ABSTRACT
Background The advancement in automated image based microscopy platforms coupled with high throughput liquid workflows has facilitated the design of large scale screens utilizing multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high throughput approaches.
Results In C. elegans, non-conditional lethal mutations can be maintained in heterozygosis using chromosome balancers, commonly labelled with GFP in the pharynx. Moreover gene-expression is typically monitored by the use of fluorescent reporters marked with the same fluorophore. Therefore, the separation of the different populations of animals at early larval stages represents a challenge. Here, we develop a sorting strategy capable of selecting homozygous mutants carrying a GFP stress reporter from GFP-balanced animals at early larval stages. Because sorting is not completely error-free, we develop an automated high-throughput image-analysis protocol that identifies and discards animals carrying the chromosome balancer. We demonstrate the experimental usefulness of combining sorting of homozygous lethal mutants and automated image-analysis in a functional genomic RNAi screen for genes that genetically interact with mitochondrial prohibitin (PHB). Lack of PHB results in embryonic lethality, while, homozygous PHB deletion mutants develop into sterile adults due to maternal contribution and strongly induce the mitochondrial unfolded protein response (UPRmt). In a chromosome-wide RNAi screen for C. elegans genes having human orthologues, we uncover both, known and new PHB genetic interactors affecting the UPRmt and growth.
Conclusions A systematic way to analyse genetic interactions of essential genes in multicellular organisms is lacking. The method presented here allows the study of balanced lethal mutations in a high-throughput manner and can be easily adapted depending on the user’s requirements. Therefore, it will serve as a useful resource for the C. elegans community for probing new biological aspects of essential nematode genes as well as the generation of more comprehensive genetic networks.