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One Sentence Summary:  

Matching genetics with phenotypes in 800,000 individuals predicts efficacy and on-target safety of future 

drugs. 

 

Abstract: 

Phenome-wide association studies (PheWAS), which assess whether a genetic variant is associated 

with multiple phenotypes across a phenotypic spectrum, have been proposed as a possible aid to 

drug development through elucidating mechanisms of action, identifying alternative indications, 

or predicting adverse drug events (ADEs). Here, we evaluate whether PheWAS can inform target 

validation during drug development. We selected 25 single nucleotide polymorphisms (SNPs) 

linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common 

disease therapeutic indications. We independently interrogated these SNPs through PheWAS in 

four large “real-world data” cohorts (23andMe, UK Biobank, FINRISK, CHOP) for association 

with a total of 1,892 binary endpoints. We then conducted meta-analyses for 145 harmonized 

disease endpoints in up to 697,815 individuals and joined results with summary statistics from 57 

published GWAS. Our analyses replicate 70% of known GWAS associations and identify 10 novel 

associations with study-wide significance after multiple test correction (P<1.8x10-6; out of 72 

novel associations with FDR<0.1). By leveraging directionality and point estimate of the effect 

sizes, we describe new associations that may predict ADEs, e.g., acne, high cholesterol, gout and 

gallstones for rs738409 (p.I148M) in PNPLA3; or asthma for rs1990760 (p.T946A) in IFIH1. We 

further propose how quantitative estimates of genetic safety/efficacy profiles can be used to help 

prioritize candidate targets for a specific indication. Our results demonstrate PheWAS as a 

powerful addition to the toolkit for drug discovery. 
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[Main Text:] 

INTRODUCTION 

The discovery and development of novel therapeutics is difficult. It may take 15 years to advance 

a new molecular entity from therapeutic hypothesis to approval, with development costs in the 

billion dollar range and only 10% chance of a new drug tested in humans eventually getting 

approval1. Two reasons stand out to explain the high failure rate of clinical trials and receding 

return on R&D investment across the pharmaceutical industry: A lower efficacy of the compound 

in the targeted disease population than anticipated from preclinical studies; and the occurrence of 

unintended drug effects, particularly mechanism-based adverse drug events (ADEs) uncovered 

only in late-stage clinical trials2. A greater understanding of human data relevant to the drug target 

at early stages of drug development is generally considered to increase the probability of success1, 

3, 4. 

Resources that systematically capture biomedical information on vast numbers of individuals are 

revolutionizing our ability to understand the complexities of human biology and morbidity. 

Electronic health records (EHRs) and similar “Real-World Data” (RWD) have rapidly become 

well-established tools for epidemiological and post-marketing research5, 6. Recently, a surge of 

initiatives have sought to link such phenotype resources with genome-scale genetic data in order 

to gain further insights into the genetics of common diseases7, 8, 9, 10, 11, 12, 13, 14. 

An attractive approach for such genotype-phenotype resources to help accelerate drug 

development is through Phenome-Wide Association Studies (PheWAS). PheWAS are an unbiased 

approach to test for associations between a specific genetic variant and a wide range of phenotypes 

in large numbers of individuals7, 15. By exploring the associations of a genetic variant that impacts 

the function of a drug target gene, PheWAS in RWD cohorts may enrich the drug discovery 
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process for five reasons: 1) association studies in RWD cohorts may validate target-disease links 

in cohorts that more closely resemble the “real-world”, i.e. the patients that will ultimately receive 

a drug16; 2) by unraveling pleiotropy, PheWAS may improve our understanding of the biological 

functions of a target, or hint at concealed pathophysiological connections between disease entities 

previously considered as distinct17, 18; 3) PheWAS may reveal opportunities for drug repurposing, 

an attractive alternative to de novo drug development19, 20; 4) PheWAS may point to phenotypes 

that associate with an inverse directionality of target function, thus unravelling potential ADEs at 

very early stages of a developmental program, minimize risks to trial participants, and help define 

the most appropriate patient populations to benefit from a drug20; 5) through quantitative estimates 

from genetic safety and efficacy profiles, PheWAS may help prioritize multiple possible targets 

by identifying the target with the most promising therapeutic window. Despite these benefits the 

ability for PheWAS to substantially add to the decision making in drug development is thwarted 

by the difficulty to obtain and systematize comprehensive genotypes and phenotypes across very 

large numbers of individuals. 

Here, we have tested the hypothesis that PheWAS can inform target validation at early stages of 

drug development. We selected candidate drug targets across a range of therapeutic indications 

based on their support from genome-wide association studies (GWAS). To maximize power, we 

mapped a large spectrum of clinical endpoints from four of the world's largest RWD population 

cohorts and conducted association testing in up to 697,815 individuals. Our results show that 

PheWAS, despite limitations, enrich drug discovery with valuable information.  
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RESULTS 

Assessing pleiotropy for SNPs in/near 19 drug targets through meta-analyses across four 

Real-World Data cohorts 

In this study, we queried the literature for genes nominated through GWAS as putatively causally 

linked to the risk for common complex human diseases and supported by various degrees of 

additional genetic or biological evidence. We selected 19 genes that, based on previously described 

genetic associations with either immune-mediated (9 genes: ATG16L1, CARD9, CD226, CDHR3, 

GPR35, GPR65, IFIH1, IRF5, TYK2), cardiometabolic (8 genes: F11, F12, GDF15, GUCY1A3, 

KNG1, LGALS3, PNPLA3, SLC30A8) or neurodegenerative diseases (2 genes: LRRK2, 

TMEM175), were evaluated as potential novel drug targets. Gene-disease associations had been 

established through 25 common lead single nucleotide polymorphisms (SNPs) that all reached a 

conservative level of statistical significance (P<5x10-8) for association in GWAS with at least one 

phenotype of relevance to drug discovery and development (Table S1). All of these SNPs have 

either been demonstrated to impact the target gene in functional studies (genetic evidence), or 

locate proximal to a gene implicated in a biological mechanism related to the GWAS phenotype 

(biological evidence). Our selection ranged from targets with little biological knowledge beyond 

GWAS nomination (e.g. TMEM175 for Parkinson’s disease) to targets with drug candidates in 

early clinical trials (e.g. F11 for thromboembolism). Details on the genetic and biological support 

for all selected genes and SNPs is provided in Supplementary Information. 

 

To broadly investigate pleiotropic effects of the 25 chosen SNPs in a maximal number of 

individuals, we interrogated four large RWD cohorts that link genome-wide genotype data from 

individuals of European ancestry with extensive phenotypic data: the 23andMe Inc. cohort with 
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self-reported phenotypes on 671,151 research participants21, the interim UK Biobank cohort 

analyzed by Genomics plc with questionnaire-based health information on 112,337 participants 

(from the first genetic data release in May 2015)10, and two EHR-based cohorts from an adult 

Finnish cohort (FINRISK; 21,371 participants)22 and from a pediatric healthcare population from 

the Children’s Hospital of Philadelphia (CHOP; 12,044 patients)23 (Table 1 and Methods). All 

four cohorts contributed phenotypic data in different formats (medical interviews, self-reports, 

WHO ICD codes, or ICD9-CM codes) in both shared and distinct phenotype categories (Fig. 1A). 

Together, the four RWD cohorts allowed association testing for a total of 1,892 binary endpoints. 

Manual phenotype mapping identified 145 distinct clinical endpoints that could be reliably 

harmonized across two or more cohorts, enabling meta-analyses in up to 697,815 individuals (Fig. 

1B and Table S2). As illustrated in Fig. 1C, these 145 mapped phenotypes represent a broad 

spectrum of disease categories and, as typically observed in RWD, show significant variability in 

the case:control ratios, both within and between cohorts. 

 

Association testing in RWD cohorts validates known GWAS signals 

We first evaluated whether association testing in the four RWD cohorts (referred to as 'RWD 

PheWAS') replicated established results from published GWAS. GWAS had associated the 25 

tested SNPs with genome-wide significance to 58 binary disease endpoints. Of these, 30 endpoints 

were ascertained with adequate power (beta ≥0.8) to reach FDR<0.1 (P<3.8x10-4) in the RWD 

cohorts. We observed that 21 of the 30 (70%) powered GWAS associations replicated (FDR<0.1) 

in our RWD PheWAS meta-analysis (Fig. S1 and Table S3). As expected from data obtained in 

real-world settings, the replication rate of known associations was highly disease-dependent. For 

instance, out of the 9 associations that failed to replicate despite sufficient case numbers in the 
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cohorts, 6 were associations with inflammatory bowel disease (IBD), Crohn’s disease (CD) or 

ulcerative colitis (UC), likely reflecting suboptimal ascertainment of these endpoints in real-world 

settings. Nonetheless, the high replication rate of previously reported associations demonstrates 

the power of combining disease-agnostic RWD cohorts from various sources to detect and validate 

true SNP-disease associations, and to substantiate therapeutic hypotheses.  

 

Meta-PheWAS across RWD cohorts identify novel SNP-endpoint associations 

We next investigated whether meta-PheWAS across the four RWD cohorts could identify novel 

associations to support the proposed clinical indication, suggest alternative indications for drug 

repositioning, or uncover potential target-related ADEs. To improve statistical power in this 

analysis, the RWD meta-PheWAS results were further combined with summary statistics from 

published GWAS studies of 34 diseases available from a larger database assembled and 

harmonized by Genomics plc (referred to as Genomics plc GWAS, Supplementary Information). 

Overall, 27,763 association tests (across 145 harmonized and 1,538 cohort-specific endpoints) 

resulted in 10 putative novel associations reaching study-wide significance after Bonferroni 

correction (P<1.8x10-6) (Table 2). Using a less stringent significance threshold of FDR<0.1 

(P<7x10-4) previously applied in PheWAS24, we identified 72 distinct putative novel associations 

(Fig. 2, Fig. S2, Table S4 and Supplementary Datasheet). Forty-four of these putative novel 

associations showed directions of effect consistent with the proposed clinical indication for a drug 

and may hint at potential repositioning opportunities. Conversely, 27 showed directions of effect 

opposite to the proposed clinical indication and may suggest safety signals that could endanger 

therapeutic success and warrant monitoring for in preclinical models and clinical trials. 
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Apparent pleiotropy and endpoint co-morbidities challenge target validation through 

PheWAS 

A challenge to the PheWAS approach is to reliably distinguish true pleiotropic associations of a 

SNP (or SNPs in strong LD with the lead SNP), suggesting a shared causal mechanism, from 

unrelated associations driven by independent SNPs at a locus17. For instance, in our meta-

PheWAS, the putative association of rs2274273 near LGALS3 (encoding the galactin-3 protein) 

with Parkinson’s disease (PD) (OR=0.94, P=1x10-4) likely reflects a distinct causal mechanism 

previously attributed to GCH125. rs2274273 is a protein quantitative trait locus (pQTL) that 

controls plasma levels of galectin-326. Through a Bayesian test for co-localization using summary 

statistics from published GWAS studies27, 28, we excluded rs2274273 as a causal SNP for PD 

(posterior probability for a shared variant leading the PD and galectin-3 levels associations = 

0.0008%) (Fig. S3). 

A second challenge to PheWAS is the existence of common co-morbidities among endpoints, or 

alternatively an insufficient distinction between phenotypes18. In our meta-PheWAS, rs17724992 

near GDF15 showed association with multiple cardiovascular-related phenotypes, which is likely 

mediated by the known association of this SNP with body mass index (BMI)29, an established risk 

factor for cardiovascular disease30. This is supported by the lack of association of rs17724992 with 

coronary artery disease (CAD) in the large GWAS published by the CARDIoGRAMplusC4D 

consortium (P=0.17)31. Follow-up customized association analyses adjusting for specific 

phenotypic covariates are required to distinguish true pleiotropic effects and inform target 

validation. 

In summary, these two examples demonstrate that thorough investigation of association results can 

reduce biases introduced through PheWAS. 
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Pleiotropy of rs738409 (p.I148M) predicts a risk for multiple potential ADEs upon inhibiting 

PNPLA3  

Among the 10 study-wide significant associations, our meta-PheWAS revealed multiple novel 

associations for the PNPLA3 missense SNP rs738409 (p.I148M). The rs738409-G allele has 

previously been reported as associated with an increased risk for non-alcoholic fatty liver disease 

(NAFLD), alcohol-related cirrhosis and hepatic steatosis, as well as elevated alanine 

aminotransferase (ALT) levels, most likely through a gain-of-function (GOF) mechanism 

(Supplementary Information). Consistent with these findings, our meta-PheWAS found 

rs738409-G to be associated with elevated liver tests (OR=1.25, P=4x10-45) (Fig. S4). Beyond that, 

our analysis also indicated that carriers of the rs738409-G allele that increases ALT are more prone 

to develop liver toxicities when treated with nonsteroidal anti-inflammatory drugs (NSAIDs) such 

as ibuprofen (OR=1.43, P=4.6x10-5) or aspirin (OR= 1.57, P=5.3x10-5). In addition, the meta-

PheWAS revealed significant associations between rs738409-G and an increased risk of T2D 

(OR=1.08, P=8x10-11), as well as a decreased risk for acne (OR=0.90, P=1.5x10-11), high 

cholesterol (OR=0.96, P=1.6x10-7) or the intake of cholesterol-lowering medications (OR=0.97, 

P=2x10-4), gout (OR=0.92, P=4.1x10-5), and gallstones (OR=0.95, P=2.7x10-4). All these 

associations remained prominent after adjusting for elevated liver tests (Table S5). Associations 

of rs738409-G with T2D and high cholesterol were supported by independent recent data from the 

GoT2D 82k exome chip study (OR=1.06, P=7.7x10-5) and the LDL GLGC 300K exome chip study 

(Beta =-0.018, P=1 x10-8), where fine-mapping confirmed rs738409 to be the most likely causal 

SNP32, 33. Taken together, our PheWAS results support the hypothesis that therapeutic inhibition 

of PNPLA3 could treat liver diseases. They also support T2D as a potential alternative indication 
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for PNPLA3 inhibition. However, concomitant inverse associations with multiple other endpoints, 

including acne and high plasma cholesterol levels, indicate potential clinically relevant on-target 

ADEs that should be considered in decisions to progress PNPLA3 inhibitors towards clinical 

development. 

 

IFIH1 partial loss-of-function increases the genetic risk for asthma 

As another example of pleiotropic effects identified in our meta-PheWAS, carriers of the IFIH1 

(encoding MDA5) rs1990760-C allele (MAF=40%) have an established lower risk for several 

autoimmune diseases (type 1 diabetes, T1D; vitiligo; systemic lupus erythematosus, SLE; 

psoriasis) and an increased risk for ulcerative colitis (UC) (Supplementary Information). 

Functional studies suggest that rs1990760-C (p.T946A) causes IFIH1 loss-of-function (LOF), and 

additional IFIH1 LOF alleles have been shown to protect against T1D, vitiligo, psoriasis and 

psoriatic arthritis (PsA) (Supplementary Information). Our meta-PheWAS support these 

associations (Fig. 2 and Table S3). Importantly, we also found a significant novel association 

between rs1990760-C and increased risk for asthma (OR=1.04, Pmeta=9.0x10-8) (Fig. 3A). The 

association between rs1990760 and asthma was supported by data from all four RWD cohorts as 

well as the GABRIEL and EVE asthma GWAS cohorts (ORmeta=1.04, Pmeta=6.5x10-8)34, 35, despite 

lack of power to detect an association with rs1990760 in the published GWAS cohorts alone (Fig. 

3B). This association remained significant after adjustment for autoimmune diseases in the 

23andMe cohort, demonstrating that the asthma association is independent of the previously 

established associations of rs1990760 with autoimmunity (Table S6). Co-localization analysis 

confirmed that the same SNP was responsible for the SLE, UC and asthma associations at the 

locus, supporting true pleiotropic effects driven by the same causal variant(s) (Fig. 3C). The 
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observed IFIH1 pleiotropic effects were further strengthened by the observation in the Genomics 

plc UK biobank data that the independent low-frequency IFIH1 missense allele p.I923V 

(rs35667974-C, MAF=1.8%), previously reported to result in IFIH1 LOF and to protect against 

T1D, vitiligo, psoriasis, and PsA, and to increase risk of UC, was also associated with increased 

risk of asthma (OR= 1.18, P = 1.1x10-4), appearing as the top asthma-associated SNP at the locus 

(Fig. 3D and Fig. S5). Together, these and previous findings establish IFIH1 as a gene with an 

“allelic series”36 and further support the therapeutic hypothesis that inhibition of MDA5 may 

protect against autoimmune disease. However, our results also reveal the potential of MDA5 

inhibitors to cause pulmonary ADEs and strengthen previous findings for an increased risk for 

colitis-related symptoms, endpoints that may limit the therapeutic window of MDA5 modulators 

and should be considered for monitoring in clinical trials. 

 

Genetic efficacy and safety signals assist target prioritization for thromboembolism 

Beyond informing on individual genes, we hypothesized that PheWAS might help prioritize targets 

among several candidates within a biological pathway. Factors XI, XII and plasma kininogen 

(encoded by KNG1) are members of the contact activation coagulation pathway37. Anti-

coagulation therapies directed against these factors are hypothesized to have improved therapeutic 

windows over current standard-of-care, which is accompanied by significant bleeding liabilities38. 

With the aim to estimate genetic risk-benefit profiles for the three candidate targets, we chose to 

interrogate three uncorrelated SNPs at the F11, KNG1 and F12 loci. These three SNPs had similar 

allele frequencies in Europeans, had previously been shown to impact FXI, FXII and/or KNG1 

mRNA and/or protein levels, and are associated with activated partial thromboplastin time (aPTT), 

a biomarker of blood clotting, or venous thromboembolism (VTE), risk (Supplementary 
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Information and Table S1). Carriers of the rs4253399-T allele, which reduces circulating FXI 

levels and increases aPTT, showed an expected lower risk for blood clots (OR=0.84, P=3.5x10-

25), but no evidence for association with bleeding tendency (OR=1.04, P=0.35) (Fig. 4). In contrast, 

carriers of the KNG1 allele rs5030062-A, which reduces plasma kininogen as well as circulating 

FXI, and inceases aPTT, showed both reduced blood clotting (OR=0.93, P=1.6x10-4) as well as 

increased bleeding liability (OR=1.14, P=4.1x10-4). A nominal association with both traits was 

found in carriers of the FXII levels-reducing and aPTT-increasing allele rs2731672-T (blood clots: 

OR=0.96, P=0.034; bleeding tendency: OR=1.09, P=0.039). By comparing these results with the 

effect of the three SNPs on aPTT (Table S1), our study suggests that, among the three factors 

tested, targeting FXI may yield the best compromise between thromboembolism risk reduction 

and increased bleeding liability, which is consistent with the outcomes of a recent phase 2 clinical 

trial39. 
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DISCUSSION 

Our study investigates the utility of PheWAS for predicting therapeutic success of candidate drug 

targets nominated through human genetics. We focused on a selection of loci that GWAS have 

firmly established as associated with common immune-mediated, cardio-metabolic, or 

neurodegenerative human diseases, and where additional biological or genetic evidence supports 

candidate drug target genes within these loci as likely causing the disease associations. We 

analyzed SNPs impacting these targets for association with 1,683 disease endpoints captured in 

four large disease-agnostic “real-world” population cohorts that link genome-wide genotypes with 

various types of structured health information. Our PheWAS meta-analysis replicates 70% of the 

published GWAS associations at FDR<0.1, substantially surpassing performance of previous 

PheWAS in smaller cohorts24. Through joining PheWAS results with published GWAS data, we 

identified 10 novel SNP-phenotype associations that exceeded stringent significance thresholds 

for multiple test correction, as well as additional putative associations with therapeutically relevant 

clinical endpoints. For a subset of prominent early drug targets, our results support previous 

genetic evidence for efficacy in distinct common disease indications. Our analysis further proposes 

alternative indications as opportunities for drug repositioning, and predicts on-target adverse drug 

events that may warrant preclinical or clinical monitoring. 

 

Among others, we discovered novel associations for p.I148M in PNPLA3. This is a common gain-

of-function missense allele increasing the risk for a range of liver phenotypes, which suggested 

that pharmaceutical inhibition of PNPLA3 could be a viable strategy to treat or prevent liver 

diseases. While our PheWAS support this hypothesis and further expand the indication spectrum 

of a putative PNPLA3 inhibitor to T2D, they also uncovered associations with severe acne and 
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high cholesterol, phenotypes that if observed only during a clinical trial might put a therapeutic 

program at risk.  

 

We also identified a novel association of the IFIH1 loss-of-function allele rs1990760-C (p.T946A) 

with risk of asthma. The rs1990760-C allele, which protects against autoimmune diseases and 

increases risk of ulcerative colitis, has been shown to decrease interferon (IFN) signaling and lower 

resistance to viral challenge40, while complete loss-of IFIH1 function makes children susceptible 

to severe viral respiratory infections41, 42. The association of rs1990760-C with increased risk of 

asthma discovered in our meta-PheWAS is consistent with the observation that bronchial epithelial 

cells from asthmatics produce lower amounts of IFN-β during viral infections43, a finding that lead 

to inhaled IFN-β being tested in phase 2 clinical trials for the treatment of virus-induced asthma 

exacerbation44. Future studies will need to investigate the risk:benefit ratio of modulating MDA5 

(encoded by IFIH1) for asthma relative to autoimmune disease. 

 

While our study illustrates the power of systematically interrogating RWD cohorts to enrich target 

validation, it also emphasizes several opportunities to improve existing resources in order for 

PheWAS to become a routine tool in drug discovery and development. First, truly large, 

thoroughly phenotyped cohorts will be needed to adequately power PheWAS. Despite our study 

being conducted in more than 800,000 individuals, about one third of GWAS associations could 

not be replicated in the RWD cohorts at a stringent level of statistical significance due to an 

insufficient number of cases. In addition, PheWAS should considerably gain from improved 

ascertainment of phenotypes45. In our study, this is best reflected by an only modest replication 

rate, despite adequate power, for CD, UC and IBD endpoints that are closely related and difficult 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 13, 2017. ; https://doi.org/10.1101/218875doi: bioRxiv preprint 

https://doi.org/10.1101/218875


 

	 16	

to discern in routine clinical settings. To better take these considerations and other characteristics 

of RWD cohorts (typical case:control ratio unbalance between phenotypes, and phenotype 

correlation) into account, novel statistical methods will be needed to better define significance 

thresholds and control type I error rates in PheWAS46. Second, our study highlights the challenge 

to systematically combine phenotypes from independent RWD cohorts. While we introduce the 

concept of “meta-PheWAS” and demonstrate that mapping phenotypes to interrogate independent 

PheWAS cohorts may considerably strengthen association signals, standardized terminology, 

automated phenotype extraction, and coordinated data management across healthcare institutions 

such as within the eMERGE network should help with better harmonization across cohorts in the 

future9, 47. A third challenge to the PheWAS approach is inherent to the current limitations of 

human genetics. Even when starting from a highly-annotated set of loci as in our study, PheWAS 

may lead to spurious associations that can only be ruled out through thorough follow-up17. We 

demonstrate this at the example of LGALS3 and Parkinson's disease. Access to genome-wide 

association results for systematic fine-mapping and co-localization analyses, functionalization of 

GWAS loci and the emergence of association data for intermediate phenotypes, e.g. at the protein 

level, will be needed to help narrow the gap between SNPs and candidate target genes in the future. 

Finally, a fourth challenge to broadly use PheWAS for drug development is to relate findings from 

germline variants that impact a target across an individual’s entire lifetime to success of an 

interventional trial with much shorter observation periods. In the end, many decisions to pursue or 

discontinue a therapeutic program may remain dependent on the specific risk/benefit ratio that 

quantitative genetics as applied here may help to predict, and the level of unmet clinical need. 
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Taken together, our study highlights PheWAS as a highly promising, yet largely untapped 

opportunity to use disease-agnostic “real world” cohorts for drug target validation. We provide 

several examples that illustrate PheWAS as a powerful strategy to help predict efficacy and 

unintended drug effects, which should ultimately help to develop better drugs. Whether PheWAS 

may truly impact decision-making during drug development will only become evident with either 

the emergence of ADEs in trials that genetics could have predicted, or reduced safety-related 

attrition rates for portfolios enriched in targets nominated through human genetics. The growing 

number of large-scale population cohorts that link genetic with extensive clinical data, together 

with an increased willingness across the borders of academia, biotech and the pharmaceutical 

industry to collaborate and share data, will provide opportunities to demonstrate that. 
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MATERIALS AND METHODS 

 

SNP selection 

In this study, we selected 25 SNPs that were significantly associated (P<5x10-8) in published 

GWAS with binary or quantitative phenotypes related to three main therapeutic areas: 

(auto)immune, cardiometabolic, or neurodegenerative diseases (Supplementary Information). 

These 25 SNPs had either been functionally validated in published studies, establishing the 

candidate target gene as causal for the risk of disease, or they were located within or near genes 

for which previous studies had generated convincing biological evidence to be of relevance for the 

respective clinical endpoint. The 25 SNPs were linked to 19 genes that were evaluated as candidate 

drug targets. Detailed information on the SNPs, candidate causal genes and their link to common 

human disease is provided in Supplementary Information. The list of SNPs and their known 

associated phenotypes is provided in Table S1.  

 

Study cohorts 

We interrogated four large observational disease-agnostic RWD cohorts of subjects of European 

ancestry with genome-wide genotyped data linked to extensive phenotypic information (Table 1). 

All participants included in each of the four cohorts were unrelated individuals of European 

ancestry. Individual-level data from each cohort was analyzed independently, and the relevant 

summary statistics for the 25 SNPs were shared for further analysis. We restricted all cohorts to 

binary disease phenotypes with at least 20 cases per cohort.  

 1) 23andMe: The 23andMe cohort comprised up to 671,151 participants and 654 binary disease 

endpoints derived from questionnaire-based self-reports21. Participants were restricted to a set of 
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individuals who have >97% European ancestry, as determined through an analysis of local 

ancestry using a support vector machine (SVM) and a hidden Markov model (HMM) to assign 

individuals to one of 31 reference populations. A maximal set of unrelated individuals was chosen 

for each phenotype using a segmental identity-by-descent (IBD) estimation algorithm. Individuals 

were defined as related if they shared more than 700 cM IBD, including regions where the two 

individuals share either one or both genomic segments identical-by-descent. SNPs with Hardy-

Weinberg equilibrium P<10−20, call rate < 95%, or with large allele frequency discrepancies 

compared to European 1000 Genomes reference data were excluded. Participant genotype data 

were then imputed against the September 2013 release of 1000 Genomes Phase1 reference 

haplotypes48, using an internally developed phasing tool, Finch, which implements the Beagle 

haplotype graph-based phasing algorithm49, and Minimac250. 

2) Genomics plc UK Biobank: The Genomics plc analysis of UK biobank cohort (referred to as 

‘Genomics plc UK Biobank’) comprised 112,337 participants and 90 binary disease endpoints 

derived from questionnaire-based self-reports and medical interviews10. GWAS analyses were 

performed by Genomics plc using the interim data release (May 2015). QC followed the 

recommendations provided by UK Biobank. European ethnicity was defined as self-reported 

"white British" ethnic background, and confirmed by principal component analysis clustering. 

Samples with relatives (3rd degree or closer) were excluded. Imputation was carried out by the 

UK Biobank data providers using SHAPEIT351, IMPUTE352, and a reference panel combining the 

1000 Genomes Phase 353 and UK10K datasets54. 

3) FINRISK: FINRISK is a collection of cross-sectional population surveys carried out since 1972 

to assess the risk factors of chronic diseases and health behavior in the working age population of 

Finland22. The FINRISK cohort comprised 21,371 Finnish participants and 269 binary disease 
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endpoints derived from ICD codes grouping in Finnish national hospital registries and cause-of-

death registry, and drug reimbursement and purchase registries. The FINRISK samples were 

genotyped using Illumina CoreExome, OMNIExpress, and 610K chips. After gender check, 

samples with genotype missing rate >5% or excess herozygosity (>4SD) were excluded. SNPs 

QC, including exclusion of SNPs with genotype missing rate >2%, minor allele frequency <1%, 

or Hardy-Weinberg equilibrium P value <1x10-6, was performed for each genotyping chip 

separately. Multidimensional scaling (MDS) components were estimated with PLINK v1.955 from 

the LD-pruned genotype data where relatives with pi-hat>0.2 had been removed. Samples with 

non-Finnish ancestry observed as MDS outliers were removed. Imputation was performed with 

SHAPEIT51 and IMPUTE252 using a reference panel combining information from the 1000 

Genomes phase 353 and 1,941 Finnish SiSu whole genome sequences56. Imputation was stratified 

based on genotyping chip. 

4) CHOP: The cohort from the Children’s hospital of Philadelphia (CHOP) comprised 12,044 

pediatric patients and 870 binary disease endpoints derived from ICD9–CM codes using the ICD9-

to-PheWAS codes mapping described by Denny et al23, 57. Subjects included in the CHOP 

PheWAS were genotyped on one of the following genotyping chips following the Illumina 

standard protocols: Illumina Human610-Quad version 1, Illumina 550K SNP array, or Illumina 

OmniExpress array. Samples with genotype call rate above 95% were included in the study. SNPs 

with genotype missing rate >5%, minor allele frequency <1%, and Hardy-Weinberg equilibrium 

P value <0.00001 were excluded. Principle component analysis (PCA) was performed using 

EIGENSTRAT58 on approximately 130,000 SNPs that had been pruned for linkage disequilibrium 

using PLINK v1.0755 and reference genotypes from the HapMap consortium59. Imputation was 
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performed with SHAPEIT v251 and IMPUTE252 using the 1000 Genomes project phase 1 reference 

panel48. SNPs with with INFO scores <0.9 were excluded.  

All the participants in the 23andMe, Genomics plc UK Biobank, FINRISK and CHOP cohorts 

provided written informed consent for participating in research studies. Blood samples were 

collected according to protocols approved by local institutional review boards. This research has 

been conducted using the UK Biobank resource under the Genomics plc project application 

number 9659. 

In addition, with the aim to replicate novel associations identified in the RWD cohorts, we 

interrogated genome-wide summary statistics from 57 published GWAS, including 34 binary 

disease phenotypes, derived from a larger database that has been assembled and harmonized by 

Genomics plc (referred to as ‘Genomics plc GWAS’). The full list of studies in Genomics plc 

GWAS database and tested in this study is available in the Supplementary Information). These 

included checks to ensure consistency of the data, and alignment of alleles to the forward strand 

of the human reference sequence, with effects ascribed to the alternative allele. Effect size 

estimates for quantitative traits were rescaled relative to the residual variance. Summary-statistic 

imputation was applied to infer association evidence at common variants (minor allele frequency 

> 2%) in the 1000 Genomes EUR reference panel. Results for SNPs associated with the relevant 

phenotype with P < 0.05 were included in the meta-analysis. 

Correlation between all GWAS was estimated to ensure that no GWAS included in the meta-

analysis for a given phenotype presented overlapping samples. In addition, to further prevent 

GWAS results from overlapping samples to be meta-analyzed, only the most recent/largest study 

for a given disease was included in our analysis when several GWAS studies in the Genomics plc 

database investigated the same disease. Although we could not directly estimate potential 
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overlapping samples between the different RWD cohorts, significant overlap is very unlikely based 

on the participants' characteristics (Table 1).  

 

Identification of shared phenotypes 

The phenotypic endpoints tested in the different RWD cohorts were derived from different sources 

(self-reports, medical interviews, WHO ICD codes, ICD9-CM codes) and named with different 

coding systems (e.g. clinical terms versus popular terms, abbreviations versus full names). In order 

to compare and combine results from the four RWD cohorts with published GWAS results from 

the Genomics plc database, we manually mapped the phenotypes. This step allowed us to identify 

145 distinct phenotypes shared by at least 2 cohorts and with at least 20 cases in the independent 

cohorts (Fig. 1). The full list of mapped phenotypes is provided in Table S2. We note that, in each 

cohort some phenotypes were captured multiple times by different endpoints with slightly different 

definitions. In this case, only one endpoint per cohort was selected for meta-analysis. 

 

PheWAS and meta-analysis 

Phenome-wide association analyses for each of the 25 SNPs were conducted in the 23andMe, 

Genomics plc UK biobank, FINRISK (PheWAS results release November 2016) and CHOP 

cohorts separately. Each SNP-phenotype association was tested independently (assuming an 

additive genetic model), using logistic regressions adjusted for age, gender, and principal 

components to adjust for population stratification. Genotyping batch and survey cohort were also 

included as covariates in the FINRISK PheWAS. We then performed two distinct analyses to 1) 

replicate known GWAS associations, and 2) to detect novel associations.  
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First, we meta-analyzed PheWAS results from the 4 RWD cohorts, to investigate the ability of 

these cohorts to replicate known GWAS associations. After harmonizing the effect alleles across 

the cohorts, fixed effect and random effect meta-analyses were performed using PLINK55. We then 

compared the meta-analysis association results with known significant SNP-phenotype 

associations from published GWAS, taking into account the statistical power to detect an 

association in the meta-analysis of the PheWAS results in the disease-agnostic RWD cohorts.  

Second, we meta-analyzed results from the four disease-agnostic cohorts together with available 

GWAS results in order to detect novel associations. Meta-analysis was performed using PLINK 

as described above. Meta-analysis results at the 145 shared phenotypes were then combined with 

cohort-specific phenotype results from the 25 SNPs, resulting in 27,762 tests in total. False 

discovery rate (FDR) was calculated for the 27,762 tests combined using the Benjamini and 

Hochberg method using the R p.adjust method60. The threshold for significance in detecting 

putative novel associations was established using an FDR of 0.1, corresponding to P<7x10-4. 

Significance threshold based on Bonferroni correction was P=0.05/27,762 = 1.8x10-6. We note 

that Bonferroni correction ignores the correlation structure between the tested phenotypes or the 

fact that all the SNPs tested in this study are known to be associated with one or several phenotypes 

in published GWAS. 

 

Statistical power estimations 

We estimated statistical power to detect an association with known associated phenotypes, based 

on the published effect size in the most recently published GWAS, the frequency of the associated 

SNP risk allele in the 1000Genomes EUR population, the number of cases and controls in the 

disease-agnostic cohorts, and assuming a phenotype prevalence of 1%61. 
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Co-localization analyses 

To distinguish true pleiotropic effects from multiple associations at the loci that are explained by 

different causal SNPs (and potentially incriminating different causal genes), we used association 

summary statistics available from published GWAS and applied a Bayesian test implemented in 

the R package 'coloc' to assess co-localization, i.e. the probability of sharing causal genetic variants 

between pairs of apparent pleiotropic phenotypes using association summary statistics at the loci 

of interest27. Co-localization analysis at the LGALS3 locus was performed using meta-analyzed 

PD GWAS summary statistics from 23andMe published elsewhere (N cases=4,127, N 

controls=62,037)25, and galectin-3 plasma pQTL results in 3,562 blood donors33. Co-localization 

analysis at the IFIH1 locus was performed using meta-analyzed SLE GWAS results from two 

independent published studies62, 63, meta-analyzed asthma GWAS summary statistics from 

23andMe64 and the Genomics plc UK Biobank (unpublished), and published UC GWAS summary 

statistics65. 
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Figures: 
 

 
 
Fig. 1. Phenotypes tested and study design. (A) Categories of phenotypes assessed in the 23andMe, 
Genomics plc UK Biobank, FINRISK and CHOP RWD cohorts. (B) Manual phenotype mapping was 
performed to identify phenotypes shared between cohorts. One hundred and forty-five phenotypes were 
captured with at least 20 cases in at least 2 cohorts. After PheWAS in each cohort separately, the 145 
phenotypes were meta-analyzed to increase statistical power and enable systematic comparisons of results 
between cohorts. (C) The 145 mapped phenotypes (see Supplementary Table 2) represent a broad 
spectrum of phenotypic categories and are captured with variable case:control ratios in the cohorts tested. 
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Fig. 2. PheWAS results for 25 GWAS SNPs in/near candidate drug targets from meta-analysis of 4 
RWD cohorts with published GWAS data. Phenotypes associated at FDR<0.1 (P<7e-4) with at least one 
SNP in the meta-PheWAS are represented. Direction of effect of the known disease-risk increasing allele 
related to the therapeutic hypothesis is indicated. A positive Z-score (in green) indicates increased risk, a 
negative Z-score (in purple) indicates reduced risk. Known and novel associations reaching FDR<0.1 are 
outlined in blue and white respectively.  
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Fig. 3. Pleiotropic effects of IFIH1 LOF variants. (A) A significant association of IFIH1 rs1990760-C 
(p.T946A) with increased risk of asthma was observed in the meta-analysis of PheWAS and GWAS results, 
with consistent effect estimate across the six cohorts tested. (B) Power estimation demonstrates the lack of 
power to detect an association at rs1990760-C in currently available asthma GWAS studies. Power to 
surpass various significance cutoffs (P<0.05; FDR<0.1, P<7e-4; study-wide significance after Bonferroni 
correction, P<1.8e-6; and genome-wide significance, P<5e-8) in the six cohorts was estimated using the 
frequency of the asthma risk allele (RAF=0.39), the odds ratio in the PheWAS/GWAS meta-analysis 
(OR=1.037), a disease prevalence of 8%, and the number of cases and controls in each of the cohorts. (C) 
Co-localization analysis demonstrates that the asthma, SLE and ulcerative colitis (UC) associations at the 
IFIH1 locus are driven by a shared causal signal. PP, posterior probability. (D) Results from this study (*) 
combined with previously published findings suggest an allelic series of LOF IFIH1 alleles decreasing the 
risk of various autoimmune diseases while increasing the risk of asthma and ulcerative colitis. Association 
results for the reported IFIH1 loss-of-function alleles rs1990760-C (p.T946A) and rs35667974-C (p. 
I923V) are shown. 
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Fig. 4. PheWAS association patterns of SNPs affecting genes in the contact activation coagulation 
pathway. Three SNPs known to affect plasma protein levels of FXI, FXII and KNG1, and previously 
reported as associated with partial thromboplastin time (aPTT) were interrogated in meta-PheWAS. Five 
phenotypes were observed as significantly associated (FDR<0.1) with at least one of the three SNPs: blood 
clots (known association with the F11 SNP, *), blood thinners medication, warfarin medication, pulmonary 
embolism, and bleeding tendency. Effects of the aPTT-increasing alleles are shown. 
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Table 1. Cohorts included in this study. 
 

Cohort 

Participants 
geographic 
distribution  Phenotypes source 

N binary 
endpoints 
tested *  

Max  
sample 
size 

23andMe 89% USA (adult) Questionnaire-based self-reports 654 671,151 

Genomics plc UK Biobank 100% UK (adult) Questionnaire-based self-reports, medical 
interviews and follow-up 

90 112,337 

FINRISK 100% Finns (adult) National health registries (ICD8,9,10) 278   21,371 

CHOP 100% USA 
(pediatric) 

Electronic health records (ICD9-CM) 870   12,044 

Genomics plc GWAS mixed Mixed – multiple independent disease-
specific cohorts 

34 - 

* Number of binary endpoints with N cases³20 
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Table 2. Significant novel associations in the PheWAS meta-analysis. Associations reaching P<1.8e-6 (Bonferroni–corrected significance 
threshold) in the meta-analysis of RWD PheWAS results with GWAS results are shown. The full list of potential novel SNP-phenotype pairs 
reaching FDR<0.1 is provided in Table S4. The effect of the allele increasing the risk for known associated disease(s) supporting the therapeutic 
hypothesis is shown. Novel associations with direction of effect opposite to the known associated disease(s) effect are highlighted in bold. 
 
   

 
Novel Association in meta-PheWAS 

 
Gene 

 
SNP 

 
EA (EAF)* 

Known Association in 
published GWAS† 

 
Phenotype 

 
OR (CI95) 

 
Pvalue 

N 
studies 

 
Direction$ 

N 
cases 

N 
controls 

CD226 rs763361 T (0.47) IBD Hypothyroidism 1.054 (1.037-1.071) 8.11E-11 3 ++?+? 35,428 412,577 

GDF15 rs17724992 A (0.73) BMI Heart metabolic disease^ 1.031 (1.021-1.042) 3.08E-09 1 +???? 275,944 209,302 

    High blood pressure^ 1.030 (1.020-1.041) 7.64E-09 2 ++??? 151,511 465,686 

    Blood pressure medication^ 1.031 (1.019-1.043) 1.76E-07 1 +???? 125,406 394,753 

    GERD 1.026 (1.016-1.037) 6.11E-07 1 +???? 130,654 384,572 

    Any CVD^ 1.026 (1.0.16-1.037) 1.40E-06 1 +???? 148,577 388,405 

IFIH1 rs1990760 T (0.61) T1D Asthma 0.964 (0.951-0.977) 1.21E-07 5 ----- 57,101 269,659 

IRF5 rs10488631 C (0.11) SLE Hypothyroidism 1.083 (1.050-1.12) 5.78E-07 3 ++?+? 23,182 236,240 

PNPLA3 rs738409 G (0.33) ALT Severe acne 0.905 (0.879-0.932) 1.47E-11 1 -???? 14,812 187,018 

    T2D 1.079 (1.054-1.104) 8.02E-11 3 ++??+ 51,052 489,421 

    High cholesterol 0.959 (0.944-0.974) 1.59E-07 2 --??? 101,646 180,947 

TYK2 rs34536443 G (0.89) Psoriasis Any immune disorder 1.101 (1.071-1.131) 4.27E-12 1 +???? 112,148 173,986 

       Hypothyroidism 1.138 (1.080-1.198) 1.19E-06 3 ++?-? 23,145 233,757 

* EA, effect allele; EAF, effect allele frequency. The effect allele is the risk allele for known associated disease(s) related to the therapeutic hypothesis. 
†Known associated disease related to the therapeutic hypothesis (surrogate for efficacy). The strongest association reported in the literature is indicated. The 
full list of known associations is provided in Supplementary Table 1.  
$ Direction of effect in 23andMe, Genomics plc UK Biobank, FINRISK, CHOP and GWAS 
ALT, alanine aminotransferase ; BMI, body mass index ; CVD, cardiovascular disease; GERD, Gastroesophageal reflux disease; IBD, inflammatory bowel 
disease ; SLE, systemic lupus erythematosus ; T1D, type diabetes ; T2D, type 2 diabetes 
^ Correlated phenotypes 
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