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Abstract 
Background: A central question in bioinformatics is how to minimize arbitrariness and bias in analysis of patterns of enrichment in 
data.  A prime example of such a question is enrichment of gene ontology (GO) classes in lists of genes. Our paper deals with two 
issues within this larger question.  One is how to calculate the false discovery rate (FDR) within a set of apparently enriched ontolo-
gies, and the second how to set that FDR within the context of assessing significance for addressing biological questions, to answer 
these questions we compare a random resampling method with a commonly used method for assessing FDR, the Benjamini-
Hochberg (BH) method. We further develop a heuristic method for evaluating Type II (false negative) errors to enable utilization of 
F-Measure binary classification theory for distinguishing “significant” from “non-significant” degrees of enrichment. 
Results: The results show the preferability and feasibility of random resampling assessment of FDR over the analytical methods 
with which we compare it. They also show that the reasonableness of any arbitrary threshold depends strongly on the structure of 
the dataset being tested, suggesting that the less arbitrary method of F-measure optimization to determine significance threshold is 
preferable. 
Conclusion: Therefore, we suggest using F-measure optimization instead of placing an arbitrary threshold to evaluate the signifi-
cance of Gene Ontology Enrichment results, and using resampling to replace analytical methods 
Keywords: Gene Ontology; F-measure; False Discovery Rate; Microarray Data Analysis 

 
 
Background 
Gene Ontology (GO) enrichment analysis is a powerful tool to interpret 
the biological implications of selected groups of genes. The gene lists from 
experiments such as microarrays, are gathered into clusters associated 
with biological attributes, and defined as GO terms1. The GO terms are 
arranged in an acyclic tree structure from more specific to more general 
descriptions, including biological process (BP), cellular component (CC), 
and molecular function (MF). GO aspires to create a formal naming sys-
tem to define the biologically significant attributes of genes across all or-
ganisms. Each enriched GO term derived from a list of genes is evaluated 
by its significance level, i.e. the probability that the measured enrichment 
would be matched or exceeded by pure chance. 
Enrichment tools have been developed to process large gene lists to gen-
erate significantly enriched ontologies. Huang et.al (2009) summarizes the 
tools widely used for GO enrichment2 . Different tools emphasize different 
features. Gorilla3, DAVID4, g:profiler5 are web interfaces that integrate 
functional annotations including GO annotations, disease and pathway da-
tabases etc. Blast2GO6 extends annotation of gene list to non-model or-
ganisms by sequence similarity. GO-Miner7, Babelomics8, FatiGO9, 
GSEA10 11, and ErmineJ12 apply resampling or permutation algorithms on 
random sets to evaluate the number of false positives in computed gene 
ontologies associated with test sets. DAVID 4 and Babelomics 8 introduced 
level-specific enrichment analysis; that is, not including both parents and 

children terms. TopGO contains options, “eliminate” and “parent-child”, 
which eliminate or reduce the weight of genes in the enriched children 
terms when calculating parent term enrichment13. TopGO14  and GOstats15  
provide R-scripted tools for ease of further implementation.  Cytoscape 
plugin in BinGO 16 is associated with output tree graphs.  
To calculate raw p-values for GO enrichment without multiple hypothesis 
correction, methods used include exact or asympotic (i.e. based on the hy-
pergeometric distribution or on Pearson's distribution), one- or two-sided 
tests 17. Rivals et. al. discussed the relative merits of these methods17.   
Generally, inference of the statistical significance of observed enrichment 
of categories in gene ontology databases can’t be assumed to be paramet-
ric, because there is no a priori reason to postulate normal distributions 
within gene ontology terms.  Randomization methods are powerful tools 
for testing nonparametric hypotheses18.  However, heuristic methods for 
testing nonparametric hypotheses have long been widely used due to lack 
of adequate computational resources for randomization tests. In gene on-
tology enrichment, a widely-used heuristic method is that of Benjamini 
and Hochberg19.  In their original paper, Benjamini and Hochberg tested 
their method against a more computationally intensive resampling proce-
dure for selected input data and found no significant difference, Thus the 
more computationally efficient Benjamini-Hochberg method was justi-
fied. 
Benjamini-Hochberg has been widely applied in enrichment tools such as 
BinGO16, DAVID4, GOEAST20, Gorilla3, and Babelomics8, to name a few. 
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The similar Benjamini-Yekutieli method is included in the GOEAST 
package which enables to control the FDR even with negatively correlated 
statistics20 21. A recent approach published by Bogomolov, et.al. (2017) 
deals with multiple hypothesis correction and error control for enrichment 
of mutually dependent categories in a tree structure using a hierarchical 
Benjamini-Hochberg-like correction22. Gossip provides another heuristic 
estimation of false positives that compares well with resampling in the 
situations tested23. 
A randomized permutation method for assessing false positives is embed-
ded in the protocol of Gene Set Enrichment Analysis (GSEA)10.  Kim and 
Volsky24 compared a parametric method (PAGE) to GSEA and found that 
PAGE produced significantly lower p-values (and therefore higher puta-
tive significance) for the same hypotheses.  They suggest that PAGE might 
be more sensitive because GSEA uses ranks of expression values rather 
than measured values themselves.  However, they do not demonstrate that 
the hypothesis of normal distributions in gene ontology databases that un-
derlies PAGE is generally true. 
Noreen25 considered the potential of using more widely available com-
puter power to do exact testing for the validity of hypotheses, in order to 
be free of any assumptions about the sampling distributions of the test sta-
tistics, for example the assumption of normality.  The essence of the more 
exact methods is the generation of a null hypothesis by the creation and 
analysis of sets of randomly selected entities (null sets) that are of the same 
type as the test set. Then the extent to which the null hypothesis is rejected 
emerges from comparing the results of conducting the same analysis on 
the null sets and the test set.  As exemplified by the over one thousand 
citations of this work by Noreen, these methods have been widely adopted 
in many areas in which complex datasets must be mined for significant 
patterns, as for example in financial markets.     
In the present paper we utilize a straightforward random resampling 
method for creation of null sets and compare resultant assessments for es-
timating false positives with commonly used analytical methods as ap-
plied to gene ontology enrichment analysis.  We also evaluate the compu-
tational cost of this method relative to analytical methods. 
In applying all the cited methods and tools, it is common to apply a thresh-
old boundary between "significant enrichment" and "insignificance".  
Such assignment to one of two classes is an example of a binary classifi-
cation problem. Often such classifications are made utilizing an optimum 
F-measure26. Rhee, et.al. (2008) have suggested application of F-measure 
optimization to the issue of gene ontology enrichment analysis27. In the 
present work, we present an approach to gene enrichment analysis based 
on F-measure optimization, which considers both precision and recall and 
provides a flexible reasonable threshold for data sets depending on user 
choice as to the relative importance of precision and recall. We also com-
pare a resampling method to the Benjamini-Hochberg method for estima-
tion of FDR and use with F-measure optimization.   
We also consider the argument made by Powers 26 that the F-measure is 
subject to biases, and that instead of precision and recall (the constituents 
of the F-measure) the constructs of markedness and informedness should 
be considered.  Whereas precision and recall are entirely based on the abil-
ity to identify positive results, informedness and markedness give equal 
weight to identification of negative results.   We note that the Matthews 
Correlation Coefficient (MCC), another well-vetted measure of signifi-
cance28, is the geometric mean of the markedness and informedness. 
Our results in this paper will suggest that resampling is preferable to ana-
lytical methods to estimate FDR, since the compute costs are modest by 
today’s standards and that even well-accepted and widely used analytical 
methods may have significant error.  Our results also suggest that F-meas-
ure or MCC optimization is preferable to an arbitrary threshold when clas-
sifying results as “significant” or “insignificant”.  For the particular anal-
yses in this paper, we found no significant difference in utilizing F-meas-
ure vs. MCC. in assessing significance of results in computing enrichment 
in gene ontology analysis. 

Methods 

Enrichment Tool 
For results reported in this study (described below), the TopGO14  package 
is implemented to perform GO enrichment analysis, using the “classic” 

option.  In this option, the hypergeometric test is applied to the input gene 
list to calculate an uncorrected p-value.  

FDR Calculation 
The empirical resampling and Benjamini-Hochberg (BH) methods are 
used to estimate the FDR. The p-value adjustment using Benjamini-
Hochberg is carried out by a function implemented in the R library. 
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html  
The resampling method is based on the definition of p-value as the prob-
ability that an observed level of enrichment might arise purely by chance. 
To evaluate this probability, we generate several null sets, which are the 
same size as the test set. The genes in the null sets are randomly sampled 
from the background/reference list. GO enrichment analysis was carried 
out on both test set and null set. The average number of enriched results 
in the null sets would be the false positives. In all the results shown in this 
paper, 100 null sets were used to compute the average, unless otherwise 
indicated.  In the pipeline, available for download in Supplementary ma-
terial, the number of null sets is an adjustable parameter.  The ratio of false 
positives to predicted positives is the FDR. 

F-measure Optimization and the Matthews correlation coefficient.  
To evaluate F-measure and MCC, we started with evaluating true/false 
positive/negatives and the metrices derived from the true/false posi-
tive/negatives. The number of "predicted positive" is the number of GO 
terms found at a threshold. For an analytical method such as BH, the "false 
positive" would be (predicted positive) multiply by FDR, which is esti-
mated by the corrected p-value. For resampling, the "false positive" would 
be the average number of GO terms found by null sets. The "true positive" 
is calculated by: 
 

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 		 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) − 	(𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒). 
 

Then, we calculate the precision: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 6789	:;<=>=?9
6;>@A	:;<=>=?9

  
 

Recall is defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑣𝑒
𝑅𝑒𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 
 
“Real Positive” is defined by 
 

𝑅𝑒𝑎𝑙	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 
In the absence of the ability to calculate “False Negatives” directly, we 
estimate the number of real positives as the maximum true positive 
achieved across the range of possible p-values.  This procedure is shown 
graphically in Figure 1 for the BH method of computing false positives, 
using as an example a gene list to be described in detail later in the paper.  
In this figure we plot predicted positives, false positives (False Discovery 
Rate x predicted positives), and true positives (predicted positives – false 
positives) vs. uncorrected p-value for the entire range of p-values from 0 
to 1. At very lenient p-values the FDR approaches 1, resulting in the true 
positives approaching 0. It is difficult to evaluate false negatives and thus 
assign a number for “real positives”, since a false negative is an object that 
escaped observation, and thus can’t be counted directly.  Yet such estima-
tion is essential to applying F-measure.  In our case, if we follow the tra-
jectory of the true positives in Figure 1 as the threshold is relaxed, we see 
that at very stringent p-values all positives are true positives.  As the 
threshold is relaxed further, more false positives are generated, so the pre-
dicted positive and true positive curves start to diverge.  At p = 0.13 (a far 
higher value than would ordinarily be used as a cutoff) the true positives 
reach a maximum, and the number of true positives starts to decline as p 
is further relaxed.  We utilize this maximum value as the maximum num-
ber of GO categories that can be possibly regarded as enriched in the data 
set; i.e., the number of real positives. 
Based on precision and recall at each raw p-value cut-off, we can obtain a 
table and curve of F-measure vs uncorrected p-value. The F1-measure is 
an equally weighted value of precision and recall. A generalized F-meas-
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ure introducing the parameter b can be chosen based on the research ques-
tion, whether minimization of type I (false positive) or type II (false neg-
ative) error, or balance between the two, is preferred, according to the 
equation: 
 

𝐹b =	 (1 + bG) :79H=<=;I∙K9H@AA
bL:79H=<=;IMK9H@AA

          Equation 1 
 

The larger the magnitude of b the more the value of 𝐹b is weighted towards 
recall; the smaller the value of b the more the value of 𝐹b is weighted to-
wards precision.  Optimizing F-measure provides us a threshold which 
emphasize precision (b<1) or recall (b>1), or balance of both (b=1).   Note 
that precision and recall are extreme values of F-measure; that is, Preci-
sion=F0 and Recall=F∞. 
To compare the different thresholds, we also calculated for each of them 
the Matthews correlation coefficient (MCC) 28.  Originally developed to 
score different methods of predicting secondary structure prediction in 
proteins, the MCC has become widely used for assessing a wide variety 
of approaches to binary classification, as exemplified by the 2704 citations 
(at this writing) of the original paper. Perhaps even more telling, the cita-
tion rate for the seminal MCC paper has been increasing as the method is 
being applied in a greater variety of contexts, reaching 280 citations in 
2017 alone.   
In the expression below for the MCC, the True Negative (TN) is estimated 
using total number of GO categories in the database minus predicted pos-
itive and false negative. 
 
𝑀𝐶𝐶 = 6:×QRSQ:×QR

T(6:MQ:)(6:MQR)(6RMQ:)(6RMQR)
  Equation 2 

 
The MCC can be expressed in an equivalent expression using definition 
of informedness and markedness, which includes precision and recall, as 
well as the inversed precision and recall evaluating the proportion of true 
negatives: 
𝑖𝑛𝑣𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 6789	R9U@>=?9

6789	R9U@>=?9MQ@A<9	R9U@>=?9
 Equation 3 

𝑖𝑛𝑣𝑅𝑒𝑐𝑎𝑙𝑙 = 6789	R9U@>=?9
6789	R9U@>=?9MQ@A<9	:;<=>=?9

 Equation 4 
𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑖𝑛𝑣𝑅𝑒𝑐𝑎𝑙𝑙 − 1 Equation 5 
𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑖𝑛𝑣𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 1 Equation 6 
 
Combining Equations 2-6 and some algebra we find: 
 
𝑀𝐶𝐶 = T𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 ∙ 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 Equation 7 
 
In an analogous fashion to the manner in which the F-measure may be 
generalized to weight either precision or recall more strongly by a variable 
b, so also the MCC can be generalized to more strongly weight either 
markedness or informedness by the expression 
 
𝑀𝐶𝐶Z = T𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 × 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠Z[\]   Equation 8 
 
 
  
 

Data Sets 

Environmental Stress Response (ESR) 
First dataset is the Yeast Environmental Stress Response (ESR) data  29, a 
robust data set for a model organism. The ESR set is list of genes com-
monly differentially expressed in response to environmental stresses such 
as heat shock, nutrient depletion, chemical stress, etc. Approximately 300 
genes are up-regulated, and 600 genes are down-regulated in the ESR set.  
We expect this set to be “well-behaved” (give reasonable results with 
standard methods of analysis), since the data come from a very well anno-
tated model organism subject to a widely studied experimental interven-
tion.   

Alarm Pheromone (AP) 
The second data set is comprised of human orthologs to the honey bee 
Alarm Pheromone set30. The Alarm Pheromone set is a list of genes dif-
ferentially expressed in honey bee brain in response to the chemical alarm 
pheromone, which is a component of the language by which honey bees 
communicate with each other. Previous studies have shown that the Alarm 
Pheromone set is enriched in placental mammal orthologs, compared to 
other metazoans including non-social insect orthologs31. The Alarm Pher-
omone set is much smaller than the ESR set, with 91 up-regulated genes 
and 81 down-regulated genes. We expect the AP set to be not so “well-
behaved” compared to the ESR set, as we are using model organism 
orthologs (human) to a non-model organism (honey bee) and the organ-
isms diverged about 600 million years ago. 

Random Test Sets 
To generate a baseline of the analysis for each data set using different FDR 
calculation methods, we have applied the pipeline to analyze randomly-
generated sets as “test” set inputs, where FDR should equal to 1 for all 
uncorrected p-values.  
The BH FDR curves are calculated in the following way: The R program 
p.adjust is applied to generate a list of analytically calculated FDR (BH) 
corresponding to uncorrected p-values for each “test” sets. Then the lists 
of FDRs are merged and sorted by uncorrected p-values. The FDRs are 
smoothed by a “sliding window” method: at each uncorrected p-value 
point, the new FDR is the average value of 11 FDRs centered by the un-
corrected p-value point.  

The Resampling FDR curves are calculated in the following way: The 
output uncorrected p-values are binned in steps of 1E-4. The counts below 
the upper bound of each p-value bin for the “test” set enrichment catego-
ries are the “Predicted positives”, and average counts for the null set en-
richment categories are the “False Positives”. The process is repeated for 
the multiple “test” sets, and corresponding to each test set, 100 null sets 
were generated for “False Positive” calculation. Then the number of total 
and false positives are averaged, respectively. The FDR would be the quo-
tient of the averaged total and false positives. Then, all the FDRs are plot-
ted against the uncorrected p-values. 

Results 
In this section, we present the results of applying our methods to the two 
previously published sets of data introduced in the Methods section, the 
ESR set and the human orthologs of the Alarm Pheromone set. For both 
above data sets, we show the results from analyzing the genes using the 
biological process (BP) category of the gene ontology.  These results will 
show 1) areas of agreement and difference between Benjamini-Hochberg 
and random resampling in evaluation of FDR, 2) how the assessment of 
significance of enrichment varies according to the particular database 
that is being probed, and 3) how the assessment of significance of en-
richment varies according to the weight assigned to precision vs. recall.  

ESR Set (Environmental Stress Response, yeast)  

Benjamini-Hochberg (BH) 
Figure 2 shows the results of F-measure optimization on the ESR data 
based on FDR calculated by Benjamini-Hochberg (BH) method.  As ex-
pected by their definitions, precision (F0) decreases with increasing p-
value while recall increases with increasing p-value.  F0.5 (precision-em-
phasized), F1 (precision and recall equally weighted) and F2 (recall-em-
phasized) all show relative maxima, providing a rational basis for assign-
ing a threshold for significance. The horizontal scale is extended far 
enough to visualize the determination of the number of real positives.  In 
the case of the up-regulated gene set, maximum F1 occurs at an uncor-
rected p-value close to 0.05.  In the case of the down-regulated gene set 
however, it appears that a much more stringent cutoff would be appropri-
ate.   
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Resampling 
Figure 3 shows the results of F-measure optimization on the ESR data us-
ing resampling to calculate FDR. The false positives are calculated by av-
erage number of GO categories enriched in random sets. For the up-regu-
lated set, all the F-measures optimize at much lower uncorrected p-values 
than do the F-measures calculated by the BH method. For the down-regu-
lated set, resampling-calculated F0.5 is optimized at a lower uncorrected p-
value than BH method while F1 and F2 are optimized at slightly higher 
uncorrected p-value. 
 
Comparing the results in Figure 2 and Figure 3 show that the optimum 
cutoff (as measured by maximum F1) varies widely, depending on the gene 
set to be tested and the method for assessing FDR.  Using BH the optimum 
cutoff is .0476 for upregulated ESR and .012 for downregulated ESR.  Us-
ing resampling, the optimum cutoff is .0096 for upregulated ESR and 
.0126 for downregulated ESR.  Also, as expected, the optimum cutoff is 
relaxed when recall is emphasized (F2 instead of F1)   and made more strin-
gent when precision is emphasized (F0.5 instead of F1).   
 

Alarm Pheromone Set (human orthologs)  

Benjamini-Hochberg (BH) 
Figure 4 shows exactly the corresponding results as Figure 2, this time on 
the human orthologs to the honey bee alarm pheromone set.  F-measures 
are maximized at much higher thresholds than for the ESR set.  The dif-
ference in optimal F-measure is largely due to the different shapes of the 
recall curves.  For the ESR set, precision drops significantly more rapidly 
with increasing uncorrected p-value than does the AP set.  Therefore, a 
higher uncorrected p-value can be used for the latter set with essentially 
the same degree of confidence.  

Resampling 
Figure 5 shows the number of GO categories and F-measures for the alarm 
pheromone set human orthologs using resampling method. The 
resampling method have found more false positives than BH, and there-
fore the precision is much lower than the precision calculated from BH, 
and the F-measures are optimized at lower uncorrected p-values than the 
F-measures calculated from BH. 
From the above Figures 2-5, we can note the stepped structure in the num-
ber of enriched GO categories. The stepped structure lies in the fact that 
the number of genes associated with any GO category, in the test set or 
reference set, must be an integer with limited number of choices. There-
fore, the uncorrected p-values calculated would be in a discrete set instead 
of a continuum. Consequently, the number of positives as a function of p-
values increases in a stepped way. As a result, the F-measures derived 
from the number of GO categories have spikes. But as our graphs have 
demonstrated, the optimal F-measures reflect the different weights on pre-
cision and recall despite the spikes. 
 
Comparing the results in Figures 4 and 5 shows that, for the AP gene sets 
as for the ESR gene sets, the optimum cutoff threshold is different for the 
upregulated and downregulated gene sets and also is different when BH is 
used to determine the FDR as compared to resampling. 
 
Comparison of F-Measure with MCC for Optimization of 
Threshold Choice 
 
As indicated in the section on methods, a widely used alternative to the F-
measure for optimization is the Matthews Correlation Coefficient (MCC) 
which, unlike the F-measure, gives equal weight to negative as well as 
positive identifications.  Figure 6 shows MCC optimization for exactly the 
same data set (ESR) and False Discovery Rate determination 
(Resampling) as in Figure 5.  The most important lesson from this Figure 
is that the uncorrected p-value that maximizes MCC1 is the same as the 
uncorrected p-value that maximizes F1 .  Inspection of the formulas reveals 
the reason.  The divergence between MCC and F-measure occurs only 
when the false negatives are a significant fraction of the total negatives.  

Since there are tens of thousands of terms in the gene ontology database 
this condition does not pertain to our situation, so optimization of the F-
measure is an adequate strategy.  However, we agree with Powers 26 that 
optimization of the MCC is the more universally correct strategy.  
 

Comparison of FDR (False Positive) Calculation by Benja-
mini-Hochberg (BH) and Resampling 
In the previous section, we have demonstrated how to use F-measure op-
timization to obtain a flexible threshold based on whether precision or re-
call is more heavily weighted by the researcher.   In that section the FDR 
is calculated but not shown explicitly.  The present section explicitly com-
pares the FDR as calculated by the BH method and by random resampling.  
In each case the random resampling FDR is computed based on the aver-
age of 50 randomly sampled null sets of the same size as the test set.  Fig-
ure 7 shows that for the ESR set, the BH method and resampling estimate 
similar FDR at low p-value. As the threshold increases, the BH method 
estimates lower false discovery rate, and therefore higher precision, than 
the resampling method at the same uncorrected p-value. By contrast, for 
the Alarm Pheromone set, the BH method estimates lower FDR than 
resampling.  
To further evaluate the methods, we carried out multiple runs using ran-
dom (null) sets as test sets. In this case, the FDR should in principle be 1, 
for any uncorrected p-value. The results of this test are shown in Figure 
8a, where for each segment of p-values (bin size = 0.0001) we show the 
mean plus/minus the standard deviation. The resampling method passes 
the test on the average, but the results are noisy.  The BH method system-
atically underestimates FDR. Figure 7b shows that the noise in the 
resampling method results in Figure 7a are largely due to the variation in 
the random null sets, and that the noise level in using random resampling 
for real data is acceptably low. 

Statistical Summary of Results from Different 
Threshold Criteria. 
Table 1 shows the statistical summary of using all different criteria for the 
distinction between significant and non-significant enrichment.  Notable 
features of this table include: 1) Variation of the threshold within the range 
explored in this study made relatively little statistical difference for the 
ESR set.  Over the entire range of thresholds, both the precision and the 
recall for the ESR set are good, and the number of terms returned does not 
change very much. 2) Variation of the threshold within the range explored 
in this study makes a very large difference in the results of the AP set.  For 
the most stringent choice of threshold, the precision is high, but the recall 
is quite low.   Relaxing the threshold improves the recall, but at a cost to 
the precision, so there is a distinct tradeoff between precision and recall, 
and 3) We discovered that optimizing F1 is exactly equivalent to optimiz-
ing the Matthews correlation coefficient.  F.5 is optimized at a lower un-
corrected p-value than F1 while F2 is optimized at a higher p-value, and 
the same pattern is seen for MCC. 
 
 
Identity of Enriched Terms Using Different Threshold 
Criteria. 
 

A. Higher order relatively general terms. 
The enriched GO terms are categorized by their parent terms, 1st order 
parent being direct children of the root term “Biological Process” 
(GO:0008150), 2nd order parent being direct children of the 1st order parent 
terms. Each enriched GO term is traced back to the root by the shortest 
route.  Tables 2 through 5 below provide an outline of the complete gene 
ontology results by showing the high order terms that are either them-
selves enriched according to the described criteria or have child terms en-
riched, or both.  In each case the results from three different thresholds are 
shown, BH FDR<.05, optimum F.5, and optimum F1.  The most striking 
pattern is that for the ESR sets (Tables 2 and 3), modifying the threshold 
within the parameters of this paper did not change the identity of the pu-
tatively enriched higher order terms very much.  However, for the AP sets 
(Tables 4 and 5), relaxing the threshold caused a substantial increase in 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/218248doi: bioRxiv preprint 

https://doi.org/10.1101/218248
http://creativecommons.org/licenses/by/4.0/


Ge et.al. Page 5 of 6 

the number of high order terms judged to be putatively significant.  How-
ever, from Table 1 is it seen that the precision (confidence) of the addi-
tional terms for the AP sets is substantially lower than for the terms re-
turned using the most stringent threshold.  Thus, for the AP set we clearly 
see that we can’t simultaneously have high precision and high recall.  We 
must trade one for the other. 
 

B. Relatively Specific Terms. 
Specific, or “child” terms returned in these calculations are too numerous 
to delineate completely in the body of the paper.  They are instead pro-
vided in the spreadsheet “AllGOTermsInTree_Final(supplementary mate-
rial 1)”  Separate tabs delineate the returns from ESR upregulated, ESR 
downregulated, AP upregulated, and AP downregulated.  Each entry in the 
spread sheet is color coded with the code given in the tab labeled “color 
coding”.  Entries that are shaded are either primary or secondary (more 
general) classes, which will also be shown in Table 1.  Entries colored in 
black appear at "standard" threshold: BH FDR<0.05.  Entries colored in 
blue emerge at the threshold determined by optimal F0.5. For AP Up, the 
standard threshold is the most stringent while for all other sets, the optimal 
F0.5 is the most stringent.   Entries colored in red first emerge at the least-
stringent threshold for that data set, which corresponding to optimal F1.  
The format of the spreadsheet for each of the data sets is as follows: Col-
umn A is the identifying number of the GO class that is returned as signif-
icant, column B is the name of that class, and column C is the raw enrich-
ment p-value for that class.   Column D is non-zero only for the rows be-
longing to primary or secondary GO classes (which are shown explicitly 
in Tables 2-5 for the four data sets).  The numerical value in column D 
represent the smallest uncorrected p-value of all the classes under the pri-
mary or secondary class shown in that row.  The spread sheet is organized 
to be sectioned off according to primary or secondary classes.  To illustrate 
the sectioning, under the “AP up” is the primary class “cellular process” 
and immediately under that the secondary class “protein folding”.  This is 
followed by more specific classes under “protein folding” such as “chap-
erone-mediated protein folding” and others.  The columns E and farther to 
the right are GO numbers representing the lineage of the particular term 
in that row starting with the primary class and continuing to the particular 
term in that row. 
Because the trade-offs with varying threshold are most clear with the AP 
sets, we select those now for discussion.  One biologically interesting fea-
ture emerging from varying the threshold consists of the more specific GO 
classes emerging from general classes already identified with a more strin-
gent threshold.  For example, in the “AP up” set “protein folding” was 
identified as a secondary class of interest by virtue of a very strong enrich-
ment score.  On relaxing the threshold more specific “child” classes 
emerged, such as “chaperone cofactor-dependent protein folding”, “endo-
plasmic protein folding”, and others.  While these more specific classes 
are identified with less confidence than the overall “protein folding” class 
they are subsumed into, they do provide the most likely subclasses within 
protein folding to be biologically meaningful.  Similarly, under the sec-
ondary class of “signal transduction” more specific subclasses such as 
“ER-nucleus signaling pathway”, “stress-activated MAPK cascade” and 
others emerge with modest threshold relaxation.   This pattern is seen 
throughout the spreadsheet.  Relaxing the threshold provides not only im-
proved recall, but improved specificity, which will help in biological in-
terpretation of GO enrichment results. 
 

C. Summary 
In general, when thresholds are varied, a tradeoff can plainly be seen be-
tween precision and recall.  When looking at the specific GO classes that 
are returned at different choices of threshold a second tradeoff emerges, 
between generality and specificity.  As threshold is relaxed some more 
general terms are revealed, but the greater effect is that more specific terms 
are revealed within general terms that were suggested at more stringent 
thresholds.  These specific terms can help to provide a more focused in-
terpretation of the biological results.   
 
 
Conclusions 
 

In this work, we have addressed two issues with the commonly used meth-
ods in the GO enrichment analysis: the relationship between resampling 
vs. Benjamini-Hochberg theory for estimating false discovery rate, and the 
arbitrariness of the threshold for significance.   
To consider resampling vs. Benjamini-Hochberg we made five independ-
ent comparisons.  Four consisted of upregulated and downregulated genes 
separately for two different animal experiments.  The fifth was an array of 
random gene lists (null sets).  For the yeast ESR sets the two methods gave 
almost the same results for uncorrected p-value<.04 but diverged substan-
tially for more relaxed p-values, with the BH underestimating the FDR.  
For the honeybee AP set the BH method underestimated the FDR signifi-
cantly at all uncorrected p-values.  For the random or null sets, we know 
that the correct FDR is 1, because there is no significance to the results. 
Yet for the null sets the BH method produced FDR<1 by a large margin 
for the full range of uncorrected p-values.  By contrast the resampling 
method, although noisy, does not systematically deviate from 1 in its pre-
diction of FDR for the null sets. 
It is of interest to consider why the BH method, while very useful and 
successful in some cases, sometimes fails.  It is understood that the method 
will always work when the true inferences are independent.  Strictly 
speaking, this will not be true of Gene Ontology data since many genes 
belong in multiple Gene Ontology categories.  However, Benjamini and 
Yekutieli32 showed that the method was still valid for dependent hypothe-
ses provided that the related hypotheses that failed the null test showed 
positive regression of likelihoods.  Consideration of the tree-like structure 
of Gene Ontology data33 shows that this is true to a great extent.   The 
branches of the tree-like structure clearly show positive regression within 
each branch; if a child category is enriched a parent is more likely to be 
enriched, and vice versa.  Thus, as long as the enriched classes fall along 
a few well-delineated branches of the Gene Ontology tree structure, BH 
will work well.  This appears to be largely the case for the yeast ESR set 
at relatively stringent p-values, in which the experimental intervention ac-
tivated well-defined and annotated pathways. Thus, for relatively stringent 
cutoffs the BH FDR works well for this data set. However, some genes 
are members of categories in multiple branches, compromising the posi-
tive regression criterion.  In the ESR set at relatively relaxed thresholds, 
and for the AP set at all thresholds, many Gene Ontology categories in 
different branches but with overlapping gene membership are represented 
in the returned categories, so that both independence and the positive re-
gression criterion are violated.  These considerations tell us why BH fails 
dramatically for the completely null sets.  Neither independence nor posi-
tive regression are satisfied, except sometimes completely accidentally.       
For the issue of the arbitrariness of the threshold, we introduced optimiza-
tion of F-measures so that both type I and II errors are considered. Unlike 
arbitrarily applied threshold of BH FDR<0.05 or uncorrected p-
value<0.01 for any data set, the F-measure optimization approach pro-
vides a flexible threshold appropriate to the nature of the data set and the 
research question. If the data set is high in noise-to-signal ratio and the 
penalty for letting in false positive is high, we can choose to optimize F-
measures weighing more on precision. If the data set fails to show much 
enrichment by commonly-applied methods, we can relax the threshold and 
extract the best information indicated by F-measure optimization.  
A concern is that, because of the nature of the problem, we were forced to 
use a heuristic (albeit reasonable) method to estimate the false negatives, 
essential for calculating recall.  We judge that this concern is more than 
offset by the advantage of enabling the replacement of an arbitrary thresh-
old with F-measure optimization.   
We found that for the particular class of problems dealt with in this paper 
the F-measure is as appropriate an optimization criterion as the Matthews 
Correlation Coefficient. 
By examination of the specific GO categories that are returned by our 
analysis, we find that relaxing the threshold, we see revealed the most 
likely specific subcategories within the general categories that are re-
vealed at the most stringent threshold.  Thus, varying the threshold not 
only reflects the tradeoff between precision and recall, but also between 
generality and specificity.  
In the supplementary material we present the spreadsheet 
“AllGOTermsInTree_Final”, which shows all the specific GO terms re-
turned in the work described in this paper.  Also, in the supplementary 
material, we present our automatic pipeline integrating TopGO with 
resampling and analyzing functions to carry out the whole process of 
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resampling, enrichment analysis, F-measure calculation, and representing 
results in tables and figures. The pipeline also includes a GOstats 15 mod-
ule for easy analysis of under-represented terms and a STRINGdb 34  mod-
ule for KEGG pathway terms. As demonstrated, the pipeline can also cal-
culate analytical FDR including, but not limited to, the BH method.  
In summary, we suggest replacing a fixed p-value for assigning a threshold 
in enrichment calculations with an optimal F-measure, which incorporates 
the well-established and well-defined concepts of precision and recall.   
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Tables 

Precision, Recall, and Matthews Correlation Coefficients (BH FDR<0.05, optimal F0.5, and optimal F1) 
 

Data Set Threshold Uncorrected p-value # enriched 
categories Precision Recall MCC 

ESR Up BH FDR<0.05 0.00459 118 0.936 0.798 0.864 
 RS opt F0.5 0.0029 110 0.964 0.765 0.858 
 RS opt F1 0.0096 146 0.890 0.939 0.914 
 Max MCC 0.0096 146 0.890 0.939 0.914 

ESR Down BH FDR<0.05 0.00689 211 0.948 0.883 0.914 
 RS opt F0.5 0.0016 185 0.989 0.808 0.894 
 RS opt F1 0.0126 251 0.902 1 0.948 
 Max MCC 0.0126 251 0.902 1 0.948 

AP Up BH FDR<0.05 0.00116 57 0.807 0.0974 0.290 
 RS opt F0.5 0.012 246 0.600 0.312 0.429 
 RS opt F1 0.0636 699 0.416 0.615 0.500 
 Max MCC 0.0636 699 0.416 0.615 0.500 

AP Down BH FDR<0.05 0.00138 58 0.759 0.353 0.517 
 RS opt F0.5 4.00E-04 44 0.909 0.321 0.540 
 RS opt F1 0.0073 146 0.534 0.626 0.577 
 Max MCC 0.0073 146 0.534 0.626 0.577 

Table 1. Precision, Recall, and Matthews Correlation Coefficients (MCC) at thresholds BH FDR<0.05, Resampling optimal F0.5, and 
Resampling optimal F1. For the four data sets examined, we have found that optimal F1 is the position that MCC reaches maximum.  
This correspondence between optimum F1 and optimum MCC was unanticipated but emerged from independent calculation of both 
quantities. For the ESR set, the MCC is high for all thresholds. For AP set, MCC is relatively low, and the MCC for BH FDR<0.05 is 
the lowest. 

 

 

GO ID Parent Term Minimum raw p-value of child terms 

GO:0008152 Metabolic Process (80,85,100) 3.40E-13 

GO:0050896 response to stimulus (22,23,26) 7.40E-13 

GO:0065007 biological regulation (4,5,7) 9.00E-05 

GO:0009987 cellular process (4,5,13) 0.00035 

**GO:0032502 developmental process (0,0,1) 0.00589 

 
Table 2. ESR, Up-regulated Set Each row corresponds to a 1st order Parent Terms of enriched GO categories of ESR set, Up regulated genes. The 
three numbers in parentheses reflect the total number of terms in the Parent family (Parent plus children).  We found no difference in the high order 
terms between BH FDR<.05 and F.5     However the developmental process parent term (labeled with “**”) emerges when the threshold is increased to 
optimal resampling F1.  The groupings as defined by the parent terms do not change very much, but the number of more specific child terms increases 
moderately. 

 

GO ID Parent Term 
Minimum raw p-value of child 
terms 

GO:0008152 Metabolic Process (120,139,168) 1.00E-30 

GO:0009987 Cellular process (6,6,7) 1.00E-30 

GO:0071840 
Cellular component organization or biogenesis 
(31,32,36) 

1.00E-30 

GO:0051179 Localization (21,22,22) 5.20E-28 

GO:0065007 biological regulation (7,11,15) 3.20E-12 

*GO:0050896 response to stimulus (0,1,2) 0.00357 
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Table 3. ESR, Down-regulated Set 1st order Parent Terms of enriched GO categories of ESR set, down regulated genes. For this data set the optimum 
F.5 was more stringent than the BH FDR <.05.  The term “response to stimulus” (labeled with “*” does not meet the optimum F.5 criterion but does for 
the other two criteria.   The numbers in the parentheses refer to the numbers of enriched terms in each parent category, ordered from low to high.  As with 
the up-regulated genes, relaxing the threshold did not change the parent terms much, but did increase the number of more specific child terms moderately.  

 

GO ID Parent Term Minimal raw p-value of child terms 

GO:0009987 Cellular process (13,36,96) 1.10E-10 

GO:0050896 Response to stimulus (57,71,119) 1.40E-08 

GO:0065007 Biological regulation (28,113,288) 4.30E-05 

GO:0008152 Metabolic process (9,44,113) 5.00E-05 

GO:0032502 Developmental process (1,9,33) 0.00043 

GO:0071840 cellular component organization or biogenesis (1,6,12) 0.00102 

*GO:0051179 Localization (0,8,37) 0.00138 

*GO:0022414 reproductive process (0,2,7) 0.00192 

*GO:0002376 immune system process (0,2,8) 0.00504 

*GO:0032501 multicellular organismal process (0,5,19) 0.00509 

*GO:0040011 Locomotion (0,1,2) 0.00932 

**GO:0051704 multi-organism process (0,0,11) 0.02 

**GO:0008283 cell proliferation (0,0,2) 0.02962 

 

Table 4. 1st order Parent Terms of enriched GO categories of AP set, Up regulated genes. The terms with “*” appears when the 
threshold is increased from BH FDR<0.05 (uncorrected p-value<0.00116) to optimal resampling F0.05-measure (uncorrected p-
value<0.012). Terms with “**” emerges when the threshold is increased to that for optimal resampling F1(uncorrected p-
value<0.0096). The number in the brackets refers to the number of enriched terms within each parent category at each threshold, 
ordered from low to high.  Unlike the ESR sets, for this data set relaxing the threshold caused significantly greater returns in both general 
terms and their children. 

 

GO ID Description Minimal p-value of child terms 

GO:0008152 Metabolic Process (40,7,25) 3.20E-08 

GO:0009987 cellular process (3,4,13) 7.00E-06 

GO:0071840 cellular component organization or biogenesis (1,0,5) 7.90E-06 

*GO:0051179 Localization (0,3,16) 0.00052 

**GO:0065007 biological regulation (0,0,15) 0.00145 

**GO:0050896 response to stimulus (0,0,7) 0.00174 

**GO:0022414 reproductive process (0,0,1) 0.00441 

**GO:0051704 multi-organism process (0,0,1) 0.00441 

**GO:0032501 multicellular organismal process (0,0,3) 0.00441 

**GO:0032502 developmental process (0,0,1) 0.00534 

Table 5. 1st order Parent Terms of enriched GO categories of AP set, Down regulated genes. The terms with “*” disappears when the 
threshold is decreased from BH FDR<0.05 (uncorrected p-value<0.00138) to optimal resampling F0.05-measure (uncorrected p-
value<4.00E-4). Terms with “**” emerges when the threshold is increased at optimal resampling F1(uncorrected p-value<0.0073). 
The number in the brackets refers to the number of enriched terms at each threshold, low to high.  Unlike the ESR sets, for this set 
relaxing the threshold caused substantial increases in the putative enriched categories at both the general level and the more specific 
child level. 
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Figures 
 

 
Figure 1. Number of positives for the yeast environmental stress response 
(ESR) set over the full range of uncorrected p-values from 0 to 1. “Predicted 
positives” is the number of Biological Process GO categories returned as a func-
tion of the p-value threshold for significance.  “False Positives” is the number of 
predicted positives multiplied by the False Discovery Rate as calculated by the 
Benjamini-Hochberg formulation.  “True Positives” is “Predicted Positives” mi-
nus “False Positives”.  “Real Positives”, necessary to estimate number of false 
negatives, is estimated as the largest number of true positives computed at any 
uncorrected p-value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Number of positives and F-measure values for ESR set, BH-
estimated FDR. a) Shows the number of enriched biological process Gene On-
tology categories as a function of uncorrected p-value, the Benjamini-Hochberg 
number of false discoveries, and the projected true positives, namely the differ-
ence between the predicted positives and the false positives, for the upregulated 
ESR gene set. This panel is from the same data set at Figure 1.  The number pairs 
in parenthesis are respectively (uncorrected p-value maximizing F0.5, number of 
true positives at that p-value), (uncorrected p-value maximizing F1, number of 
true positives at that p-value), (uncorrected p-value maximizing F2, number of 
true positives at that p-value), (uncorrected p-value maximizing true positives, 
number of true positives at that p-value) b) is the same as a) for the downregulated 
gene set. c) shows the F-measures computed from a) and d) the F-measures com-
puted from b). Number of real positives, necessary to calculate recall (and there-
fore (F-measure)), is approximated by (predicted positives – false positives) max. 
The p-value at which the computed true positives are a maximum is 0.13 for up-
regulated gene list (a) and at 0.099 for downregulated gene list. (b) The pairs of 
numbers in parenthesis in a) and b) indicate the p-value and number of returned 
GO terms at significant markers, specifically at maximum F0.5 (emphasizing pre-
cision), F1 (balanced emphasis between precision and recall), F2 (emphasizing 
recall), and Recall where we obtain an estimation of relevant elements by max-
imizing true positive). 
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Figure 3. Number of positives and F-measure values for ESR set, 
Resampling-estimated FDR. A) Shows the number of enriched biologi-
cal process Gene Ontology categories as a function of uncorrected p-
value, the average number of enriched Gene ontology categories from the 
random set as the false positives, and the projected true positives, namely 
the difference between the predicted positives and the false positives, for 
the up-regulated ESR gene set. The number pairs in parenthesis are re-
spectively (uncorrected p-value maximizing F0.5, number of true positives 
at that p-value), (uncorrected p-value maximizing F1, number of true pos-
itives at that p-value), (uncorrected p-value maximizing F2, number of 
true positives at that p-value), (uncorrected p-value maximizing true pos-
itives, number of true positives at that p-value) b) is the same as a) for the 
down-regulated gene set. c) shows the F-measures computed from a) and 
d) the F-measures computed from b). Number of real positives, necessary 
to calculate recall (and therefore (F-measure)), is approximated by (pre-
dicted positives – false positives) max. The p-value at which the computed 
true positives are a maximum is 0.021 for upregulated gene list (a) and 
0.0179 for downregulated gene list. (b) The pairs of numbers in parenthe-
sis in a) and b) indicate the p-value and number of returned GO terms at 
significant markers, specifically at maximum F0.5 (emphasizing preci-
sion), F1 (balanced emphasis between precision and recall), F2 (emphasiz-
ing recall), and Recall (where we obtain an estimation of relevant ele-
ments by maximizing true positive). 

 

Figure 4. Number of positives and F-measure values for Alarm Pher-
omone set, BH-estimated FDR a) shows the number of enriched biolog-
ical process Gene Ontology categories as a function of uncorrected p-
value, the Benjamini-Hochberg number of false discoveries, and the pro-
jected true positives, namely the difference between the predicted posi-
tives and the false positives, for the upregulated alarm pheromone human 
orthologs gene set. The number pairs in parenthesis are respectively (un-
corrected p-value maximizing F0.5, number of true positives at that p-
value), (uncorrected p-value maximizing F1, number of true positives at 
that p-value), (uncorrected p-value maximizing F2, number of true posi-
tives at that p-value), (uncorrected p-value maximizing true positives, 
number of true positives at that p-value) b) is the same as a) for the down-
regulated gene set. c) shows the F-measures computed from a) and d) the 
F-measures computed from b). Number of real positives, necessary to cal-
culate recall (and therefore (F-measure)), is approximated by (predicted 
positives – false positives) max. The p-value at which the computed true 
positives are a maximum is 0.391 for upregulated gene list (a) and at 0.292 
for downregulated gene list. (b) The pairs of numbers in parenthesis in a) 
and b) indicate the p-value and number of returned GO terms at significant 
markers, specifically at maximum F0.5 (emphasizing precision), F1 (bal-
anced emphasis between precision and recall), F2 (emphasizing recall) 
and Recall (where we obtain an estimation of relevant elements by max-
imizing true positive). 
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Figure 5. Number of Positives and F-measure values for AP set, Resampling-
estimated FDR. The figure shows the number of enriched biological process 
Gene Ontology categories as a function of uncorrected p-value, the average num-
ber of enriched Gene ontology categories from the random set as the false posi-
tives, and the projected true positives, namely the difference between the pre-
dicted positives and the false positives, for the up-regulated alarm pheromone 
human orthologs gene set. b) is the same as a) for the down-regulated gene set. c) 
shows the F-measures computed from a) and d) the F-measures computed from 
b).   Number of real positives, necessary to calculate recall (and therefore (F-
measure)), is approximated by (predicted positives – false positives) max. The p-
value at which the computed true positives are a maximum is 0.596 for upregu-
lated gene list (a) and at 0.065 for downregulated gene list. (b) The pairs of num-
bers in parenthesis in a) and b) indicate the p-value and number of returned GO 
terms at significant markers, specifically at maximum F0,5 (emphasizing preci-
sion), F1 (balanced emphasis between precision and recall), F2 (emphasizing re-
call), and Recall (where we obtain an estimation of relevant elements by maxim-
izing true positive). 

 

Figure 6. Number of Positives and MCC-measure values for AP set, 
Resampling-estimated FDR.  This figure is the same as Figure 5 except that the 
optimization to determine significance-insignificance threshold is Matthews Cor-
relation Coefficient (MCC) rather than F-measure.  Note that the uncorrected p-
value threshold for optimum MCC1 is the same as for F1 .  Examination of the 
expressions for the two quantities shows that the reason for the convergence is 
that in this case the number of false negatives is very small compared to the num-
ber of total and true negatives, so the fractional variation in true negatives is very 
small.  This is true for all the data sets. 
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Figure 7. False discovery rate comparison. False discovery rate estimated by 
Benjamini-Hochberg (solid curve) and Resampling (dashed curve) for the ESR 
set and Alarm Pheromone set. Figure 7 compares the number of false discovery 
rate calculated by Benjamini-Hochberg (solid) and Resampling (dashed) in each 
set: a) up-regulated ESR, b) down-regulated ESR, c) up-regulated Alarm Phero-
mone set, and d) down-regulated Alarm Pheromone set. Generally, resampling 
has found higher false discovery rate than Benjamini-Hochberg. At low p-values, 
the BH and resampling methods get similar estimation of false discovery rate for 
the ESR set. 

 

Figure 8. Comparison of different FDR calculation method on accuracy and 
convergence. a) Comparison of BH and Resampling on random “test” sets.  At 
each p-value (p-values binned at intervals of .0001), the mean and standard devi-
ation are calculated and plotted as shown.  The random test sets consist of 281 
yeast genes, against the background of the entire yeast genome. For each of the 
methods 50 test sets were used and the mean plus/minus standard deviation plot-
ted as shown. Resampling hits the mark on the average but with substantial noise, 
while BH systematically underestimates FDR. b) Evaluation of resampling con-
vergence on a real data set, ESR upregulated considered in this paper.  This set is 
run against five different ensembles of null sets, each ensemble containing 100 
null sets.  The mean and standard deviation are plotted and compared to the results 
from the random test sets.  It is seen that the noise of the resampling method on a 
real data set is acceptable. 
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Additional Files 
Additional file 1--- AllGOTermsInTree_Final.xlsx 
This is the spreadsheet showing all enriched terms at thresholds: 
BH FDR<0.05, optimal F0.5, and optimal F1. The terms are ar-
ranged by the primary and second-order parent terms. 
 
Additional file 2 --- pipelinemanual .docx  
“A TopGO- and GOstats-based automated pipeline for GO en-
richment analysis using F-measure optimization based on 
resampling and traditional calculation”  
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