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Abstract	
	
Genome-wide	association	studies	have	shown	that	pleiotropy	is	a	common	
phenomenon	that	can	potentially	be	exploited	for	enhanced	detection	of	susceptibility	
loci.	We	propose	heritability	informed	power	optimization	(HIPO)	for	conducting	
powerful	pleiotropic	analysis	using	summary-level	association	statistics.	We	find	optimal	
linear	combinations	of	association	coefficients	across	traits	that	are	expected	to	
maximize	non-centrality	parameter	for	the	underlying	test	statistics,	taking	into	account	
estimates	of	heritability,	sample	size	variations	and	overlaps	across	the	traits.	Simulation	
studies	show	that	the	proposed	method	has	correct	type	I	error,	robust	to	population	
stratification	and	leads	to	desired	genome-wide	enrichment	of	association	signals.	
Application	of	the	proposed	method	to	publicly	available	data	for	three	groups	of	
genetically	related	traits,	lipids	(N=188,577),	psychiatric	diseases	(Ncase=33,332,	
Ncontrol=27,888)	and	social	science	traits	(N	ranging	between	161,460	to	298,420	across	
individual	traits)	increased	the	number	of	genome-wide	significant	loci	by	12%,	200%	
and	50%,	respectively,	compared	to	those	found	by	analysis	of	individual	traits.	Evidence	
of	replication	is	present	for	many	of	these	loci	in	subsequent	larger	studies	for	individual	
traits.	HIPO	can	potentially	be	extended	to	high-dimensional	phenotypes	as	a	way	of	
dimension	reduction	to	maximize	power	for	subsequent	genetic	association	testing.		
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Introduction	
	
Genome-wide	association	studies	of	increasingly	large	sample	sizes	are	continuing	to	
inform	genetic	basis	of	complex	diseases.	These	studies	have	now	led	to	identification	of	
scores	of	susceptibility	SNPs	underlying	a	vast	variety	of	individual	complex	traits	and	
diseases1–3.	Moreover,	analyses	of	heritability	and	effect-size	distributions	have	shown	
that	each	trait	is	likely	to	be	associated	with	thousands	to	tens	of	thousands	of	
additional	susceptibility	variants,	each	of	which	individually	has	very	small	effects,	but	in	
combinations	they	can	explain	substantial	fraction	of	trait	variation4–15.	GWAS	of	
increasing	sample	sizes	as	well	as	re-analysis	of	current	studies	with	powerful	statistical	
methods	are	expected	to	lead	to	identification	of	many	of	these	additional	variants.	
	
An	approach	to	increase	the	power	of	existing	GWAS	is	to	borrow	strength	across	
related	traits.	Comparisons	of	GWAS	discoveries	across	traits	have	clearly	shown	that	
pleiotropy	is	a	common	phenomenon3,14,16–19.	Aggregated	analysis	of	multiple	related	
traits	have	led	to	identification	of	novel	SNPs	that	could	not	be	detected	through	
analysis	of	individual	traits	alone20–23.	Further,	analysis	of	genetic	correlation	using	
genome-wide	panel	of	SNPs	have	identified	groups	of	traits	that	are	likely	to	share	many	
underlying	genetic	variants	of	small	effects10,12,14,24,25.	As	summary-level	association	
statistics	from	large	GWAS	are	now	increasingly	accessible,	there	is	a	great	opportunity	
to	accelerate	discoveries	through	novel	cross-trait	analysis	of	these	datasets.		
	
A	variety	of	methods	have	been	developed	in	the	past	decade	to	increase	power	of	
GWAS	analysis	by	combining	information	across	multiple	traits13,26–37.	Many	of	these	
methods	have	focused	on	developing	test-statistics	that	are	likely	to	have	optimal	
power	for	detecting	an	individual	SNP	under	certain	types	of	alternatives	of	its	shared	
effects	across	multiple	traits26,30,31,35,38,39.	These	approaches	do	not	borrow	information	
across	SNPs	and	may	be	inefficient	for	analysis	of	traits	that	are	likely	to	have	major	
overlap	in	their	underlying	genetic	architecture.	For	the	analysis	of	psychiatric	diseases,	
for	example,	it	has	been	shown	that	borrowing	pleiotropic	information	across	SNPs	can	
be	used	to	improve	power	of	detection	of	individual	SNP	associations	and	genetic	risk	
prediction40,41.	
	
In	this	article,	we	propose	a	novel	method	for	powerful	aggregated	association	analysis	
for	individual	SNPs	across	groups	of	multiple,	highly	related,	traits	informed	by	genome-
wide	estimates	of	genetic	variance-covariance	matrices.	We	derive	optimal	test-
statistics	based	on	orthogonal	linear	combinations	of	association	coefficients	across	
traits	that	are	expected	to	maximize	genome-wide	averages	of	the	underlying	non-
centrality	parameters	in	a	gradually	decreasing	order.	We	exploit	recent	developments	
in	LD-score	regression	methodology14,42	for	estimation	of	phenotypic	and	genotypic	
correlations	for	implementation	of	the	method	using	only	summary-level	results	from	
GWAS.			
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We	evaluate	performance	of	the	proposed	method	through	extensive	simulation	studies	
using	a	novel	scheme	for	directly	generating	summary-level	association	statistics	for	
large	GWAS	for	multiple	traits	with	possibly	overlapping	samples.	We	use	the	proposed	
method	to	analyze	summary-statistics	available	from	consortia	of	GWAS	of	lipid	traits43,	
psychiatric	diseases20	and	social	science	traits44.	These	applications	empirically	illustrate	
that	HIPO	directions	can	be	highly	enriched	with	association	signals	and	can	identify	
novel	and	replicable	associations	that	are	not	identifiable	at	comparable	level	of	
significance	based	on	analysis	of	the	individual	traits.		
	
Material	and	Methods	
	
Model	and	Assumptions	
	
Suppose	that	the	summary	level	results	are	available	for	𝐾	traits.	For	a	given	SNP	𝑗,	let	
𝜷$ 	and	𝒔$	denote	vectors	of	length	𝐾	containing	estimates	of	regression	parameters	and	
associated	standard	errors,	respectively,	for	the	𝐾	traits.	Let	𝑀	be	the	total	number	of	
SNPs	under	study.	Throughout,	we	will	assume	both	genotypes	and	phenotypes	are	
standardized	to	have	mean	0	and	variance	1.	Let	𝑁)	denote	the	sample	size	for	GWAS	
for	the	𝑘-th	trait.	We	assume	𝑁)	can	vary	across	studies	because	traits	may	be	
measured	on	distinct,	but	potentially	overlapping,	samples.	We	assume	that	summary-
level	statistics	in	GWAS	are	obtained	based	on	one	SNP	at	a	time	analysis	and	that	𝜷$|𝜷$ 	
follows	a	multivariate	normal	distribution:	𝑁 𝜷$, 𝛴./ ,	where		𝜷$ = 𝛽$2, … , 𝛽$4

5
	is	

referred	to	as	the	“marginal”	effect	sizes,	the	coefficients	that	will	be	obtained	by	fitting	
single-SNP	regression	models	across	the	individual	traits	in	the	underlying	population.		
The	variance-covariance	matric	𝛴./,	which	may	include	non-zero	covariance	terms	when	
the	studies	have	overlapping	samples,	will	be	estimated	based	on	estimates	of	standard	
errors	of	the	individual	coefficients	(𝒔$)	and	estimate	of	“phenotypic	correlation”	that	
could	be	obtained	based	on	LD-score	regression.	
	
Power	Optimization	
	
Power	has	a	one-to-one	correspondence	with	the	non-centrality	parameter	(NCP,	
denoted	by	𝛿)	of	the	underlying	𝜒:-statistic.	Therefore,	we	try	to	find	the	linear	
combination	𝒄5𝜷	that	maximizes	the	average	NCP	across	SNPs	(denoted	by	𝐸 𝛿 ),	which	
is	given	by		

𝐸 𝛿 =
𝐸 (𝒄5𝜷 :]
𝑣𝑎𝑟 𝒄5𝜷

.	 (1)	

	
The	denominator	is	easy	to	simplify:	𝑣𝑎𝑟 𝒄5𝜷 = 𝒄5𝛴.𝒄,	which	does	not	depend	on	
true	value	of	𝜷.	We	derive	an	expression	of	the	numerator	based	on	commonly	used	
random	effect	models	that	are	used	to	characterize	genetic	variance-covariances.		
	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/218404doi: bioRxiv preprint 

https://doi.org/10.1101/218404


Let	𝜷$
(B) = 𝛽$2

B , … , 𝛽$4
B 5

	denote	the		vector	of	“joint”	effect	sizes	associated	with	SNP	
𝑗	that	could	be	obtained	by	simultaneous	analysis	of	SNPs	in	multivariate	models	across	
the	K	individual	traits.	We	assume	that	𝜷$

(B)	follows	a	multivariate	normal	distribution	

𝑁 𝟎, DE
F

,	where	𝛴G	is	the	genetic	covariance	matrix.	It	follows	that	𝜷$,	the	vector	of	
marginal	regression	coefficients,	is	also	normally	distributed	with	mean	𝟎	and	
𝐸 𝜷$5𝜷$ 𝑙$ = I/DE

F
,	where	𝑙$ = 𝑟$$′

:F
$′J2 	is	the	LD	score.	Here	𝑟$$′ 	is	the	correlation	of	

genotypes	between	SNP	𝑗	and	𝑗′.	
	
Thus,	based	on	the	above	model,	the	numerator	of	(1)	can	be	written	as	𝐸 (𝒄5𝜷 :] =
𝒄5𝐸 𝐸 𝜷𝜷5 𝑙 𝒄 = K I

F
𝒄5𝛴G𝒄.	Therefore,	we	have	

𝐸 𝛿 =
𝐸 𝑙
𝑀

𝒄5𝛴G𝒄
𝒄5𝛴.𝒄

.	

	
The	matrix	𝛴. 	needs	to	take	into	account	the	sample	size	differences	and	overlaps	
across	studies.	When	all	the	phenotypes	are	measured	on	the	same	set	of	people,	𝛴.	is	
proportional	to	the	phenotypic	variance-covariance	matrix	and	𝐸[𝛿]	reduces	to	
maximizing	the	heritability	(MaxH)34.	But	HIPO	is	more	general	and	can	be	applied	to	
traits	measured	on	different	samples	with	unknown	overlap.	The	LD-score	regression	
allows	estimation	of	both	𝛴G	and	𝛴. 	based	on	underlying	slope	and	intercept	
parameters,	respectively,	using	GWAS	summary-level	statistics	(Appendix	A)14,42.		
	
The	first	HIPO	component	𝒄2	is	given	by	solving	the	following	optimization	problem:	

max
𝐜
𝒄5𝛴G𝒄 				𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜				𝒄5𝛴.𝒄 = 1.	

Subsequent	components	𝒄)	are	defined	iteratively	by	solving	a	slightly	different	
optimization	problem	

max
𝐜
𝒄5𝛴G𝒄 				𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜				𝒄5𝛴.𝒄 = 1	𝑎𝑛𝑑	𝒄5𝛴.𝒄I = 0	 𝑙 = 1,2, … , 𝑘 − 1 .	

	
The	above	procedure	can	be	implemented	by	suitable	eigen	decomposition	(Appendix	
B).	We	call	the	first	HIPO	component	HIPO-D1,	the	second	HIPO	component	HIPO-D2,	
and	so	on.	Interestingly,	it	can	be	shown	that	the	eigenvalues	resulted	from	this	
procedure	are	the	average	NCP	for	𝜒:	association-statistics	across	SNPs	along	the	HIPO	
directions	(up	to	the	same	scale	constant,	Appendix	B).	For	the	𝑘th	HIPO	component,	
the	association	for	the	SNP	𝑗	is	tested	using	𝑍-statistics	in	the	form	

𝑧$,𝒄`, =
𝒄)5𝜷$

𝒄)5𝛴.𝒄)
.	

	
It	is	easy	to	see	that	HIPO	𝑧-statistics	reduce	to	the	inverse	standard	error	weighted	𝑧-
scores	when	all	traits	have	the	same	heritability,	have	genetic	correlation	1	and,	there	is	
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no	sample	overlap	across	studies.	Therefore,	HIPO	can	also	be	viewed	as	an	extension	of	
standard	meta-analysis.	
	
Simulations	
	
We	use	a	novel	simulation	method	that	directly	generates	summary	level	data	for	GWAS	
of	multiple	traits	preserving	realistic	genotypic	and	phenotypic	correlation	structures.	
We	proposed	the	single-trait	version	of	this	approach	in	a	recent	study15.	We	propose	to	
simulate	GWAS	estimate	for	marginal	effects	across	𝐾	traits,	denoted	as	𝜷$ =
𝛽$2, … , 𝛽$4

5
,	using	a	model	of	the	form	

𝜷$ = 𝜷$ + 𝒗$ + 𝒆$,	
where	two	types	of	errors	terms,	𝒗$ 	and	𝒆$,	are	introduced	to	account	for	variability	due	
to	population	stratification	effects	and	estimation	uncertainty,	respectively.	We	assume	
the	population	stratification	effects	𝒗$s	follow	i.i.d.	multivariate	normal	distribution	
across	SNPs.	We	generate	the	estimation	error	terms	𝒆 = 𝒆25, … , 𝒆F5 5 	following	a	
multivariate	normal	distribution	that	takes	into	account	both	phenotypic	correlation	
across	traits	and	linkage	disequilibrium	across	SNPs.	In	particular	we	generate	
	𝒆~𝑁(0, 𝑅⨂𝛴g)	where	the	covariance	matrix	is	the	Kronecker	product	of	the	LD	
coefficient	matrix	𝑅 = 𝑟

$$′ $,$′J2,…,F
	and	

𝛴g =
𝑁)I
𝑁)𝑁I

𝑐𝑜𝑣 𝑦), 𝑦I
),IJ2,:,…4

	

where	the	(𝑘, 𝑙)	element	involves	sample	sizes,	the	sample	overlap	𝑁)I 	and	the	
phenotypic	covariance	between	the	𝑘th	and	𝑙th	trait	(Appendix	C).	We	assume	that	the	
sample	size	is	the	same	for	all	the	SNPs	within	the	same	study.	
	
We	simulate	𝜷$ 	by	first	randomly	selecting	~12K	causal	SNPs	out	of	a	reference	panel	of	
~1.2	million	HapMap3	SNPs	lwith	MAF	>5%	in	1000	Genomes	European	population.	This	
SNP	list	is	downloaded	from	LD	Hub45.	For	selected	casual	SNPs,	we	generate	i.i.d.	joint	
effect	sizes	𝜷$

(B)	from	a	multivariate	normal	distribution	𝑁(0, DE
2:,iii

),	where	𝛴G	is	the	
genetic	covariance	matrix.	For	simplicity	we	assume	all	the	traits	have	the	same	set	of	
causal	SNPs.	We	calculate	the	marginal	effect	sizes	𝜷$ 	as	the	sum	of	the	joint	effect	size	
of	SNPs	in	neighborhood	𝒩$ 	weighted	by	the	LD	coefficient,	i.e.	𝜷$ = 𝜷

$′
(B)

$′	∈𝒩/
𝑟$$′.	

The	neighborhood	𝒩$ 	is	defined	to	be	set	of	SNPs	that	are	within	1MB	distance	and	have	
𝑟: > 0.01	with	respect	to	SNP	𝑗.	
	
For	simulation	of	𝒆,	we	observe	that	in	a	GWAS	study	where	the	phenotypes	have	no	
association	with	any	of	the	markers,	the	summary-level	association	statistics	is	expected	
to	follow	the	same	multivariate	distribution	as	𝒆.		We	utilize	individual	level	genotype	
data	available	from	489	European	samples	from	the	1000	Genomes	Project.	For	each	of	
the	489	subjects,	we	simulate	a	vector	of	phenotype	from	a	predetermined	multivariate	
normal	distribution	without	any	reference	to	their	genotypes.	We	then	conducted	
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standard	one	SNP	at	a	time	GWAS	analysis	for	each	trait	to	compute	the	association	
statistics	𝜷$,2iiim = 𝛽$2,2iiim, … , 𝛽$4,2iiim

5
	for	the	1.2	million	SNPs.	To	mimic	the	

incomplete	sample	overlap	between	traits,	we	can	calculate	𝛽$2,2iiim ,…	𝛽$4,2iiim 	based	
on	different	subsamples	of	1000	Genomes	EUR,	of	size	𝑛2, … , 𝑛4.	Finally,	to	generate	
error	terms	according	to	sample	size	specification	for	our	simulation	studies,	we	use	the	
adjustment	

𝒆$ =
	 𝑛2	
𝑁2

𝛽$2,2iiim, … ,
𝑛4
𝑁4

𝛽$4,2iiim
5

,	

We	show	in	Appendix	C	that	this	𝒆 = 𝒆25, … , 𝒆F5 5 	has	the	desired	distribution.	
	
We	conduct	simulation	studies	to	validate	HIPO-based	association	tests	and	investigate	
expected	power	gain	under	varying	sample	size	and	heritability.	For	simplicity,	we	only	
consider	the	scenarios	where	all	traits	are	measured	on	the	same	set	of	subjects.	To	
make	the	settings	more	realistic,	we	use	two	sets	of	genetic	and	phenotypic	covariance	
matrices	estimated	from	real	data:	
	

(1) Blood	lipid	traits:	

𝛴G = ℎopq: 		

0.87 −0.04 0.30 	0.85
−0.04 	1.00 −0.62	 	0.18
0.30	 −0.62 0.93 0.30
0.85	 0.18 0.30 0.95

, 𝛴y =

1.00 −0.10 0.21	 0.86
−0.10	 1.00	 −0.36 0.12
0.21 −0.36 1.00 0.32
0.86 0.12 0.32 1.00

	

	
(2) Psychiatric	diseases	

𝛴G = ℎopq:
0.69 0.02 0.12
0.02 0.88 0.63
0.12 0.63 1.00

, 𝛴y =
1.00 0.01 0.00
0.01 1.00 0.01
0.00 0.01 1.00

.	

	
We	vary	the	value	of	scale	factor	ℎopq: = 0.1, 0.2, 0.35, 0.5	to	control	heritability	of	the	
traits	while	preserving	the	genetic	correlation	structure.	We	also	vary	the	sample	size:	
𝑁 = 10𝐾, 50𝐾, 100𝐾, 500𝐾.	The	covariance	matrix	of	𝒗$ 	is	set	to	

7.35×10{|
1 0.5 0.5 	0.5
0.5 	1 0.5	 	0.5
0.5	 0.5 1 0.5
0.5	 0.5 0.5 1

		and	7.35×10{|
1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

			

in	the	first	and	second	settings,	respectively.	This	choice	of	parameters	lead	to	an	
average	per-SNP	population	stratification	that	is	about	25%	of	the	per	SNP	heritability	
when	ℎopq: = 0.35.	For	each	of	the	2*4*4	=	32	settings	we	repeat	the	simulation	100	
times.		
	
Summary	level	data	
	
We	analyze	publicly	available	GWAS	summary-level	results	across	three	groups	of	traits	
measured	on	European	ancestry	samples	using	the	proposed	method.	Global	Lipids	
Genetics	Consortium	(GLGC)	provides	the	GWAS	results	for	levels	of	low-density	
lipoprotein	(LDL)	cholesterol,	high-density	lipoprotein	(HDL)	cholesterol,	triglycerides	
(TG)	and	total	cholesterol	(TC)43.	The	data	consists	of	188,577	European-ancestry	
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individuals	with	~1.8	million	SNPs	after	implementing	the	LD	Hub	quality	control	
procedure	(described	at	the	end	of	this	section).		
	
The	Psychiatric	Genomics	Consortium	(PGC)	cross-disorder	study	analyzed	data	for	5	
psychiatric	disorders:	autism	spectrum	disorder	(ASD),	attention	deficit-hyperactivity	
disorder	(ADHD),	bipolar	disorder	(BIP),	major	depressive	disorder	(MDD)	and	
schizophrenia	(SCZ)20,46–49.	Two	of	the	five	traits	involved	trio	data:	ASD	(4788	trio	cases,	
4788	trio	pseudocontrols,	161	cases,	526	controls,	equivalent	to	4949	cases	and	5314	
controls)	and	ADHD	(1947	trio	cases,	1947	trio	pseudocontrols,	840	cases,	688	controls,	
equivalent	to	2787	cases	and	2635	controls).	The	other	three	studies	did	not	involve	
trios:	BIP	(6990	cases,	4820	controls),	MDD	(9227	cases,	7383	controls)	and	SCZ	(9379	
cases,	7736	controls).	After	applying	the	same	QC	procedure,	we	included	~1.05	million	
SNPs	for	HIPO	analysis.		
	
The	Social	Science	Genetic	Association	Consortium	(SSGAC)	provides	summary	statistics	
for	depressive	symptoms	(DS,	N=161,460),	neuroticism	(NEU,	N=170,911)	and	subjective	
well-being	(SWB,	N=298,420)44.	The	DS	data	is	the	meta-analysis	result	combining	a	
study	by	the	Psychiatric	Genomics	Consortium48,	the	initial	release	of	UK	Biobank	
(UKB)50	and	the	Resource	for	Genetic	Epidemiology	Research	on	Aging	cohort	(dbGap,	
phs000674.v1.p1).	For	neuroticism,	the	study	pooled	summary	level	data	sets	from	UKB	
and	Genetics	Personality	Consortium	(GPC).	The	SWB	data	is	the	meta-analysis	result	
from	59	cohorts44.	All	subjects	are	of	European	ancestry.	We	analyzed	~2.1	million	SNPs	
after	QC.	
	
For	all	three	groups	of	traits,	we	use	the	GWAS	parameter	estimates	and	standard	
errors	to	compute	the	z-statistics	and	p-values	without	making	post-meta-analysis	
correction	of	genomic	control	factors.	We	perform	SNP	filtering	to	all	three	groups	of	
phenotypes	based	on	LD	Hub	quality	control	guideline.	Markers	that	meet	the	following	
conditions	are	removed:	(1)	with	extremely	large	effect	size	(𝜒: > 80)	(2)	within	the	
major	histocompatibility	complex	(MHC)	region	(26Mb~34Mb	on	chromosome	6)	(3)	
MAF	less	than	5%	in	1000	Genomes	Project	Phase	3	European	samples	(4)	sample	size	
less	than	0.67	times	the	90th	percentile	of	the	sample	size	(5)	alleles	do	not	match	the	
1000	Genomes	alleles.	We	further	remove	SNPs	that	are	missing	for	at	least	one	trait.	
The	summary	statistics	are	supplied	to	LDSC	software14,42,45	to	fit	LD	score	regression.		
	
We	defined	a	locus	to	be	“novel”	if	it	contains	at	least	one	SNP	that	reach	genome-wide	
significance	(p-value	<	5×10{|)	by	the	HIPO	method	and	the	lead	SNP	in	the	region	is	at	
least	0.5	Mb	away	and	has	𝑟: < 0.1	from	all	lead	SNPs	of	genome-wide	significance	
regions	identified	by	individual	trait	analysis.	
	
Results	
	
Simulation	results	show	that	HIPO-D1	maintains	the	correct	type	I	error	rate	with	or	
without	population	stratification,	consistently	across	different	sample	sizes	and	values	
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of	heritability	(Supplementary	Tables	1	and	2).	In	the	presence	of	population	
stratification,	the	degree	of	which	was	modest	according	to	our	simulation	scheme,	
tests	based	on	individual	traits	showed	somewhat	inflated	type	I	error	under	large	
sample	size	(e.g.	500K)	(Supplementary	Tables	1	and	2).	Results	also	show	that	
association	analysis	based	on	HIPO-D1	leads	to	substantial	number	of	additional	true	
discoveries	compared	to	that	based	on	the	most	heritable	trait	(Supplementary	Table	
3).	In	most	settings,	the	value	of	𝜆m� 	and	average	𝜒:-statistics	are	larger	for	HIPO-D1	
than	those	for	the	most	heritable	trait	(Supplementary	Table	4).	Results	also	show	that	
QQ	plots	for	HIPO-D1	to	be	more	enriched	with	signals	than	those	for	the	most	heritable	
traits	(Supplementary	Figures	1-4).	
	
Application	to	blood	lipid	data	
	
We	applied	our	method	to	the	Global	Lipids	Genetics	Consortium	(GLGC)	data43.	The	
average	NCP	decreases	from	0.213	for	HIPO-D1	to	0.026	for	HIPO-D4,	with	most	
association	signals	appears	to	be	associated	with	the	first	and	second	components	
(Supplementary	Table	5).	HIPO-D1	is	positively	related	to	TG,	negatively	related	to	HDL	
and	TC	and	depends	weakly	on	LDL.	HIPO-D2	depends	mostly	on	TC.	The	last	
component,	which	contains	very	little	genetic	association	signals,	is	positively	correlated	
with	TC	and	negatively	with	the	other	three	traits.	The	order	of	𝜆m� 	and	average	of	
empirical	𝜒:	statistic	also	tracks	with	the	average	NCP,	suggesting	that	the	observed	
enrichments	are	likely	due	to	polygenic	effects.		We	identified	twenty	novel	loci	by	
HIPO-D1	and	4	by	HIPO-D2	at	genome-wide	significant	level	(𝑝 < 5×10{|)	(Table	1).	
The	pattern	of	p-values	for	individual	traits	show	that	the	proposed	method	detects	
novel	SNPs	that	contain	moderate	degree	of	association	signals	across	multiple	traits.	
There	is	very	little	overlap	between	new	loci	found	by	HIPO-D1	and	by	HIPO-D2,	as	
expected	from	genetic	orthogonality	of	the	two	components	(Supplementary	Figure	5).	
	
Application	to	psychiatric	diseases	
	
Applications	of	HIPO	to	Psychiatric	Genomics	Consortium	(PGC)	cross-disorder	data20	
show	that	most	association	signals	are	captured	by	HIPO-D1	(Supplementary	Table	6),	
which	has	an	average	NCP	twice	larger	than	that	of	HIPO-D2.	The	first	HIPO	component	
puts	the	highest	weights	on	BIP	and	SCZ,	which	have	the	largest	heritability	and	
relatively	large	sample	sizes.	It	is	noteworthy	that	for	a	few	of	the	strongest	signals,	
HIPO	is	outperformed	by	standard	meta-analysis,	which	was	implemented	in	PGC	cross-
disorder	analysis	as	a	way	for	detecting	SNPs	that	may	be	associated	with	multiple	
traits.	The	QQ	plot	of	HIPO-D1,	however,	dominates	those	for	the	individual	traits	and	
for	the	standard	meta-analysis	when	𝑝 > 1×10{|	(Figure	1(b)).	This	suggests	that	HIPO	
is	superior	to	standard	meta-analysis	in	detecting	moderate	effects,	while	sacrificing	
some	efficiency	for	the	top	hits.	The	value	of	𝜆m� 	and	average	𝜒:-statistics	are	higher	for	
HIPO-D1	than	those	for	individual	traits	and	standard	meta-analysis.		
	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 12, 2017. ; https://doi.org/10.1101/218404doi: bioRxiv preprint 

https://doi.org/10.1101/218404


HIPO-D1	discovers	one	new	locus,	marked	by	the	lead	SNP	rs13072940	(𝑝 = 1.71×
10{|),	that	is	not	identified	by	either	the	individual	traits	or	the	meta-analysis.	The	
marker	rs13072940	shows	association	with	bipolar	disorder	(𝑝��� = 0.0026)	and	
schizophrenia	(𝑝��� = 2.55×10{�)	but	no	association	with	autism	spectrum	disorder	
(𝑝��� = 0.97),	ADHD	(𝑝 = 0.70)	or	major	depressive	disorder	(𝑝 = 0.11).	The	meta-
analysis	signal	(𝑝Fg�p = 7.02×10{�)	did	not	reach	genome-wide	significance	and	is,	in	
fact,	weaker	compared	to	that	from	schizophrenia	alone.	This	SNP	show	stronger	
association	in	more	recent	larger	studies	bipolar	disorder47	(𝑝��� = 0.0003)	and	
schizophrenia51	(𝑝��� = 1.32×10{�),	clearly	indicating	that	this	is	likely	to	be	a	true	
signal	underlying	multiple	PGC	traits.		
	
Application	to	social	science	traits	
	
Application	of	HIPO	to	Social	Science	Genetic	Association	Consortium	studies	reveals	
that	most	of	the	genetic	variation	is	captured	by	HIPO-D1	that	has	an	average	NCP	twice	
larger	than	that	of	HIPO-D2	(Supplementary	Table	7).	The	component	is	negatively	
associated	with	DS	and	NEU	and	is	positively	associated	with	SWB.	The	tail	region	of	QQ	
plot	of	HIPO-D1	lies	close	to	that	of	neuroticism,	but	the	values	of		𝜆m� 	and	average	𝜒:	
are	substantially	larger	for	HIPO-D1	(Figure	1(c)).	HIPO-D1	identifies	12	new	loci	that	are	
not	discovered	by	individual	trait	analysis	of	SSGAC	data	(Table	2),	increasing	the	total	
number	of	genome-wide	significant	loci	from	24	to	36	(Supplementary	Figure	7).		
	
We	examined	evidence	of	replication	of	the	novel	loci	based	on	more	recent	and	larger	
studies	of	DS	and	SWB	that	were	incorporated	in	the	MTAG	analysis36.	As	this	study	
reported	only	a	list	of	top	SNPs	(𝑝 < 1×10{�)	after	stringent	LD-pruning	(𝑟: < 0.1),	we	
could	not	look	up	the	exact	lead	SNPs	that	we	report	for	the	novel	regions	(Table	2).	
Instead,	we	searched	for	SNPs	in	the	top	list	reported	by	MTAG	study	that	could	be	
considered	proxy	(D’>0.75)	for	our	lead	SNPs.	We	found	7	of	the	12	novel	have	such	
proxies	and	these	proxy	SNPs	show	stronger	level	of	association	in	the	more	recent	
MTAG	study	for	at	least	one	of	DS	and	SWB	(Table	3).		
	
Discussion	
	
In	this	report,	we	present	a	novel	method	for	powerful	pleiotropic	analysis	using	
summary	level	data	across	multiple	traits,	accounting	for	both	heritability	and	sample	
size	variations.	Application	of	the	proposed	method	to	three	groups	of	genetically	
related	trait	identifies	a	variety	of	novel	and	replicable	loci	that	were	not	detectable	by	
analysis	of	individual	traits	at	comparable	level	of	confidence.	We	also	conduct	
extensive	simulation	studies	in	realistic	settings	of	large	GWAS	to	demonstrate	the	
ability	of	the	method	to	maintain	type-I	error,	achieve	robustness	to	population	
stratification	and	enhance	detection	of	novel	loci.	The	novel	method	we	introduce	for	
directly	simulating	summary-level	GWAS	statistics,	preserving	expected	correlation	
structure	across	both	traits	and	SNP	markers,	will	allow	rapid	evaluation	of	alternative	
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methods	for	pleiotropic	analysis	in	settings	of	large	complex	GWAS	more	feasible	in	the	
future.	
	
Application	of	the	proposed	method	provides	new	insight	into	the	genetic	architecture	
of	groups	of	related	traits.	For	blood	lipids,	which	have	similar	sample	sizes,	the	average	
NCPs	for	HIPO-D1	and	HIPO-D2	dominate	the	other	two,	suggesting	that	there	are	
perhaps	two	unrelated	mechanisms	through	which	most	genetic	markers	are	associated	
with	the	individual	cholesterol	traits.	For	psychiatric	diseases	and	social	science	traits,	
the	top	HIPO	direction	dominates	the	others,	indicating	that	there	is	perhaps	one	major	
genetic	mechanism	underlying	each	group	of	traits.	However,	given	that	top	HIPO	
direction	down	weights	traits	with	smaller	sample	sizes,	it	is	possible	that	there	exist	
other	independent	genetic	mechanisms	related	to	these	traits	that	could	not	be	
captured	by	the	top	HIPO	component.	Nevertheless,	HIPO,	by	taking	into	account	both	
heritability	and	sample	sizes,	provides	a	clear	guideline	how	many	independent	sets	of	
tests	should	be	performed	across	the	different	traits	to	capture	most	of	the	genetic	
signals.	
	
Earlier	studies	have	proposed	methods	for	association	analysis	in	GWAS	informed	by	
heritability	analysis.	For	analysis	of	multivariate	traits	observed	on	the	same	set	of	
individuals,	the	MaxH34	method	was	proposed	to	conduct	association	analysis	along	
directions	that	maximizes	trait	heritability.	HIPO	allows	a	generalization	of	this	approach	
by	taking	into	account	sample	size	differences	and	overlaps	across	studies	allowing	
powerful	cross-disorder	analysis	using	only	summary-level	data	across	distinct	studies.		
	
Another	closely	related	method	is	MTAG36,	which	also	utilizes	summary	level	data	and	
LD	score	regression	to	estimate	genotypic	and	phenotypic	variance-covariance	matrices.	
MTAG,	however,	performs	association	tests	for	each	individual	trait	by	improving	
estimation	of	the	underlying	association	coefficients	using	cross-trait	variance-
covariance	structure.	In	contrast,	we	propose	finding	optimal	linear	combination	of	
association	coefficients	across	traits	that	will	maximize	the	power	for	detecting	
underlying	common	signals.	The	advantage	of	MTAG	is	that	it	does	associate	the	SNPs	to	
individual	traits	and	thus	has	appealing	interpretation.	However,	strictly	speaking,	
MTAG,	similar	to	HIPO,	is	only	a	valid	method	for	testing	the	global	null	hypothesis	of	no	
association	of	a	SNP	across	any	of	the	traits	and	may	identify	a	SNP	to	be	associated	
with	a	null	trait	while	in	truth	it	is	only	related	to	another	trait	in	the	same	group.	The	
advantage	of	HIPO	is	that	it	directly	focuses	on	optimization	of	power	in	orthogonal	
directions	for	cross-disorder	analysis	and	can	provide	significant	dimension	reduction	
for	analysis	of	higher	dimensional	traits.	
	
There	exists	a	variety	of	methods	for	pleiotropic	analysis30,31,35,38,39	that	aim	to	optimize	
power	for	testing	associations	with	respect	to	individual	SNPs	without	informed	by	
heritability.	The	method	ASSET39,	for	example,	searches	through	different	subsets	of	
traits	to	find	the	optimal	subset	that	yields	the	strongest	meta-analysis	𝑧	statistic	for	
each	individual	SNP.	Methods	like	HIPO	and	MTAG,	which	use	estimates	of	heritability	
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based	on	genome-wide	set	of	markers,	are	likely	to	be	more	powerful	when	the	
underlying	traits	have	strong	genetic	correlation,	such	as	that	observed	for	psychiatric	
disorders.	In	contrast,	methods	such	as	ASSET	may	be	more	powerful	for	analysis	of	
groups	of	traits	that	have	more	moderate	genetic	correlation,	such	as	cancers	of	
different	sites13,	for	detection	of	loci	with	unique	but	insightful	pleiotropic	patterns	of	
association.	There	is	potential	to	develop	intermediate	methods,	which	borrows	
information	across	SNPs	but	in	a	more	localized	manner,	for	example,	based	on	
functional	annotation	information52,53.	
	
In	conclusion,	HIPO	provides	a	novel	and	powerful	method	for	joint	association	analysis	
across	multiple	traits	using	summary-level	statistics.	Application	of	the	method	to	
multiple	datasets	shows	that	it	provides	unique	insight	into	genetic	architecture	of	
groups	of	related	traits	and	can	identify	substantial	number	of	novel	loci	compared	to	
analysis	of	individual	traits.	Further	extension	of	the	method	is	merited	for	facilitating	
more	interpretable	and	parsimonious	association	analysis	across	groups	of	high-
dimensional	correlated	traits.	
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Tables	and	figures	
	
Table	1.	Novel	loci	discovered	at	genome-wide	significance	level	(𝒑 < 𝟓×𝟏𝟎(𝟖)	by	the	first	and	
second	HIPO	components	of	blood	lipid	traits.	Independent	SNPs	were	identified	through	LD-pruning		
with	𝑟,	threshold	of	0.1	and	pruned	SNPs	were	assumed	to	represent	independent	loci	if	they	
are	>0.5Mb	apart.	Loci	are	considered	novel	if	they	are	not	identified	at	genome-wide	significance	level	
through	analysis	of	individual	traits.	For	each	lead	SNP,	p-values	for	association	are	shown	for	HIPO	
components	and	for	individual	traits.	The	directions	of	association	(+/-)	are	also	shown	for	each	of	the	
individual	traits.	
	

SNP	 CHR	 MBP	 Nearest	
Gene	(Distance)	 𝒑𝑳𝑫𝑳	 𝒑𝑯𝑫𝑳	 𝒑𝑻𝑮	 𝒑𝑻𝑪	 𝒑𝑯𝑰𝑷𝑶(𝑫𝟏

	 𝒑𝑯𝑰𝑷𝑶(𝑫𝟐	

HIPO-D1	 	 	 	 	 	 	 	 	 	

rs4850047		 		2		 3.6	 RPS7(+6.244kb)	 2.87e-03	(+)	 1.15e-04	(+)	 8.58e-04	(-)	 2.14e-06	(+)	 1.13e-09	 7.82e-04	

rs2249105		 		2		 65.3	 CEP68(0)	 8.72e-02	(+)	 6.35e-06	(+)	 1.89e-06	(-)	 4.66e-01	(+)	 1.33e-08	 7.92e-01	

rs2062432		 		3		 123.1	 ADCY5(0)	 9.78e-01	(+)	 3.88e-06	(-)	 2.44e-03	(+)	 6.75e-02	(-)	 4.30e-08	 5.52e-01	

rs6855363		 		4		 157.7	 PDGFC(-12.22kb)	 6.44e-01	(-)	 3.20e-07	(+)	 3.18e-04	(-)	 5.89e-01	(+)	 2.27e-08	 5.44e-01	

rs17199964		 		4		 102.7	 BANK1(-3.972kb)	 3.11e-01	(-)	 9.19e-08	(-)	 1.27e-01	(+)	 9.85e-04	(-)	 3.03e-08	 2.43e-02	

rs10054063		 		5		 173.4	 CPEB4(+5.085kb)	 7.00e-01	(-)	 6.13e-04	(-)	 7.72e-07	(+)	 2.67e-01	(-)	 3.69e-08	 7.80e-01	

rs11987974		 		8		 36.8	 KCNU1(+30.17kb)	 7.66e-01	(+)	 3.79e-06	(-)	 1.85e-06	(+)	 7.16e-01	(-)	 3.91e-09	 3.32e-01	

rs740746		 	10		 115.8	 ADRB1(-11.02kb)	 4.32e-01	(-)	 1.09e-06	(-)	 1.61e-03	(+)	 1.07e-01	(-)	 4.21e-08	 5.74e-01	

rs10832027		 	11		 13.4	 ARNTL(0)	 2.53e-02	(+)	 1.52e-07	(+)	 5.73e-07	(-)	 1.87e-02	(+)	 3.88e-12	 3.16e-01	

rs7938117		 	11		 68.6	 CPT1A(0)	 3.69e-01	(-)	 2.05e-07	(-)	 9.49e-06	(+)	 4.01e-02	(-)	 3.35e-11	 5.30e-01	

rs1565228		 	11		 27.6	 BDNF-AS(0)	 2.46e-01	(-)	 3.50e-05	(-)	 3.44e-06	(+)	 7.19e-02	(-)	 2.56e-09	 6.44e-01	

rs661171		 	11		 110.0	 ZC3H12C(0)	 9.06e-03	(+)	 9.84e-07	(+)	 1.77e-01	(-)	 2.70e-06	(+)	 2.58e-08	 2.23e-04	

rs895953		 	12		 122.2	 SETD1B(0)	 7.23e-01	(-)	 1.45e-06	(+)	 3.98e-07	(-)	 5.43e-01	(+)	 2.84e-10	 3.86e-01	

rs2384034		 	12		 113.2	 RPH3A(-24.86kb)	 9.47e-03	(+)	 3.61e-07	(+)	 3.18e-02	(-)	 5.00e-05	(+)	 4.39e-09	 2.51e-03	

rs11048456		 	12		 26.5	 ITPR2(-25.2kb)	 8.65e-02	(-)	 2.93e-07	(-)	 1.59e-03	(+)	 5.74e-02	(-)	 1.75e-08	 3.28e-01	

rs721772		 	15		 41.8	 RPAP1(0)	 5.17e-01	(+)	 2.26e-07	(-)	 4.30e-05	(+)	 7.10e-01	(-)	 4.25e-09	 3.75e-01	

rs11079810		 	17		 46.2	 SKAP1(0)	 1.99e-02	(+)	 1.71e-07	(+)	 2.23e-04	(-)	 9.51e-03	(+)	 4.30e-10	 1.32e-01	

rs4805755		 	19		 32.9	 ZNF507(0)	 9.34e-01	(-)	 5.58e-08	(+)	 4.83e-03	(-)	 9.85e-02	(+)	 7.71e-09	 6.28e-01	

rs10408163		 	19		 47.6	 ZC3H4(0)	 1.47e-01	(-)	 9.99e-07	(+)	 3.20e-07	(-)	 2.70e-01	(-)	 8.87e-09	 1.65e-02	

rs6059932		 	20		 33.2	 PIGU(0)	 1.30e-01	(+)	 5.73e-07	(+)	 6.33e-05	(-)	 6.33e-02	(+)	 1.27e-09	 4.76e-01	

HIPO-D2:	 	 	 	 	 	 	 	 	 	

rs4683438		 		3		 142.7	 LOC100507389(0)	 5.70e-05	(-)	 6.85e-01	(+)	 3.77e-04	(-)	 2.87e-07	(-)	 5.41e-01	 2.99e-08	

rs176813		 		4		 69.6	 UGT2B15(+63.04kb)	 2.62e-05	(+)	 1.75e-01	(+)	 4.23e-04	(+)	 5.68e-08	(+)	 5.62e-01	 8.10e-09	

rs2268719		 		6		 52.4	 TRAM2(0)	 7.52e-07	(-)	 3.08e-01	(+)	 4.14e-02	(-)	 6.66e-08	(-)	 9.39e-01	 2.13e-08	

rs7939352		 	11		 78.0	 GAB2(0)	 2.79e-06	(-)	 9.75e-01	(-)	 5.47e-03	(-)	 2.48e-07	(-)	 9.57e-01	 3.47e-08	

TG:	triglycerides;	TC:	total	cholesterol.	HIPO-D1	and	HIPO-D2:	1st	and	2nd	HIPO	components.	The	weights	for	the	first	and	second	HIPO	components	are:	𝛽89:;(<= =
0.147𝛽D<D − 0.618𝛽8<D + 0.591𝛽KL − 0.469𝛽KM, 𝛽89:;(<, = 0.206𝛽D<D − 0.017𝛽8<D + 0.228𝛽KL + 0.765𝛽KM .
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Table	2.	Novel	loci	discovered	at	genome-wide	significance	level	(𝒑 < 𝟓×𝟏𝟎(𝟖)	by	HIPO-D1	for	social	
science	traits.	Independent	SNPs	are	identified	through	LD-pruning	with	𝑟,	threshold	of	0.1	and	pruned	
SNPs	are	assumed	to	represent	independent	loci	if	they	are	>0.5Mb	apart.	Loci	are	considered	novel	if	
they	were	not	identified	at	genome-wide	significance	level	through	analysis	individual	traits.	For	each	
lead	SNP,	p-values	for	association	are	shown	for	HIPO	components	and	for	individual	traits.	The	
directions	of	association	(+/-)	are	also	shown	for	each	of	the	individual	traits.	
	
SNP		 CHR	 MBP	 Nearest	

Gene	(Distance)	 𝒑𝑫𝑺	 𝒑𝑵𝑬𝑼	 𝒑𝑺𝑾𝑩	 𝒑𝑯𝑰𝑷𝑶(𝑫𝟏	

HIPO-D1	 	 	 	 	 	 	 	

	rs2874367*		 1	 21.3	 EIF4G3(0)	 6.33e-05	(-)	 6.33e-05	(-)	 6.33e-05	(+)	 1.38e-08	

rs11100449*		 4	 141.0	 MAML3(0)	 1.47e-05	(-)	 6.33e-05	(-)	 6.33e-05	(+)	 8.02e-09	

rs10475748*		 5	 164.6	 NA	 1.47e-05	(-)	 5.73e-07	(-)	 1.96e-02	(+)	 1.90e-08	

rs6919210		 6	 70.6	 COL19A1(0)	 1.15e-03	(-)	 5.73e-07	(-)	 1.77e-04	(+)	 1.88e-09	

rs6569095		 6	 120.3	 NA	 8.58e-04	(+)	 2.14e-05	(+)	 1.47e-05	(-)	 5.94e-09	

rs210899*		 6	 11.7	 ADTRP(0)	 1.10e-01	(+)	 2.03e-06	(+)	 6.33e-05	(-)	 3.61e-08	

rs2396726		 7	 114.0	 FOXP2(0)	 1.77e-04	(+)	 3.06e-06	(+)	 8.58e-04	(-)	 1.04e-08	

rs12701427*		 7	 4.2	 SDK1(0)	 1.15e-03	(-)	 1.47e-05	(-)	 6.33e-05	(+)	 1.28e-08	

rs9584850*		 13	 99.1	 FARP1(0)	 6.33e-05	(-)	 1.52e-07	(-)	 8.58e-04	(+)	 6.50e-10	

rs11644362		 16	 13.0	 SHISA9(-1.379kb)	 2.70e-03	(-)	 2.46e-04	(-)	 3.06e-06	(+)	 3.73e-08	

rs7239568		 18	 52.0	 C18orf54(+56.37kb)	 5.96e-03	(-)	 2.14e-05	(-)	 9.64e-08	(+)	 8.17e-10	

rs1261093*		 18	 52.9	 TCF4(0)	 8.58e-04	(+)	 9.64e-08	(+)	 2.70e-03	(-)	 3.92e-09	

DS:	depressive	symptoms;	NEU:	neuroticism;	SWB:	subjective	well-being.	HIPO-D1:	1st	HIPO	component.	Weights	for	HIPO-D1:	𝛽89:;(<= = −0.247𝛽<V −
0.607𝛽WXY + 0.588𝛽VZ[ .	NA	in	the	Nearest	Gene	column	means	there	is	no	gene	within	200kb	of	the	SNP.	SNPs	marked	by	*	indicate	underlying	loci	show	
evidence	of	replication	in	the	larger	data	set	used	in	the	MTAG	paper	(see	Table	3).	
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Table	3.	Evidence	of	replication	of	novel	loci	identified	by	HIPO	analysis	for	social	science	
traits	in	subsequent	larger	studies	of	DS	and	SWB.	Reported	are	P-values	for	proxy	SNPs	
(D’	>	0.75)	for	individual	trait	associations	in	SSGAC	data	and	the	more	recent	MTAG	study.	
Novel	loci	are	identified	through	analysis	of	SSGAC	which	include	studies	of	DS	and	SWB	with	
sample	sizes	Neff=161,460	and	N=298,420,	respectively.	The	MTAG	study	includes	an	expanded	
set	of	sample	with	Neff=354,862	and	N=388,538	for	DS	and	SWB,	respectively.		
	

Lead	SNP	in	
Novel	Loci	

Proxy	SNP	
Reported	in	
MTAG	Study	

D’	
Individual	Trait	

p-value	in	
SSGAC	

Individual	Trait	
p-value	in	

MTAG	Study	
DS	 	 	 	 	

rs11100449	 rs1877075	 0.78	 2.00e-06	 1.10e-06	

rs10475748	 rs10045971	 0.99	 4.51e-02	 1.17e-09	

rs12701427	 rs4723416	 0.91	 1.59e-03	 1.17e-06	

rs9584850	 rs4772087	 1.00	 2.42e-03	 1.04e-06	

rs1261093	 rs11876620	 0.82	 1.58e-04	 4.45e-08	

SWB	 	 	 	 	

rs2874367	 rs12125335	 1.00	 NA	 7.09e-08	

rs11100449	 rs769664	 0.79	 3.18e-03	 4.59e-07	

rs210899	 rs10947543	 0.93	 NA	 3.10e-08	

DS:	depressive	symptoms;	NEU:	neuroticism;	SWB:	subjective	well-being.	NA	indicates	that	
the	proxy	SNP	is	not	present	in	the	SSGAC	data.	
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Figure	1.	QQ	plots	for	individual	traits	and	underlying	HIPO	components	across	blood	lipids,	
psychiatric	diseases,	social	science	traits.	Blood	lipid	traits	include	HDL,	LDL,	triglycerides	(TG)	and	total	
cholesterol	(TC).	Psychiatric	diseases	include	autism	spectrum	disorder	(ASD),	ADHD,	bipolar	disorder	
(BIP),	major	depressive	disorder	(MDD)	and	schizophrenia	(SCZ).	Meta-analysis	QQ	plot	is	also	included	
for	psychiatric	diseases	(in	green).	Social	science	traits	include	depressive	symptoms	(DS),	neuroticism	
(NEU)	and	subjective	well-being	(SWB).	Genomic	control	factors	and	average	𝜒,	statistics	are	shown	in	
the	legend.	
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