black markers indicate the parameters used in a, with left dot corresponding to
right plot and conversely. (c) With Gaussian stimulus distributions defined by p(s | C = 1) = N (s; 1, σC = 0.7), the
divergence signature appears only when measurement noise is high, i.e., when σ . 0.6. (d) As in b but for Gaussian
distributions with means of ±1. Under some values of σ and σC , the slope is positive, indicating that the divergence
signature is not a necessary condition for Bayesian confidence. (e) Visual explanation for why, under Gaussian stimulus
distributions, the divergence signature appears only at relatively high σ values. Plots represent the same data as in
c, but over s instead of |s|. For clarity, we only use trials drawn from category C = 1; the argument is unaffected.
Incorrect trials fall into two categories: on trials in which s is positive but x is negative due to noise, confidence goes
down as |s| increases (branch 3); on trials in which s and x are both negative, confidence increases with |s| (branch
4). At high levels of noise, branch 3 has more trials than branch 4, and dominates the averaging that occurs when
plotting trials from both categories over |s|. At low levels of noise, branch 4 instead dominates, and the divergence
signature disappears. Note that, for non-overlapping distributions (e.g., those in a-b), there are no trials in which s
has a different sign than the stimulus distribution mean, so branches 2 and 4 do not exist, and the divergence signature
is always present.
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4.1 Divergence signature #1 is not a necessary condition for Bayesian confidence

To determine the conditions under which the divergence signature is expected under the Bayesian
model, we used Monte Carlo simulation with the following procedure. We generated stimuli s, drawn
with equal probability from stimulus distributions p(s | C = −1) and p(s | C = 1). We generated noisy
measurements x from these stimuli, using measurement noise levels σ. We generated observer choices
from these measurements, using the optimal decision rule x > 0⇒ Ĉ = 1, and we computed Bayesian
confidence for every trial.

When stimulus distributions are Gaussian and measurement noise is low relative to stimulus distribution
width, the divergence signature is not expected (Figure 3c–d). To understand why this is, imagine an
optimal observer with zero measurement noise. In tasks with overlapping categories, even this observer
cannot achieve perfect performance; for a given category with a positive mean, there are stimuli that
have a negative value, resulting in an incorrect choice. For such stimuli, confidence increases with
stimulus magnitude. At relatively low noise levels, these stimuli represent the majority of all incorrect
trials for the category (Figure 3e). This effect causes the divergence signature to disappear when
averaging over trials drawn from both categories. Because of this, the divergence signature is not
a necessary condition for Bayesian confidence. Note that an experimenter could avoid this issue by
plotting confidence as a function of signed stimulus value s and by not averaging over both categories,
which would produce plots such as Figure 3e.

4.1.1 Relevant assumption in Hangya et al.

We have shown that the applicability of the divergence signature may be limited to particular cases.
By contrast, the proof in Hangya et al. 12 suggests that it is quite general. We can resolve this paradox
by making explicit the assumptions hidden in Hangya et al.’s proof. They assume (on p. 1847)
that, “for incorrect choices. . . with increasing evidence discriminability, the relative frequency of low-
confidence percepts increases while the relative frequency of high-confidence percepts decreases.”v This
assumption is violated in the case of overlapping Gaussian stimulus distributions: for some incorrect
choices (branch 4 of Figure 3e), as s becomes more discriminable (i.e., very negative), the frequency
of high-confidence reports increases. At low levels of measurement noise, this causes the divergence
signature to disappear.

4.2 Divergence signature #1 is not a sufficient condition for Bayesian confidence

To determine whether the signature is a sufficient condition for Bayesian confidence, we consider a
non-Bayesian model in which confidence is a function only of the magnitude of the measurement |x|.vi
In the general family of binary categorization tasks described in Section 2, the confidence of this model
is monotonically related to the confidence of the Bayesian model conf(x, σ). Thus, when the divergence
signature is predicted by the Bayesian model, it is also predicted by the measurement model. Therefore,

v Their original assumption actually reads, “for any given confidence c, the relative frequency of percepts mapping to c
by ξ changes monotonically with evidence discriminability for any fixed choice.” In our terminology, this is equivalent to
saying that, as |s| increases, the frequency of reporting any particular level of confidence changes monotonically. This is
not correct even in the case of uniform stimulus distributions; for example, at low noise, as discriminability increases, the
frequency of medium-confidence reports will increase and then decrease. Their restatement of this assumption specifically
for incorrect choices, which we cite in the main text, is correct for non-overlapping stimulus distributions. Because they
restate the assumption correctly, their following argument holds except under the scenario described in the main text.

vi In the Bayesian model, observers use their knowledge of their uncertainty. In this alternative standard signal
detection theoretical model11,15, observers ignore uncertainty, making confidence only a function of the distance between
the measurement and the decision bound. Previous studies have referred to similar models as Fixed1,6,33 or Difference3.
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the divergence signature is not a sufficient condition for Bayesian confidence. This has previously been
noted by Insabato et al. 14 (2016) and Fleming and Daw 10 (2017).

5 Divergence signature #2: As measurement noise decreases, mean
confidence increases on correct trials but decreases on incorrect
trials

Navajas et al. 27 (2017) note that the divergence signature was not present in their data. The authors
expected that, if confidence were Bayesian, their data would look like Figure 3a. Contrary to their
expectations, they observe no confidence divergence. However, instead of stimulus magnitude, they
plot measurement noisevii on the x-axis (Figure 4a), in effect proposing a divergence signature distinct
from the one described in Section 4. We will refer to this as divergence signature #2: as measurement
noise decreases, mean confidence increases on correct trials but decreases on incorrect trials. We find no
evidence that this signature is expected under the Bayesian confidence model, resolving the seemingly
unexpected result in Navajas et al. 27

5.1 Divergence signature #2 is not expected under Bayesian confidence

To determine whether divergence signature #2 is expected under the Bayesian model, we used Monte
Carlo simulation with the following procedure. We generated stimuli with s = ±1, corresponding
to C = ±1.viii For a range of measurement noise levels σ, we drew noisy measurements x from
N (x; s, σ). We generated observer choices from these measurements, using the optimal decision rule
x > 0⇒ Ĉ = 1. We computed Bayesian confidence for every trial.

As measurement noise decreases, mean confidence increases for both correct and incorrect trials (Fig-
ure 4b). This pattern also holds when the category-conditioned stimulus distributions are uniform or
Gaussian, and if you plot a measure of stimulus distribution variance on the x-axis (either uniform
distribution range r or Gaussian distribution SD σC). This indicates that the signature is not expected
under the BCH.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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nature of the noise ensures that the uncertainty in the update of the 
estimate scales with the size of the observed sample, θi. At the end 
of the sequence, choice is determined by the sign of the final value 
of the mean (μ30): the agent chooses clockwise if μ30 is positive, and 
anticlockwise if μ30 is negative.

This model explains two important quantitative patterns 
observed in our behavioural data. First, all items in the sequence 
had a significant influence on choice (regression weights against 
zero, t(29) >  3.17, p <  0.003 for all items), but later samples had more 
influence than earlier ones (slope of regression weights against zero, 
t(29) =  4.70, p =  10−6). This recency effect was modulated by the 
learning rate, λ (Supplementary Fig. 1). Second, we observed that 
items in high-variance sequences had smaller influence on choice 
(F(3,29) =  57.8, p ~ 0), indicating larger integration noise in these 
trials. The last term in equation (1), modulated by γ, captures this 
pattern (Supplementary Fig. 2).

We also tested an alternative model that tracks the mean of the 
sequence in a deterministic way, and then makes stochastic deci-
sions. This model, however, failed to explain the trend in Fig. 1c, 
which shows that performance increases as variance decreases (see 
Supplementary Fig. 3 for details and model comparison).

Computation of confidence. In this task, confidence should reflect 
the perceived probability of being correct, for which participants 
need to have an estimate of the variance of μ30. We assumed that 
they are able to compute the true variance associated with equa-
tion (1) (although our findings do not require this assumption, 
see Supplementary Notes). Thus, perceived variance, denoted σ30

2 , 
is given by

∑σ γ λ θ= − .
=

−(1 ) (2)
i

i
i30

2 2

1

30
2(30 ) 2

The model described by equations (1) and (2), which we call the 
stochastic updating model, is illustrated in Fig. 2a. Given μ30 and σ30

2 ,  
subjects can compute, on each trial, the perceived probability of 
being correct, p (correct) (shaded area under the Gaussian distribu-
tion in Fig. 2a).

Using this model, we estimated the expected values of p (correct) 
for different variance conditions (see Methods, equation (9) and 
Fig. 2b). When we separated these values by correct and incorrect 
trials, we observed a pattern that has been suggested on the basis of 
normative arguments15,20: confidence on correct trials should increase 
as the variance decreases, whereas confidence on error trials should 
show the opposite effect, and decrease as the variance decreases. We 
did not, however, observe this pattern in our data, at least not on 
average: as shown in Fig. 1d, confidence on correct trials did indeed 
increase as variance dropped, but on error trials confidence was rela-
tively independent of variance (F(3,29) =  0.57, p = 0.63).

This last observation indicates that, again on average, subjects 
were mis-estimating confidence: they should have been less con-
fident on low-variance error trials than in high-variance error tri-
als, as their probability of being correct was lower (dashed curve in 
Fig. 2b). This suggests that subjects partially based their confidence 
on the uncertainty in the value of the mean orientation—a reason-
able, if suboptimal, heuristic. Under this heuristic, low-variance 
trials would raise their confidence relative to high-variance ones. 
An appropriate weighting of perceived probability of being correct, 
shown in Fig. 2b, and a function of uncertainty such as the observed 
Fisher information (the inverse of σ30

2 ), shown in Fig.  2c, could, 
therefore, explain the confidence ratings observed in Fig. 1d.

To formally test this proposal, we compared the normative model 
of confidence based on only p (correct) with seven alternative mod-
els based on different linear combinations of p (correct), mean, stan-
dard deviation, variance and Fisher information (Supplementary 
Fig.  4). We evaluated which combination provided a better fit to 
confidence ratings using ordinal logistic regressions (see Methods). 
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Fig. 1 | Tracking mean evidence in rapid serial visual presentations. a, Thirty tilted Gabor patches were serially flashed at the fovea, updated at 4�Hz. 
Participants made a binary decision about whether the mean in the sequence was tilted to the right or left, followed by a confidence rating. After an 
inter-trial interval (ITI), which was uniformly distributed between 0.7 and 0.9 seconds, a new trial began. Full details of the task are available in the 
Methods section. b, The samples were drawn from a uniform distribution with mean, m, set to either exactly�+ 3 degrees or exactly − 3 degrees. The dashed 
line shows m�= �+ 3. The endpoints of the uniform distributions were m�± �v, with v�=�10, 14, 24 or 45 degrees, yielding four conditions with four different 
variances. c, Performance increased with decreasing variance. The dots show the average performance across subjects, and the vertical lines depict the 
s.e.m. The solid black curve shows the best fit of the stochastic updating model (equations (1) and (2)). d, Confidence reports averaged over all subjects. 
The vertical lines show s.e.m. At the population level, confidence in incorrect trials remains approximately constant as a function of variance.

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav

ba
Figure 4: Divergence signature #2 is not
present either in the Navajas et al. 27

(2017) data or in the prediction of the
Bayesian model. (a) Average confidence
in a binary perceptual categorization task,
reproduced with permission from Nava-
jas et al. 27 (2017). (b) Mean Bayesian
confidence as a function of measurement
noise is not expected to show opposite
trends when conditioned on correctness.
At each value of σ, 50,000 stimuli were
stimulated, with s = ±1.

vii Their stimuli consist of sets of orientations pseudorandomly drawn from uniform distributions with different variances.
However, because the orientations were drawn such that the mean orientation of each set was the same for all trials in a
category, there was no variance over the stimulus variable of interest (the per-trial mean) within categories. Therefore,
what they describe as stimulus variance factors into a Bayesian model of confidence (and into their non-Bayesian decision
model) only by changing measurement noise. Additionally, because there is no variance over stimulus magnitude within
categories, they are unable to determine whether divergence signature #1 is present in their data.
viii This corresponds to Navajas et al. 27 , as described in Footnote vii.
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5.1.1 Related text in Hangya et al.

It is quite understandable that Navajas et al. 27 took measurement noise as their definition of evi-
dence discriminability; Hangya et al. explicitly allow it in their description of the divergence signature:
“any monotonically increasing function of expected outcome [i.e., accuracy]. . . can serve as evidence
discriminability” (p. 1847). Measurement noise (or, in keeping strictly with Hangya et al.’s defini-
tion, measurement precision) is indeed monotonically related to accuracy. However, the divergence
signature requires an additional assumption: “for incorrect choices. . . with increasing evidence dis-
criminability, the relative frequency of low-confidence percepts increases while the relative frequency
of high-confidence percepts decreases” (p. 1847; also see Section 4.1.1). Simulation shows that this
assumption is violated when measurement noise is used as the definition of evidence discriminability.

5.1.2 Why the intuition for divergence signature #1 does not predict divergence signa-
ture #2

We have shown that, although divergence signature #1 is not completely general, it is expected under
the Bayesian model in some cases (Figure 3a). By contrast, there is no indication that divergence
signature #2 is ever expected. This may be surprising, because the intuition for divergence signature
#1 might seem to apply equally to divergence signature #2. However, the effect of measurement noise
on mean confidence is different than the effect of stimulus magnitude because measurement noise,
unlike stimulus magnitude, affects the mapping from measurement to confidence on a single trial.

Mean Bayesian confidence is a function of two factors: confidence on a single trial, and the probability
of the corresponding measurement.

E
x

[conf(x, σ)] =

∫
conf(x, σ)p(x | s, σ) dx

The intuition for divergence signature #1 is as follows: as stimulus magnitude |s| increases, the mea-
surement distribution p(x | s, σ) shifts, and the mean measurement magnitude on incorrect trials
decreases (Figure 5a). One might expect this intuition to also result in divergence signature #2, since
the effect of decreased measurement noise σ on p(x | s, σ) also results in a decreased measurement
magnitude on incorrect trials (Figure 5d). However, σ additionally affects conf(x, σ), the per-trial,
deterministic mapping from measurement and noise level to Bayesian confidence (Figure 5e), whereas
stimulus magnitude does not (Figure 5b). Therefore, when σ is variable, the resulting effect on the
measurement distribution is insufficient for describing the pattern of mean confidence on incorrect
trials, requiring simulation. We simulated experiments as described in Section 4.1, and demonstrate
why stimulus magnitude and measurement noise have different effects on mean confidence on incorrect
trials (Figure 5).

5.2 Use of divergence signature #2 in Navajas et al.

Navajas et al. 27 (2017) motivate their findings by first building a non-Bayesian model of confidenceix

that does predict divergence signature #2, i.e., that, as measurement noise decreases, mean confidence
decreases on incorrect trials. They then fail to observe the signature in their averaged data (Figure 4a),

ix In their model, which they label “normative,” the observer continually updates a weighted average of each stimulus
with the previous average. This model is not equivalent to (nor a supermodel of) the optimal model, which keeps a
running sum of stimuli, dividing by N for each stimulus or at the end of the trial. They motivate their non-Bayesian
model by the observation that recent samples have a relatively higher influence on subject decisions, but do not show fits
of a fully Bayesian model to their data.
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Figure 5: Although increased stimulus magnitude and decreased measurement noise both cause the mean measurement
magnitude to decrease on incorrect trials, they have different effects on mean confidence. At each value of σ, 2
million stimuli were simulated, using uniform stimulus distributions defined by p(s | C = 1) = U(s; 0, 2) (the case
of Figure 3a). (a) As described previously7,12,16, an increase in stimulus magnitude causes the mean measurement
magnitude to decrease. (b) Measurements are mapped onto confidence values using the deterministic function
conf(x, σ), which is equivalent to the posterior probability that the choice is correct (Section 2). (c) This mapping
results in divergence signature #1, a decrease in mean confidence on incorrect trials. Arrows do not align precisely with
the simulated mean, because the confidence of the mean measurement is not exactly equal to the mean confidence. (d)
A decrease in measurement noise also causes the mean measurement magnitude to decrease. (e) Because the mapping
from measurement to confidence conf(x, σ) is dependent on σ, measurements from the less noisy distribution have
higher confidence. (f) Because the confidence mapping is dependent on σ, divergence signature #2 is not necessarily
expected under Bayesian confidence.

observing instead that confidence is constant on incorrect trials. Some subjects (e.g., subject 16 in their
Figure 3), however, do show the signature. This leaves them with a puzzle—what model can describe
the data? To answer this, they modify their model to incorporate Fisher information, which increases
as measurement noise decreases. This post-hoc model is able to “bend” the confidence curve upward
as measurement noise decreases, producing curves that more closely resemble their data.

The main shortcoming of this argument is that a Bayesian model of confidence would not actually
predict divergence signature #2, as we have shown above. Indeed, their averaged data more closely
resembles the prediction of the Bayesian model (Figure 4b) than that of their non-Bayesian model
without Fisher information (their Figure 2b). Therefore, the absence of the signature in their averaged
data does not suggest anything beyond a Bayesian model; it is possible that the Bayesian model would
provide a good fit to most of their subjects. If the model provided a poor fit to subjects that do show
divergence signature #2, a post-hoc model would have to incorporate some other mechanism that could
“bend” the confidence curve downward, which would not be Fisher information.

6 Other signatures

A third signature in Hangya et al. 12 that we do not discuss here (i.e., that confidence equals accu-
racy), like the 0.75 signature requires either explicit reports of perceived probability of being correct,
or the experimenter to choose a mapping between rating and perceived probability of being correct
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(Section 3.1). For any monotonic relationship between accuracy and confidence, it is likely that there
is some mapping that equates the two, in which case the signature would not be a sufficient condition
for the BCH.

A fourth signature (i.e., that confidence allows a better prediction of accuracy than stimulus magnitude
alone) is, like divergence signature #1, also predicted by the measurement model (Section 4.2) and is
therefore also not a sufficient condition for the BCH.

7 Discussion

We have demonstrated that, even in the relatively restricted class of binary categorization tasks that we
consider here (Section 2), some signatures are neither necessary nor sufficient conditions for the BCH.
Specifically, the 0.75 signature is only expected under non-overlapping stimulus distributions. Addi-
tionally, despite claims that divergence signature #1 is “robust to different stimulus distributions,”15

it is only expected under non-overlapping stimulus distributions or under Gaussian stimulus distribu-
tions with high measurement noise. Because of their non-generality, these signatures are therefore not
necessary conditions of Bayesian confidence. Furthermore, they may be observed under non-Bayesian
models, indicating that they are also not sufficient conditions10,14.

A discrepancy in the literature27 has emerged through the confusion of divergence signature #1 with a
second form, in which stimulus magnitude is replaced with measurement noise.x We have shown that,
while divergence signature #1 holds in some cases, there is no evidence that the second form is ever
expected under the BCH, which resolves this discrepancy.

Much of our critique of the signatures has focused on the implicit assumption that experiments use
non-overlapping stimulus distributions. One could object to our critique by questioning the rele-
vance of overlapping stimulus distributions, given that non-overlapping stimulus distributions are the
norm in the confidence literature2,15,16,35. But although overlapping categories are only just beginning
to be used to study confidence1,6, they have a long history in the perceptual categorization litera-
ture4,11,13,21,22,33,34. It has been argued that overlapping Gaussian stimulus distributions have several
properties that make them more naturalistic than non-overlapping distributions24. The property most
relevant here is that with overlapping categories, perfect performance is impossible, even with zero
measurement noise. With overlapping categories, as in real life, identical stimuli may belong to multi-
ple categories. Imagine a coffee drinker pouring salt rather than sugar into her drink, a child reaching
for his parent’s glass of whiskey instead of his glass of apple juice, or a doctor classifying a malignant
tumor as benign5. In all three examples, stimuli from opposing categories may be visually identical,
even under zero measurement noise. As experiments become more naturalistic and overlapping cat-
egories become more common, qualitative signatures that depend on non-overlapping categories will
become less useful.

Given our demonstration that proposed qualitative signatures of confidence have limited applicability,
what is the way forward? One option available to confidence researchers is to discover more signatures,
being careful to find the specific conditions under which they are expected. Confidence experimentalists
should then make sure to look for such signatures only when their tasks satisfy the specified conditions
(e.g., stimulus distribution type, noise level). However, we do not necessarily advocate for this course
of action, because, even when applied to relevant experiments, the presence or absence of qualitative
signatures provides an uncertain amount of evidence for or against the BCH. Testing for the presence

xKiani et al. 18 (2014) also note the lack of the divergence signature in their data, but because their stimuli have
variable duration, optimality is more complicated to characterize8, and the explanation we offer here may not apply.
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of qualitative signatures is a weak substitute for accumulating probabilistic evidence, something that
careful30 quantitative model comparison does more objectively. Testing for signatures requires the
experimenter to make two subjective judgments. First, the experimenter must determine whether the
signature is present, a task potentially made difficult by the fact that real data is noisy. Secondly,
the experimenter must determine how much evidence that provides in favor of the BCH, and whether
further investigation is warranted. By contrast, model comparison provides a principled quantity
(namely, a log likelihood) in favor of the BCH over some other model1,2,6. Given the caveats associated
with qualitative signatures, it may be that, as a field, we have no choice but to rely on formal model
comparison.

Appendix A: Derivation of Bayesian confidence

As described in Section 2, if an observer’s confidence behavior is Bayesian, it is a function of the
posterior probability of the most probable category. By Bayes’ rule,

conf(x, σ) = max
C

p(C | x)

= max
C

p(x | C)p(C)∑
C p(x | C)p(C)

= max
C

p(x | C)∑
C p(x | C)

(1)

In the last step, we eliminated the prior because each category is equally likely (i.e.,
p(C = 1) = p(C = −1)) and we assume that the observer knows this. We now derive the task-specific
likelihood functions p(x | C) used in our simulations. The observer does not know the true stimulus
value s, but does know that the measurement is drawn from a Gaussian distribution with a mean of s
and SD σ. Using this knowledge, the optimal observer marginalizes over s:

p(x | C) =

∫
p(x | s)p(s | C) ds

=

∫
N (x; s, σ)p(s | C) ds. (2)

For uniform category distributions, we plug p(s | C) = U(s; a, b) into Equation (2) and simplify:

pU(x | C) =

∫
N (x; s, σ)U(s; a, b) ds

=

∫ b

a
N (x; s, σ) ds

=
1

σ
(Φ(b− x)− Φ(a− x)) , (3)

where Φ is the cumulative distribution function of the standard normal distribution. For Gaussian
category distributions, we plug p(s | C) = N (s;µC , σC) into Equation (2) and simplify. If the stimulus
from a given category always takes on the same value µC , use σC = 0.

pG(x | C) =

∫
N (x; s, σ)N (s;µC , σC) ds

= N
(
x;µC ,

√
σ2 + σ2C

)
(4)

Finally, plug the task-appropriate likelihood function (Equation (3) or Equation (4)) into Equation (1).
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Appendix B: Notation table

Because some of our notation relates to that used in Hangya et al. 12 , we provide this table to enable
easier comparison between the two papers. In some cases, the variables are not exactly identical: the
terms in Hangya et al. 12 may be more general. This does not affect the validity of our claims. For
consistency, we always describe their work using our notation.

Adler & Ma, 2017 Hangya et al. 12, 2016

true category C not used

stimulus s evidence d

stimulus magnitude |s| discriminability ∆

measurement x percept d̂

choice Ĉ choice ϑ

confidence p(C = Ĉ | x, σ) = conf(x, σ) confidence c = ξ(d̂, ϑ)

Appendix C: Simpler proof of Hangya et al.12 lemma

The proof of the 0.75 signature depends on a lemma proved by Hangya et al. 12 : Integrating the product
of the probability density function f and the distribution function F of any probability distribution
symmetric to zero over the positive half-line results in 3/8:∫ ∞

0
f(t)F (t)dt =

3

8
.

There is a shorter proof of the lemma, which is as follows. Use integration by parts, and that f(t) =
F ′(t) by definition: ∫ ∞

0
f(t)F (t) dt = F (∞)F (∞)− F (0)F (0)−

∫ ∞
0

f(t)F (t) dt

2

∫ ∞
0

f(t)F (t) dt = F (∞)F (∞)− F (0)F (0).

Because F is a cumulative distribution function of a probability distribution symmetric across zero,
F (∞) = 1 and F (0) = 1

2 :

2

∫ ∞
0

f(t)F (t) dt = 1− 1

4∫ ∞
0

f(t)F (t) dt =
3

8
.
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