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Abstract		
	
Heritability	measures	the	proportion	of	trait	variation	that	is	due	to	genetic	
inheritance.	Measurement	of	heritability	is	of	importance	to	the	nature-versus-
nurture	debate.	However,	existing	estimates	of	heritability	could	be	biased	by	
environmental	effects.	Here	we	introduce	relatedness	disequilibrium	regression	
(RDR),	a	novel	method	for	estimating	heritability.	RDR	removes	environmental	
bias	by	exploiting	variation	in	relatedness	due	to	random	segregation.	We	use	a	
sample	of	54,888	Icelanders	with	both	parents	genotyped	to	estimate	the	
heritability	of	14	traits,	including	height	(55.4%,	S.E.	4.4%)	and	educational	
attainment	(17.0%,	S.E.	9.4%).	Our	results	suggest	that	some	other	estimates	of	
heritability	could	be	inflated	by	environmental	effects.			
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Main	Text	
	
Introduction	
	
Heritability	measures	the	proportion	of	trait	variation	in	a	population	that	is	due	to	genetic	
inheritance.	The	relative	importance	of	genetic	inheritance	(nature)	versus	environment	
(including	nurture)	for	human	traits	has	generated	much	controversy1.	Historically,	most	
estimates	of	heritability	for	human	traits	have	come	from	twin	studies2,3.	More	recently,	GREML	
(genomic	relatedness	matrix	restricted	maximum	likelihood)	methods	have	been	developed4–8.	
GREML	methods	propose	to	estimate	heritability,	or	some	fraction	of	it,	by	modelling	the	
effects	of	genome-wide	single	nucleotide	polymorphisms	(SNPs).	In	order	to	reduce	the	
influence	of	non-additive	genetic	effects	and	environmental	effects,	samples	are	pruned	of	
close	relatives	before	application	of	GREML	methods.		
	
Instead	of	modelling	the	effects	of	SNPs	directly,	heritability	can	be	estimated	by	examining	
how	phenotypic	similarity	changes	with	relatedness.	Relatedness	is	measured	by	the	fraction	of	
the	genome	a	pair	shares	in	segments	inherited	from	a	common	ancestor,	called	IBD	(identical-
by-descent)	segments.	(We	note	that	what	we	call	‘relatedness’	here	has	sometimes	been	
termed	‘realised	relatedness’	to	distinguish	it	from	expected	relatedness	given	a	pedigree9).	
Sharing	of	an	IBD	segment	implies	sharing	of	all	genetic	variants	in	that	segment,	except	for	
mutations	that	occurred	since	the	last	common	ancestor	of	the	segment.	This	implies	that	IBD	
based	methods	can	capture	nearly	all	of	the	heritability	of	a	trait.	In	contrast,	GREML	methods	
can	only	capture	the	fraction	of	the	heritability	explained	by	genotyped	SNPs4.		Another	
advantage	of	IBD	based	methods	over	GREML	methods	is	that	they	do	not	make	assumptions	
about	the	distribution	of	SNP	effect	sizes.	Violation	of	these	assumptions	has	been	shown	to	
introduce	bias	to	GREML	estimates	of	heritability4,10.		
	
An	IBD	based	method,	which	we	call	the	‘Kinship’	method,	examines	how	phenotypic	similarity	
increases	with	relatedness	for	all	pairs	from	a	representative	population	sample11.	When	close	
relatives	have	more	similar	environments	than	distant	relatives,	the	Kinship	method	will	
overestimate	heritability,	as	it	is	unable	to	distinguish	between	similarity	due	to	genetic	effects	
and	environmental	effects.	Another	approach,	which	we	call	‘Sib-Regression’,	restricts	the	
analysis	to	sibling	pairs.	Most	of	the	variation	in	relatedness	between	siblings	is	due	to	random	
segregations	in	the	parents,	which	are	independent	of	environmental	effects.	Sib-Regression	
therefore	avoids	most	sources	of	environmental	bias.	However,	Sib-Regression	requires	
hundreds	of	thousands	of	genotyped	sibling	pairs	to	obtain	precise	heritability	estimates,	
whereas	existing	applications	have	used	~20,000	sibling	pairs	or	less9,12.		
	
We	introduce	a	novel	method	for	estimating	heritability,	relatedness	disequilibrium	regression	
(RDR).	RDR	looks	at	how	much	more	or	less	related	a	pair	is	than	would	be	expected	from	the	
relatedness	of	the	parents.	This	deviation	we	call	‘relatedness	disequilibrium’.	Relatedness	
disequilibrium	is	due	to	random	segregation	in	the	parents	during	meiosis,	so	is	independent	of	
most	environmental	effects.	By	using	all	pairs	from	a	large	sample	with	both	parents	
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genotyped,	RDR	can	obtain	precise	estimates	of	heritability	with	negligible	bias	due	to	
environment.	We	apply	RDR	to	estimate	heritability	for	14	quantitative	traits	in	Iceland.		
	
Results	
	
Defining	heritability	through	random	segregation	
	
To	define	the	heritability	of	a	trait,	we	first	distinguish	direct	genetic	effects	and	indirect	genetic	
effects:	a	direct	genetic	effect	is	the	effect	of	genetic	material	in	a	body	on	that	body,	whereas	
an	indirect	genetic	effect	is	the	effect	of	genetic	material	in	a	body	on	another	body	
(Supplementary	Note)13–15.	For	example,	if	parenting	affects	the	educational	attainment	of	
offspring,	then	there	could	be	indirect	genetic	effects	from	parent	to	offspring,	which	we	term	
‘parental	genetic	nurturing	effects’15.	Any	allele	inherited	by	the	phenotyped	individual	
(proband)	was	also	present	in	one	of	its	parents,	implying	the	allele	can	have	both	direct	and	
parental	genetic	nurturing	effects	on	the	proband.	However,	parental	genetic	nurturing	effects,	
and	other	indirect	genetic	effects,	are	environmental	effects	from	the	perspective	of	the	
individual	whose	trait	is	affected.		The	heritability	of	the	trait	is	thus	defined	as	the	fraction	of	
trait	variation	in	the	population	that	is	explained	by	direct	genetic	effects	alone.	This	is	different	
from	the	fraction	of	trait	variation	explained	by	variation	in	proband	genotype,	which	can	
include	variation	due	to	indirect	genetic	effects	from	the	proband’s	relatives.		
	
To	separate	variation	due	to	direct	genetic	effects	(heritability)	from	variation	explained	by	the	
environment,	including	indirect	genetic	effects	from	relatives,	we	use	random	segregation	
during	meiosis.	This	approach	is	analogous	to	the	transmission	disequilibrium	test	(TDT)	for	a	
direct	genetic	effect	of	an	allele	on	a	phenotype16–18.	Proband	genotype	is	determined	by	the	
genotypes	of	the	proband’s	parents	and	random	segregations.	The	TDT	looks	for	an	association	
between	the	phenotype	and	the	variation	in	proband	genotype	caused	by	random	segregations	
in	the	parents.	This	separates	association	due	to	direct	genetic	effects	from	association	due	to	
environment.	Similarly,	by	using	random	segregation,	phenotypic	variation	can	be	decomposed	
into	variation	due	to	direct	genetic	effects	alone	and	other	components.	Assuming	direct	
genetic	effects	are	additive	and	there	is	no	gene-by-environment	interaction,	the	
decomposition	is	(Supplementary	Note):			
	

Var 𝑌 = 𝑣( + 𝑣*~( + 𝑐(,* + Var 𝜖 ; 	(1)	
	
where	𝑣(	is	the	variance	explained	by	direct	genetic	effects,	and	ℎ3 = 𝑣(/Var 𝑌 	is	the	
heritability;	𝑣*~(	is	the	variance	of	the	part	of	the	environmental	component	of	the	phenotype	
that	is	correlated	with	parental	genotype,	which	includes	the	variance	explained	by	(additive)	
parental	genetic	nurturing	effects;	𝑐(,* 	is	the	covariance	between	direct	genetic	effects	and	
environmental	effects;	and	Var 𝜖 	is	the	variance	of	the	component	of	the	phenotype	that	is	
uncorrelated	with	both	proband	genotype	and	parental	genotype.		
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RDR	covariance	model		
	
The	variance	decomposition	(1)	leads	to	a	decomposition	of	the	covariance	matrix	of	a	vector	
of	phenotype	observations,	𝒀.	Under	certain	assumptions	(Supplementary	Note):	
	

Cov 𝒀 = 𝑣(𝑅 + 𝑣*~(𝑅par + 𝑐(,*𝑅o,par + Cov 𝜖 ,			(2)	
	
where	[𝑅]9: 	is	the	relatedness	of	individual	𝑖	and	individual	𝑗,	[𝑅par]9: 	is	the	relatedness	of	the	
parents	of	𝑖	and	the	parents	of	𝑗;	[𝑅o,par]9: 	is	the	relatedness	of	𝑖	and	the	parents	of	𝑗	and	𝑗	and	
the	parents	of	𝑖	(Methods).	In	general,	Cov 𝜖 	is	unknown	and	can	be	similar	to	𝑅	due	to	
population	structure	and/or	environmental	effects	shared	between	relatives.	To	fit	the	RDR	
covariance	model,	we	make	the	simplifying	assumption	that	Cov 𝜖 = 𝜎3I.	Importantly,	
violation	of	the	assumption	that	Cov 𝜖 = 𝜎3I	does	not	introduce	bias	to	RDR	estimates	of	
heritability,	as	we	outline	below.		
	
RDR	estimates	heritability	with	negligible	bias	due	to	environment	
	
The	TDT	separates	direct	genetic	effects	from	environmental	effects	by	using	random	
segregation.	RDR	does	something	similar	for	variance	components:	by	using	random	
segregation,	RDR	separates	the	correlations	between	individuals’	phenotypes	due	to	direct	
genetic	effects	from	the	correlations	due	to	environmental	effects.	Just	as	the	TDT	conditions	
on	parental	genotype	to	remove	bias	due	to	association	between	genotype	and	environment,	
RDR	conditions	on	parental	relatedness	to	remove	bias	due	to	an	increase	in	environmental	
similarity	with	relatedness.	The	expectation	of	offspring	genotype	given	its	parents’	genotypes	
is	one	half	of	the	sum	of	the	parents’	genotypes,	and	any	variation	around	this	expectation	
comes	from	random	segregation.	Similarly,	the	expectation	of	offspring	relatedness,	[𝑅]9:,	
given	parental	relatedness,	[𝑅par]9:,	is	[𝑅par]9:/2,	and	any	variation	around	this	expectation	
comes	from	random	segregation	(Figure	1,	Supplementary	Figure	1,	and	Supplementary	Note).	
(Note	that	this	relationship	does	not	hold	for	pairs	where	one	is	the	direct	ancestor	of	the	
other,	such	as	parent-offspring	pairs.)		
	
By	fitting	𝑅	and	𝑅par	jointly,	RDR	uses	the	variation	in	[𝑅]9: 	around	its	expectation,	[𝑅par]9:/2,	to	
estimate	heritability.	We	call	this	variation	relatedness	disequilibrium.	Relatedness	
disequilibrium	is	caused	by	random	segregation	in	the	parents,	so	is	independent	of	sharing	of	
all	environmental	effects	apart	from	indirect	genetic	effects	between	𝑖	and	𝑗.	This	insight	forms	
the	basis	of	a	mathematical	proof	that	heritability	estimates	from	RDR	converge	to	the	true	
heritability,	when	the	sample	excludes	pairs	that	have	indirect	genetic	effects	on	each	other	
and	excludes	pairs	where	one	is	the	direct	ancestor	of	the	other	(Supplementary	Note).	If	
indirect	genetic	effects	are	restricted	to	close	relatives,	the	bias	is	likely	to	be	small	for	RDR	
because	close	relatives	comprise	only	a	small	fraction	of	the	pairs	in	a	large	population	sample.	
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The	bias	due	to	indirect	genetic	effects	could	be	much	larger	for	methods	that	rely	on	close	
relatives,	such	as	Sib-Regression	and	twin	studies.		
	
	

	
Figure	1:	Relatedness	disequilibrium:	For	all	pairs	of	individuals	𝑖, 𝑗	from	20,000	Icelanders	with	both	parents	
genotyped,	the	relatedness	of	𝑖	and	𝑗,	[𝑅]9:,	is	compared	to	the	relatedness	of	the	parents	of		𝑖	and	the	parents	of	
𝑗,	[𝑅par]9:.	The	number	of	pairs	in	each	hexagonal	bin	is	indicated	by	shading.	Relationships	determined	by	the	
deCODE	Genealogy	database	are	indicated:	GP-GC,	grandparent-grandchild;	P-O,	parent-offspring;	and	sibling.	The	
diagonal	line	indicates	the	expectation	of		[𝑅]9:,	which	is	[𝑅par]9:/2,	except	for	pairs	where	one	is	a	direct	ancestor	
of	the	other	(Supplementary	Note).	Relatedness	disequilibrium	is	the	variation	in	[𝑅]9: 	around	[𝑅par]9:/2.	
Relatedness	disequilibrium	is	due	to	independent,	random	segregations	in	the	parents,	except	for	pairs	where	one	
is	the	direct	ancestor	of	the	other.		
	
Pairs	where	one	is	the	direct	ancestor	of	the	other	can	introduce	bias	because	they	have	an	
atypical	relationship	between	[𝑅]9: 	and	[𝑅par]9: 	(Figure	1).	However,	they	will	comprise	a	small	
fraction	of	the	total	pairs	in	a	large	population	sample,	even	if	multiple	generations	are	
genotyped.	For	our	sample,	around	30%	also	have	a	parent	or	grandparent	in	our	sample,	but	
parent-offspring	and	grandparent-grandchild	pairs	comprise	only	0.0014%	of	all	pairs.	We	
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performed	simulations	to	detect	bias	due	to	inclusion	of	parent-offspring	and	grandparent-
grandchild	pairs	in	our	sample	(Methods).	In	our	simulations,	we	could	not	detect	any	such	bias	
in	RDR	heritability	estimates	(Supplementary	Table	1),	suggesting	it	is	negligible	for	our	sample.	
We	therefore	did	not	remove	individuals	from	our	sample	that	also	have	a	parent	or	
grandparent	in	our	sample.		
	
Simulation	of	RDR	heritability	estimation	
	
We	simulated	traits	in	our	sample	to	demonstrate	that	RDR	heritability	estimates	are	
approximately	unbiased	in	situations	where	some	other	methods	can	be	strongly	biased.	We	
simulated	the	genetic	components	of	traits	using	the	genotypes	of	10,000	Icelandic	individuals	
and	their	parents	at	10,000	SNPs	(Methods).	The	SNPs	had	a	minimum	minor	allele	frequency	
(MAF)	of	0.5%	and	median	MAF	of	22.8%.	We	compared	heritability	estimates	from	RDR;	the	
Kinship	method;	the	Kinship	method	allowing	for	an	effect	of	shared	family	environment,	which	
we	call	the	‘Kinship	F.E.’	method.	(We	determined	whether	pairs	shared	a	family	environment	
by	whether	they	shared	a	mother	according	to	the	deCODE	Genealogy	Database.)	We	also	
compared	to	Sib-Regression	but,	to	ensure	we	had	enough	sibling	pairs,	we	simulated	traits	in	
the	full	sample	of	54,888	individuals	with	both	parents	genotyped.		
	
We	first	confirmed	that	heritability	estimates	for	all	the	methods	were	approximately	unbiased	
for	traits	determined	by	additive,	direct	genetic	effects	and	random	noise	(‘additive’	trait,	Table	
1,	Supplementary	Tables	2	and	3).		
	
We	simulated	a	trait	where	individuals	who	shared	a	mother	according	to	the	deCODE	
genealogy	database	shared	a	random	environmental	effect.	We	found	that	the	Kinship	method	
greatly	overestimated	the	heritability	of	this	trait	(‘maternal	environment’	trait,	Table	1).	
However,	the	Kinship	F.E.	estimates	of	heritability	were	approximately	unbiased.	Both	Sib-
Regression	and	RDR	estimates	were	approximately	unbiased.	
	
The	results	for	the	‘maternal	environment’	trait	show	that	modelling	a	family	environment	
effect	can	remove	bias	from	the	Kinship	method	in	certain	circumstances.	However,	when	
indirect	genetic	effects	from	relatives	are	present,	modelling	the	family	environment	is	
ineffective	at	removing	bias.	To	show	this,	we	simulated	a	trait	determined	by	direct	genetic	
effects,	parental	genetic	nurturing	effects,	and	random	noise	(‘genetic	nurturing’	trait,	Table	1).	
Let	𝛿	be	the	direct	effect	of	a	SNP,	and	let	𝜂	be	the	genetic	nurturing	effect,	which	is	the	effect	
of	parental	genotype	on	offspring	through	the	offspring’s	environment.	The	total	variance	
explained	by	parent	and	offspring	genotype	at	the	SNP	is	proportional	to	𝛿3 + 2𝜂3 + 2𝜂𝛿,	with	
𝛿3	proportional	to	the	contribution	to	𝑣(,		2𝜂3	proportional	to	the	contribution	to	𝑣*~(,	and	
2𝜂𝛿	proportional	to	the	contribution	to		𝑐(,*.	For	the	simulated	trait,	the	genetic	nurturing	
effect	of	each	SNP	was	a	fixed	fraction	of	its	direct	effect,	generating	a	substantial	covariance	
term,	𝑐(,*.	The	variance	components	as	a	percentage	of	the	phenotypic	variance	were:	𝑣( =
40%,	𝑣*~( = 10%,	and	𝑐(,* ≈ 28%,	bringing	the	total	variance	explained	by	parent	and	
offspring	genotype	to	~78%.	
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	 RDR	 Kinship	 Kinship	F.E.	 Sib-Regression	
additive	 39.3	(0.62)	 40.4	(0.15)	 40.5	(0.18)	 41.2	(0.69)	

genetic	nurturing	 39.4	(0.49)	 92.7	(0.09)	 82.8	(0.14)	 40.4	(0.37)	
maternal	environment	 38.9	(0.58)	 76.3	(0.17)	 39.9	(0.18)	 41.1	(0.37)	

regional	 38.3	(0.60)	 59.0	(0.17)	 58.3	(0.20)	 32.1	(0.63)	
rare	SNPs	 35.0	(0.64)	 39.5	(0.15)	 39.4	(0.19)	 39.7	(0.67)	
epistatic	 41.3	(0.60)	 44.2	(0.16)	 43.3	(0.19)	 50.1	(0.63)	

Table	1.	Simulation	results.	The	mean	heritability	estimates,	expressed	as	a	%	of	the	phenotypic	variance,	from	
four	different	methods	(RDR,	Kinship,	Kinship	F.E.,	Sib-Regression)	for	different	simulated	traits	along	with	
standard	errors	in	brackets.	The	true	(narrow-sense)	heritability	of	each	trait	was	40%.	We	simulated	500	
replicates	of	each	trait	based	on	actual	Icelandic	genetic	data	(Methods).	Ten	thousand	SNPs	with	median	minor	
allele	frequency	(MAF)	22.8%	were	given	additive	effects	for	all	the	traits	other	than	the	‘rare	SNPs’	trait,	for	which	
2,200	SNPs	with	MAF	between	0.1%	and	1%	(median	0.26%)	were	used.	To	the	additive	genetic	component,	only	
noise	was	added	for	the	‘additive’	trait	and	the	‘rare	SNPs’	trait.	For	the	epistatic	trait,	10%	of	the	phenotypic	
variance	was	due	to	pairwise	interactions	between	SNPs.	For	the	other	traits,	effects	representing	different	
sources	of	environmental	confounding	were	added	in	addition	to	noise	and	the	additive	genetic	component.	For	
the	‘regional’	trait,	each	region	of	Iceland	(sysla)	was	given	an	effect;	for	the	‘maternal	environment'	trait,	an	
environmental	effect	shared	between	those	who	share	mothers	was	added;	for	the	‘genetic	nurturing	trait’,	the	
genotypes	of	the	parents	were	also	given	effects	to	simulate	‘parental	genetic	nurturing’	effects15.	For	the	
‘regional’	trait,	the	Kinship	and	Kinship	F.E.	methods	also	included	adjustment	for	20	genetic	principal	components.	
	
We	found	that	the	Kinship	method	greatly	overestimated	the	heritability	of	the	‘genetic	
nurturing’	trait	and	that	this	bias	was	only	slightly	reduced	by	modelling	a	family	environment	
effect.	The	reason	for	this	is	that	parental	genetic	nurturing	effects	induce	correlations	between	
all	pairs	with	non-zero	parental	relatedness,	not	just	those	that	share	a	family	environment.		
This	leads	to	an	increase	in	environmental	similarity	with	relatedness	across	the	relatedness	
spectrum.	A	similar	increase	in	environmental	similarity	with	relatedness	would	be	induced	by	
indirect	genetic	effects	from	other	relatives,	such	as	siblings.		
	
Both	RDR	and	Sib-Regression	estimates	of	heritability	were	approximately	unbiased	for	the	
‘genetic	nurturing’	trait.	Furthermore,	RDR	estimates	of	𝑣*~(		and	𝑐(,* 	were	approximately	
unbiased	estimates	of	the	variance	from	parental	genetic	nurturing	effects	and	the	covariance	
between	direct	genetic	effects	and	parental	genetic	nurturing	effects	(Supplementary	Tables	2	
and	3).	In	general,	however,	RDR	estimates	of	𝑣*~(		and	𝑐(,* 	will	capture	other	sources	of	
environmental	variation	in	addition	to	parental	genetic	nurturing	effects	(Supplementary	Note).	
	
It	has	been	recognized	that	population	stratification	causes	bias	in	heritability	estimates	from	
GREML	methods	and	the	Kinship	method6,19,20.	We	simulated	a	trait	affected	by	population	
structure.	For	this	trait,	each	region	of	Iceland	had	a	different	mean	trait	value	(Methods).	We	
found	that	the	Kinship	and	Kinship	F.E.	estimates	of	heritability	were	upwardly	biased	even	
after	adjusting	for	20	genetic	principal	components	(‘regional’	trait,	Table	1).	In	contrast,	RDR	
estimates	were	approximately	unbiased.		
	
In	some	cases,	IBD	based	methods	such	as	RDR	will	not	capture	the	phenotypic	variance	
explained	by	recent	mutations,	which	are	rare	in	the	population.	This	is	because,	if	a	causal	
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mutation	arose	after	the	last	common	ancestor	of	an	IBD	segment,	sharing	of	that	IBD	segment	
is	not	informative	of	sharing	of	that	mutation.	To	measure	how	well	RDR	captures	variance	
from	rare	variants,	we	simulated	a	trait	determined	by	additive,	direct	effects	of	SNPs	with	
MAFs	between	1%	and	0.1%,	with	median	MAF	0.26%	(Methods).	RDR	captured	~88%	of	the	
variance	explained	by	the	rare	SNPs,	less	than	the	Kinship	method,	which	captured	~99%	of	
the	variance	explained	by	the	rare	SNPs	(‘rare	SNPs’	trait,	Table	1).	This	discrepancy	is	likely	due	
to	the	fact	that	RDR	gives	less	weight	to	information	from	close	relatives	than	the	Kinship	
method.		
	
To	investigate	the	sensitivity	of	RDR	to	the	presence	of	genetic	interactions,	we	simulated	a	
trait	with	a	narrow-sense	heritability	of	40%	(40%	of	the	phenotypic	variance	explained	by	
additive	effects	of	SNPs)	and	with	an	additional	10%	of	the	phenotypic	variance	explained	by	
pairwise	interactions	between	SNPs	(Methods).	The	mean	RDR	estimate	of	heritability	was	
41.3%,	indicating	a	small	upward	bias	due	to	genetic	interactions.	Sib-Regression	is	expected	to	
estimate	the	sum	of	the	narrow-sense	heritability	and	the	proportion	of	variance	due	to	
pairwise	interactions,	which	the	simulations	confirm	(‘epistatic’	trait,	Table	1).		
	
RDR	estimates	of	heritability	for	14	human	traits	
We	estimated	the	variance	components	of	the	RDR	covariance	model	for	14	quantitative	traits	
(Methods,	Table	2,	Supplementary	Table	4,	and	Supplementary	Figure	2).	Let	ℎRDR3 	represent	
the	RDR	estimate	of	heritability.	For	height,	ℎRDR3 = 55.4%	(SE	=	4.4%).	For	educational	
attainment,	ℎRDR3 = 17.0%	(S.E.	=	9.4%).			
	
For	the	exact	same	probands	that	RDR	was	applied	to,	heritability	estimates	were	obtained	
from	the	Kinship	and	Kinship	F.E.	methods	(Methods,	Table	2,	Figure	2).	The	Kinship	F.E.	
heritability	estimates	were	3.9%	lower	on	average	than	the	Kinship	heritability	estimates,	
indicating	some	confounding	due	to	shared	family	environment	in	the	Kinship	estimates.	We	
therefore	compared	RDR	heritability	estimates	to	heritability	estimates	from	the	Kinship	F.E.	
method,	which	we	denote	as	ℎkinFE3 .		For	11	of	the	14	traits,	ℎkinFE3 	is	bigger	than	ℎRDR3 	(average	
ℎkinFE3 − ℎRDR3 	=	12.1%).	The	traits	with	the	largest	difference	are	educational	attainment,	height,	
and	body	mass	index	(BMI),	with	ℎkinFE3 − ℎRDR3 	equal	to	35.4%,	22.6%	and	17.8%,	respectively.	
These	results	suggest	that,	for	some	traits,	fitting	a	family	environment	effect	does	not	
eliminate	environmental	confounding	from	Kinship-type	methods.		
	
Using	Icelandic	data,	but	without	limiting	to	probands	with	parents	genotyped,	Sib-Regression	
estimates	of	heritability,	denoted	by	ℎsib3 ,	were	computed	(Methods,	Table	2	and	Figure	2).	
Despite	having	over	100,000	sib-pairs	available	for	some	traits,	RDR	estimates	were	more	
precise	than	Sib-Regression	estimates	for	every	trait,	and,	on	average,	the	standard	errors	for	
ℎsib3 	were	2.5	times	larger	than	those	for	ℎRDR3 .		
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Trait	 n	 sib-pairs	 RDR	 Kinship	F.E.		 Sib-Reg.	 Twin	

BMI	 19,589	 56,461	 28.9	(6.3)	 46.7	(2.5)	 38.5	(12.0)	 65	(3.8)	

height	 21,802	 64,847	 55.4	(4.4)	 78.0	(1.9)	 68.4	(9.6)	 81	(-)	

AFCW	 22,367	 30,582	 22.6	(6.0)	 33.5	(2.1)	 32.0	(17.4)	 -	

AFCM	 17,117	 21,729	 14.9	(7.9)	 16.3	(2.6)	 55.3	(21.3)	 -	
menarche	 11,242	 16,621	 		30.9	(10.5)	 41.9	(4)	 50.6	(23.1)	 75	(6.9)	
education		 12,035	 32,542	 17.0	(9.4)	 52.4	(3.7)	 39.7	(14.8)	 43	(3.6)	
total	chol.	 27,320	 74,271	 30.6	(5.0)	 32.2	(1.8)	 15.1	(12.9)	 57	(3.8)	

HDL		 24,570	 67,894	 44.8	(5.3)	 45.1	(2.1)	 50.5	(11.4)	 69	(3.1)	
triglycerides	 24,099	 62,746	 24.2	(5.7)	 29.8	(2.0)	 35.8	(12.1)	 61	(3.7)	

glucose	 19,500	 36,469	 15.9	(7.2)	 23.6	(2.3)	 29.6	(18.5)	 59	(4.0)	

creatinine	 38,929	 98,385	 22.9	(3.7)	 22.2	(1.3)	 4.0	(11.1)	 59	(1.5)	
MCH	 43,917	 107,711	 38.5	(3.2)	 36.8	(1.2)	 40.3	(10.2)	 -	
MCHC	 43,963	 107,833	 14.9	(3.3)	 18.4	(1.1)	 15.8	(10.5)	 -	
MCV	 43,919	 107,702	 39.1	(3.1)	 38.5	(1.2)	 35.9	(10.2)	 -	

Table	2:	Heritability	estimates.	For	each	trait,	the	sample	size	used	for	the	RDR	and	Kinship	methods	is	given	
under	‘n’,	and	the	sample	size	for	Sib-Regression	(‘Sib-Reg.’)	given	under	‘sib-pairs’.	Each	heritability	estimate	is	
expressed	as	a	percentage	of	the	phenotypic	variance	and	is	followed	by	its	standard	error	in	brackets.	RDR	and	
‘Kinship	F.E.’	estimates	are	from	the	exact	same	Icelandic	samples	with	both	parents	genotyped,	whereas	Sib-Reg.	
(Sib-Regression)	estimates	are	from	all	genotyped	Icelandic	sibling	pairs	available.	Twin	studies	estimates	are	from	
the	Swedish	Twin	Registry21,	apart	from	for	education,	which	is	from	a	meta-analysis	of	Scandinavian	twin	studies22	
(Supplementary	Table	5).	For	the	RDR	and	Kinship	F.E.	estimates,	samples	were	restricted	to	those	born	between	
1951	and	1997	for	BMI	and	traits	measured	from	blood,	and	samples	were	restricted	to	those	born	between	1951	
and	1995	for	height;	Sib-Regression	estimates	did	not	have	these	year	of	birth	restrictions	applied.	Trait	
abbreviations:	BMI,	body	mass	index;	AFCW,	age	at	first	child	in	women;	AFCM,	age	at	first	child	in	men;	
menarche,	age	at	menarche	(years);	education,	educational	attainment	(years);	total	chol.,	total	cholesterol;	HDL,	
high	density	lipoprotein;	glucose,	fasting	glucose;	MCH,	mean	cell	haemoglobin;	MCHC,	mean	cell	heamoglobin	
concentration;	MCV,	mean	cell	volume.		
	
If	a	difference	between	RDR	and	Sib-Regression	exists,	it	could	be	a	consequence	of	indirect	
genetic	effects	between	siblings,	or	it	could	be	due	to	epistasis	or	rare	variants.	The	average	of	
ℎsib3 − ℎRDR3 	for	the	fourteen	traits	is	7.9%,	although	the	difference	does	not	reach	significance	(P	
=0.071,	paired	t-test	assuming	traits	independent).	For	educational	attainment,	where	there	is	
evidence	for	indirect	genetic	effects	between	siblings15,	ℎsib3 − ℎRDR3 = 22.7%,	although	the	
difference	does	not	reach	significance	(P=0.097,	one-sided	test	assuming	estimates	are	
independent).		
	
There	are	not	enough	monozygotic	twins	in	the	Icelandic	data	to	obtain	precise	twin	estimates	
of	heritability.	To	compare	RDR	results	with	twin	studies	from	a	similar	population,	we	took	
estimates	from	the	Swedish	Twin	Registry21	denoted	by	ℎtwin3 ,	which	were	available	for	nine	of	
the	fourteen	traits	(Methods,	Table	2,	Figure	2,	and	Supplementary	Table	5).	The	difference	
ℎtwin3 − ℎRDR3 	was	above	zero	and	statistically	significant	for	all	nine	traits,	with	an	average	
difference	of	33.2%.		
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Fig.	2.	RDR	variance	component	estimates.	Comparison	of	RDR	heritability	estimates	with	other	methods	(Table	
2).	A)	Comparison	to	the	‘Kinship	F.E.’	method.	Intervals	showing	+/-1.96	standard	errors	for	the	RDR	estimates	
and	the	‘Kinship	F.E.’	estimates	are	indicated	with	the	horizontal	and	vertical	bars,	respectively.		B)	Comparison	to	
Sib-Regression9	estimates.	Intervals	showing	+/-1.96	standard	errors	for	the	Sib-Regression	estimates	are	indicated	
with	the	vertical	bars.	C)	Comparison	to	published	twin	studies	estimates	from	the	Swedish	Twin	Registry21,	apart	
from	for	education,	which	is	from	a	meta-analysis	of	Scandinavian	twin	studies22	(Supplementary	Table	5).	Trait	
abbreviations:	BMI,	body	mass	index;	AFCW,	age	at	first	child	in	women;	AFCM,	age	at	first	child	in	men;	
education,	educational	attainment	(years);	cholesterol,	total	cholesterol;	HDL,	high	density	lipoprotein;	glucose,	
fasting	glucose;	MCH,	mean	cell	haemoglobin;	MCHC,	mean	cell	heamoglobin	concentration;	MCV,	mean	cell	
volume.	
	
GREML	heritability	estimates	are	biased	by	indirect	genetic	effects	from	relatives	
	
Due	to	the	small	population	of	Iceland,	it	is	not	possible	to	construct	the	large	samples	of	
distantly	related	people	typically	used	in	GREML	analyses.	To	investigate	the	effect	of	indirect	
genetic	effects	from	relatives	on	GREML	analysis,	we	simulated	a	population	of	20,000	
unrelated	individuals	and	their	parents	(Methods).	We	simulated	a	trait	determined	only	by	
additive,	direct	effects	of	SNPs	and	random	noise,	and	we	confirmed	that	GREML	analysis	
inferred	the	true	heritability,	20%,	accurately:	mean	estimate	20.26%	(0.28%	S.E.).		
	
Alleles	transmitted	to	offspring	are	also	present	in	the	parents,	so	have	both	direct	and	parental	
genetic	nurturing	effects.	Let	𝛿	be	the	direct	effect	of	a	SNP,	and	let	𝜂	be	the	parental	genetic	
nurturing	effect.	The	effect	of	the	transmitted	allele	is	therefore	(𝛿 + 𝜂).	GREML	uses	only	
transmitted	alleles,	so	is	unable	to	separate	the	variance	from	the	direct	effect	alone,	
proportional	to	𝛿3,	from	the	variance	explained	by	the	combined	direct	and	parental	genetic	
nurturing	effects,	proportional	to	(𝛿 + 	𝜂	)3.	We	investigated	this	theoretically	(Supplementary	
Text)	and	by	simulating	a	trait	with	both	direct	and	genetic	nurturing	effects.	We	set	the	genetic	
nurturing	effect	of	each	variant	to	be	one	third	of	its	direct	effect,	similar	to	the	estimated	ratio	
for	educational	attainment	in	Iceland15.	The	direct	effects	explained	20%	of	the	phenotypic	
variance.	The	variance	explained	by	genetic	nurturing	effects	of	transmitted	alleles	alone	was	
3I%
JK

≈ 2.22%.		However,	the	total	variance	explained	by	the	alleles	transmitted	to	the	offspring	
is	much	larger	than	20%+2.22%=22.22%.	This	is	because	the	variance	explained	by	a	
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transmitted	allele	is	proportional	to	(𝛿 + 	𝜂	)3 = (1 + L
J
)3𝛿3 ≈ 1.77𝛿3.	Even	though	the	

genetic	nurturing	effect	is	only	one	third	of	the	direct	effect,	it	has	magnified	the	variance	
explained	by	the	transmitted	allele	to	1.77	times	the	variance	explained	by	its	direct	effect	
alone.	The	total	variance	explained	by	transmitted	alleles	is	(1 + L

J
)3×20% ≈ 35.56%,	much	

larger	than	the	heritability,	20%.		
	
The	mean	heritability	estimate	from	GREML	analysis	in	GCTA	was	35.68%	(0.27%	S.E.).	In	this	
simple	scenario,	GREML	analysis	estimates	the	total	variance	explained	by	the	combined	direct	
and	parental	genetic	nurturing	effects	of	transmitted	alleles,	rather	than	the	heritability.	In	
contrast,	RDR	estimates	of	heritability	were	approximately	unbiased	for	the	simulated	traits	
with	genetic	nurturing	effects	(Table	1	and	Supplementary	Table	3).		
	
Discussion	
	
We	introduced	RDR,	a	novel	heritability	estimation	method,	and	used	it	to	estimate	heritability	
for	14	quantitative	traits	in	Iceland.	Through	mathematical	investigations	and	simulations,	we	
demonstrated	that	RDR	estimates	of	heritability	have	negligible	bias	due	to	environment.	RDR	
estimates	may	omit	some	heritability	due	to	rare	variants,	although	the	omission	is	likely	to	be	
small	unless	very	rare	variants	(<0.1%	frequency)	explain	a	substantial	fraction	of	the	
heritability.	
	
Our	simulations	showed	that,	in	certain	scenarios,	GREML	methods	could	be	used	to	estimate	
the	variance	explained	by	the	combined	direct	and	genetic	nurturing	effects	of	transmitted	
alleles,	rather	than	the	heritability.	There	is	evidence	for	a	substantial	contribution	of	parental	
genetic	nurturing	effects	to	educational	attainment15,	implying	GREML	estimates	of	the	
heritability	of	educational	attainment23	include	variance	from	parental	genetic	nurturing	
effects.	In	contrast,	the	RDR	estimate	of	the	heritability	of	educational	attainment	(17.0%,	S.E.	
9.4%)	does	not	include	variance	from	parental	genetic	nurturing	effects.		
	
The	RDR	method	requires	parents	of	probands	to	be	genotyped.	Large	datasets	with	this	
property	are	currently	rare,	which	is	the	main	reason	our	current	study	is	limited	to	the	
Icelandic	population.	While	we	cannot	rule	out	the	possibility	that	the	heritability	of	a	trait	in	
Iceland	is	substantially	different	from	the	heritability	in	other	European	populations,	the	fact	
that	the	effects	of	many	genetic	loci	are	similar	between	Iceland	and	other	European	
populations24–26	argues	against	there	being	major	differences	in	genetic	architecture.	
Nevertheless,	some	of	the	difference	between	ℎRDR3 	and	ℎtwin3 	could	be	due	to	differences	in	
heritability	between	our	Icelandic	sample	and	the	Swedish	twin	samples.	Additionally,	some	of	
the	difference	could	be	due	to	overestimation	of	heritability	by	twin	studies,	or	due	to	very	rare	
variants	(<0.1%	frequency)	explaining	a	substantial	fraction	of	the	phenotypic	variance.	
Presently,	our	data	do	not	allow	us	to	determine	the	relative	contribution	of	the	different	
possible	explanations.			
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Importantly,	our	results	show	that	having	parental	genotypes	is	a	way	to	obtain	precise	
heritability	estimates	with	negligible	environmental	bias.	In	the	future,	as	large	cohorts	with	
parents	and	offspring	genotyped	become	more	common,	we	expect	RDR	and	related	methods	
to	become	more	widely	applied.	In	the	more	distant	future,	extensions	could	include	
grandparents	and	other	relatives,	enabling	improved	estimation	of	genetic	nurturing	effects15.	
This	will	give	a	better	understanding	of	how	genetic	variation	affects	the	social	environment	
across	generations,	which	could	change	our	perspective	on	the	nature-versus-nurture	debate.		
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Methods	

Icelandic	Sample	

All	participating	subjects	donating	biological	samples	signed	informed	consents	and	the	study	
was	approved	by	the	Data	Protection	Commission	of	Iceland	(DPC)	and	the	National	Bioethics	
Committee	of	Iceland.	Personal	identities	of	the	phenotypes	and	biological	samples	were	
encrypted	by	a	third	party	system	provided	by	the	Icelandic	Data	Protection	Authority.	

The	Icelandic	samples	were	genotyped	using	Illumina	microarrays	as	previously	described27.	The	
whole	genomes	of	2,636	Icelanders	were	sequenced	using	Illumina	technology	to	a	mean	depth	
of	at	least	10X	(median	20X)27.	A	total	of	35.5	million	autosomal	SNPs	and	indels	were	identified	
using	the	Genome	Analysis	Toolkit	version	2.3.9.		

The	deCODE	genealogy	database	is	a	comprehensive	database	that	includes	information	on	
more	than	800,000	Icelandic	individuals,	deceased	and	living,	dating	back	to	the	settlement	of	
Iceland	1,200	years	ago.	The	database	is	constructed	from	a	nationwide	census,	conducted	
regularly	from	the	year	1700,	church	books	and	other	available	information,	and	is	particularly	
complete	for	the	last	200	years.	The	database	includes,	when	known,	information	on	parents	of	
each	individual,	gender,	year	of	birth	and,	if	applicable,	year	of	death.		

We	restricted	our	analyses	to	genotyped	individuals	with	both	genetic	parents	genotyped	and	
all	four	grandparents	in	the	deCODE	genealogy	database.		This	left	54,888	individuals.		

The	individuals	and	their	parents	had	all	been	phased	and	segments	shared	identical-by-
descent	(IBD),	both	within	and	between	individuals,	determined	by	long-range	phasing28,29.	To	
reduce	bias	due	to	segments	incorrectly	called	as	identical-by-descent,	we	restricted	our	
analyses	to	segments	of	length	greater	than	5	centi-Morgans.		

As	a	measure	of	ascertainment	bias,	we	compared	years	of	education	between	the	individuals	
with	both	parents	genotyped	and	the	full	set	of	individuals	with	education	data.	Mean	years	of	
education	for	those	with	both	parents	genotyped	was	15.07	compared	to	13.63	for	the	whole	
sample	with	education	data.	Part	of	this	is	due	to	the	fact	that	those	with	both	parents	
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genotyped	were	born	later	than	average,	and	mean	levels	of	education	have	increased	over	
time.	After	regressing	out	year-of-birth	(YOB),	YOB2,	YOB3,	the	sample	with	both	parents	
genotyped	still	had	0.32	years	more	education	on	average,	compared	to	a	standard	deviation	of	
3.39	years.	This	shows	that	our	results	are	slightly	biased	towards	those	with	higher	socio-
economic	status,	which,	for	many	traits,	is	expected	to	increase	heritability30,31.		

Trait	measurements	

As	a	measure	of	educational	attainment,	we	used	information	on	years	of	schooling,	available	
for	63,508	individuals,	that	originated	from	questionnaires	administered	in	deCODE’s	various	
disease	projects	and	from	routine	assessments	of	elderly	nursing	home	residents.	As	the	data	
have	been	gathered	over	the	years	for	the	purpose	of	descriptive	demographics	rather	than	for	
phenotype	use,	the	questions	were	originally	not	standardized	across	projects	and	many	of	
them	have	categorical	responses.	For	this	study,	to	make	it	as	consistent	as	is	possible	when	it	
comes	to	the	educational	attainment	trait	studied	in	the	published	meta-analysis32,	efforts	
were	put	into	mapping	the	responses	to	the	questionnaires	into	the	UNESCO	ISCED	
classification	(http://www.uis.unesco.org/Education/ISCEDMappings/Pages/default.aspx).	In	
particular,	the	final	quantitative	measure	used,	before	sex	and	year-of-birth	adjustments,	
ranges	from	a	minimum	of	10	years	to	a	maximum	of	20	years.		

Height	and	body	mass	index	(BMI)	information,	collected	primarily	through	deCODE’s	genetic	
studies	on	cardiovascular	disease,	obesity	and	cancer,	were	available	for	89,615	and	77,285	
adult	individuals,	respectively25,26.	About	20%	of	the	information	was	self-reported.			

Blood	measurements	were	collected	from	three	of	the	largest	laboratories	in	Iceland:	
Landspítali	-	The	National	University	Hospital	of	Iceland,	Reykjavík;	The	Laboratory	in	Mjódd,	
Reykjavík;	Akureyri	Hospital,	The	Regional	Hospital	in	North	Iceland,	Akureyri;	in	addition	to	the	
Icelandic	Heart	Association.	For	many	individuals,	multiple	blood	samples	had	been	taken	at	
different	time	points.	To	aid	comparability	with	other	studies	that	have	used	one	time-point	
only,	we	took	only	the	first	measurement	of	each	individual.		

Information	on	‘age	at	first	child’	(AAFC)	was	extracted	from	the	deCODE	genealogy	database.		
Age	at	menarche	was	determined	by	the	answer	to	the	question	‘How	old	were	you	when	your	
menstruation	started?’	as	detailed	elsewhere33.		

Apart	from	educational	attainment,	traits	were	quantile-normalised	within	each	sex.	
Educational	attainment	was	not	quantile-normalised	as	the	measurements	fall	into	discrete	
categories	of	years	of	education.		The	traits	were	regressed	on	year-of-birth	(YOB),	sex,	YOB,	
YOB𝟐,	YOB𝟑,	and	the	interactions	of	sex	with	YOB,	YOB𝟐,	YOB𝟑.	The	residuals	of	this	regression	
were	then	used	as	the	phenotype,	Y,	when	fitting	the	models	described	below.	To	ensure	our	
heritability	estimates	correspond	to	the	adult	but	not	elderly	population,	we	further	restricted	
our	analysis	to	those	born	between	1951	and	1995	for	height,	and	between	1951	and	1997	for	
BMI	and	the	traits	measured	from	blood.	(Note	that	for	Sib-Regression,	the	year	of	birth	
restrictions	were	not	applied	to	maximise	the	sample	size.)		
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Identification	of	siblings	

For	the	Sib-Regression	estimator,	we	obtained	the	relatedness	for	all	pairs	of	genotyped	
individuals	who	share	both	parents	in	the	genealogy.	To	ensure	we	only	used	true	full-siblings,	
we	clustered	the	pairs	by	relatedness	into	four	clusters	using	k-means	clustering:	unrelated,	
half-sibling,	full-sibling,	and	monozygotic	twins.	This	left	127,264	full-sibling	pairs,	comprised	of	
70,317	unique	individuals,	whose	relatedness	distribution	had	a	mean	of	0.502	and	a	standard	
deviation	of	0.0382.	To	maximise	the	precision	of	the	Sib-Regression	estimator,	we	did	not	
restrict	by	age	or	by	number	of	parents	genotyped,	so	the	sample	used	is	different	to	the	
sample	used	for	the	other	estimators.	

Simulation	of	GREML	inference	

To	simulate	SNP	based	GREML	inference	on	unrelated	individuals,	we	first	simulated	a	
population	of	20,000	unrelated	parent	pairs,	each	comprised	of	a	mother	and	a	father.	To	do	
this,	we	simulated	genotypes	at	10,000	independent	SNPs	for	each	parent,	where	the	
maternal/paternal	genotype	for	each	SNP	was	drawn	from	a	Bernoulli(0.5)	distribution,	giving	
genotypes	for	each	parent	as	either	0/0,	0/1,	1/0,	or	1/1.	For	each	parent	pair,	we	simulated	
one	offspring	by	simulating	Mendelian	transmission	independently	at	each	SNP.	This	gave	a	
population	of	20,000	offspring	from	independent	and	unrelated	parent-pairs.		

To	compute	the	SNP	based	kinship	matrix,	we	first	standardised	each	SNP	to	have	mean	zero	
and	variance	1.	Let	𝐺	represent	the	standardised	genotypes	of	the	offspring.	We	calculated	the	
SNP	kinship	matrix	as	𝑅snp = 10ST𝐺𝐺U.		

We	simulated	10	independent	traits	determined	by	additive	genetic	effects	and	noise.	For	each	
trait,	we	simulated	a	normally	distributed	vector	of	effects	for	the	10,000	SNPs:	𝛽~𝑁(0, 𝐼).	The	
additive	genetic	component	of	the	trait,	𝐴,	was	then	calculated	as	𝐴 = 𝐺𝛽,	scaled	so	that	A	had	
sample	mean	0	and	sample	variance	1.	The	noise	component	was	simulated	as	𝜖~𝑁 0, 𝐼 .	The	
‘additive’	trait	was	simulated	as	𝑌 = 0.2	𝐴 + 0.8	𝜖.		

We	simulated	10	independent	traits	with	both	additive	and	genetic	nurturing	effects.	In	
addition	to	an	additive	genetic	component	simulated	as	above,	we	also	simulated	a	genetic	
nurture	component.	Let	𝐺par	represent	the	matrix	of	standardised	parental	genotypes,	where	
the	parental	genotype	is	defined	as	the	sum	of	mother’s	0,1,2	genotype	and	the	father’s	0,1,2	
genotype.	The	genetic	nurturing	component	of	the	trait,	𝐴par,	was	then	calculated	as	𝐴Z[\ =
𝐺par𝛽,	where	𝛽	is	the	same	vector	of	effects	as	for	the	direct,	additive	component,	𝐴 = 𝐺𝛽.	We	
scaled	𝐴Z[\	so	that	it	had	sample	mean	0	and	sample	variance	1.	The	noise	component	was	
simulated	as	𝜖~𝑁 0, 𝐼 .	The	trait	with	genetic	nurturing	effects	was	then	simulated	as	

𝑌 = 0.2	𝐴 + 0.0222	𝐴par + 0.6222	𝜖.	
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GREML	analysis	performed	on	the	traits	using	restricted	maximum	likelihood	in	GCTA34	with	
𝑅snp	as	the	only	genetic	relatedness	matrix.		

Simulations	using	deCODE	data	

The	deCODE	sample	has	been	genotyped	on	different	genotyping	arrays,	and	genotypes	have	
been	imputed	for	millions	of	variants27.	To	enable	us	to	have	a	shared	set	of	genotypes	for	both	
parents	and	offspring	for	a	sample	of	10,000	individuals	with	both	parents	genotyped,	we	used	
the	imputed	genotype	data.	For	all	traits	other	than	the	‘rare	SNPs’	trait,	we	used	imputed	
genotypes	at	the	~600,000	SNPs	that	comprise	the	Illumina	Framework	SNP	set,	which	is	a	set	
of	SNPs	shared	between	many	of	the	Illumina	genotyping	arrays	used	to	genotype	the	Icelandic	
sample27.	We	chose	these	SNPs	because	they	have	been	imputed	with	high	accuracy:	the	
median	imputation	information	was	0.9999.	We	further	filtered	the	SNPs	so	that	the	minimum	
imputation	information	was	0.9999,	removing	around	half	of	the	SNPs.	Out	of	the	remaining	
SNPs	passing	the	filter,	we	randomly	sampled	10,000	SNPs	to	use	as	the	causal	SNPs	in	our	
simulations.	In	the	10,000	selected	SNPs,	the	median	imputation	information	was	1.0000,	the	
minimum	minor	allele	frequency	(MAF)	was	0.52%,	and	the	median	MAF	was	22.8%.	For	the	
‘rare	SNPs’	trait,	we	randomly	sampled	SNPs	from	all	imputed	SNPs	with	MAF	between	1%	and	
0.1%	and	with	imputation	information	at	least	0.9999	and	p-value	for	Hardy-Weinberg	
deviation	greater	than	0.05.	We	sampled	100	such	SNPs	from	each	chromosome,	giving	2,200	
SNPs	in	total.		

For	each	type	of	trait,	we	simulated	500	independent	replicates.	Each	trait	had	a	direct,	additive	
genetic	component	that	explained	40%	of	the	phenotypic	variance,	which	we	describe	the	
simulation	of	here.	Apart	from	for	the	‘rare	SNPs’	trait,	we	standardised	genotypes	so	that	each	
SNP’s	genotype	vector	had	sample	mean	zero	and	sample	variance	one.	Let	𝐺	represent	the	
matrix	of	standardised	genotypes	at	the	10,000	causal	SNPs.	We	sampled	additive	effects	of	
SNPs	from	a	normal	distribution.	Let	𝛽~𝑁(0, 𝐼)	represent	the	vector	of	SNP	effects.	The	
additive	genetic	component,	𝐴,	was	then	calculated	as	𝐴 = 𝐺𝛽.	The	noise	component	was	
simulated	as	𝜖~𝑁(0, 𝐼).	The	additive	genetic	component	was	scaled	to	have	sample	variance	1.	
The	‘additive’	phenotype	was	then	simulated	as:		𝑌 = 0.4	𝐴 + 0.6	𝜖.	The	same	process	was	
used	for	the	‘rare	SNPs’	trait,	except	genotypes	were	not	standardised	because	the	
standardisation	becomes	highly	sensitive	to	fluctuations	in	estimated	allele	frequencies	for	rare	
SNPs.		

For	the	‘epistatic’	trait,	we	simulated	a	genetic	component	due	to	pairwise	interactions	
between	SNPs.	To	do	this,	we	sampled	100	SNPs	from	the	10,000	SNPs	given	additive	effects.	
We	formed	pairwise	interaction	variables	for	all	pairs	of	SNPs	from	the	100	selected	SNPs	by	
multiplying	the	standardised	genotypes	of	each	pair	of	SNPs	together.	Let	𝐺epi	be	the	resulting	
matrix	of	SNP-SNP	interaction	variables.	We	standardised	the	columns	of	𝐺epi	so	that	each	
column	had	sample	mean	zero	and	sample	variance	one.	We	simulated	interaction	effects	from	
a	normal	distribution,	𝛽epi~𝑁(0, 𝐼),	and	we	formed	the	pairwise	interaction	genetic	component	
as	𝐴epi = 𝐺epi𝛽epi,	and	standardised	𝐴epi	so	that	it	had	sample	mean	zero	and	sample	variance	
one.		The	‘epistatic’	trait	was	then	formed	as:	
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𝑌 = 0.4	𝐴 + 0.1	𝐴epi + 0.5	𝜖.	

For	the	‘regional’	trait,	we	gave	each	of	the	22	regions	of	Iceland	(called	‘syslas’)	a	different	
normally	distributed	effect,	and	we	scaled	the	overall	variance	explained	by	variation	in	sysla	to	
be	20%	of	the	phenotypic	variance.	The	phenotype	was	thus	simulated	as:	𝑌 = 0.4	𝐴 +
sysla+ 0.4	𝜖,	where	sysla	represents	the	vector	of	sysla	effects.		

For	the	‘maternal	environment’	trait,	we	added	an	environmental	effect	that	was	shared	
between	individuals	who	shared	mothers	according	to	the	deCODE	genealogy	database.	The	
effect	due	to	each	mother	was	drawn	from	a	normal	distribution,	and	resulting	vector	of	effects	
due	to	maternal	environment,	M,	was	scaled	to	have	variance	0.4.		The	phenotype	was	
simulated	as:		

𝑌 = 0.4	𝐴 +M+ 0.2	𝜖,	

Note,	if		𝑌L	and	𝑌3	had	the	same	mother	in	the	deCODE	genealogy	database,	then	their	
maternal	environment	variables	were	the	same.		

For	the	‘genetic	nurturing’	trait,	we	simulated	a	component	reflecting	parental	genetic	
nurturing	effects15:	each	genetic	variant	in	the	parents	was	also	given	an	additive	effect	on	the	
trait	of	the	proband.	The	additive	genetic	component	was	𝐴 = 𝐺𝛽,	scaled	to	have	variance	1.	
Let		𝐺par	be	the	matrix	of	standardised	parental	genotypes,	where	the	parental	genotype	is	
defined	as	the	sum	of	the	mother’s	genotype	and	the	father’s	genotype.	Then	the	genetic	
nurturing	component	was	simulated	as	𝐴par = 𝐺par𝛽,	scaled	to	have	sample	variance	1.		This	
implies	that	the	parental	genetic	nurturing	effects	differ	only	by	a	constant	scale	factor	from	
the	direct	effect	of	the	genetic	variant	in	the	offspring.	The	phenotype	was	then	simulated	as		

𝑌 = 0.4	𝐴 + 0.1	𝐴par + 0.5 − 0.08	𝜖,	

where	the	scale	factor	for	the	residual	variance	was	calculated	so	that	the	total	phenotypic	
variance,	which	includes	the	covariance	between	𝐴	and	𝐴par,	was	1.	For	this	trait,	𝑣*~( = 0.1		
and	𝑐(,* = 	 0.08 	≈ 0.283.			

Selection	of	estimates	from	twin	studies	

There	are	not	enough	monozygotic	twins	in	Iceland	to	give	precise	twin	based	estimates	of	
heritability,	forcing	us	to	compare	our	results	with	external	twin	studies.	The	Swedish	Twin	
Registry21	is	a	large	sample	of	twins	from	a	population	of	similar	cultural	and	genetic	
composition	to	Iceland,	giving	the	most	precise	and	valid	comparison	possible	based	on	
published	data35–39.	The	exception	is	for	education,	where	we	used	a	meta-analysis	of	
Scandinavian	twin	studies	for	increased	precision22.	For	BMI	and	traits	measured	from	blood,	
unlike	our	estimates,	the	Swedish	Twin	Registry	estimates	did	not	exclude	elderly	individuals.	
This	is	unlikely	to	account	for	the	higher	estimates	in	the	Swedish	Twin	Registry,	as	twin	
correlations	and	heritability	estimates	are	generally	lower	in	the	elderly	population2.		
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We	took	the	heritability	estimate	from	the	additive-common-environment	(ACE)	model2,3	when	
provided.	ACE	estimates	were	not	provided	for	the	blood	lipid	traits,	but	monozygotic	and	
dizygotic	twin	correlations	were38.	We	used	these	to	obtain	the	moment	based	estimate	of	the	
heritability	under	the	ACE	model	by	the	formula:	2(𝑟MZ − 𝑟DZ),	where	𝑟MZ	is	the	phenotypic	
correlation	for	monozygotic	twins,	and	𝑟DZ	is	the	phenotypic	correlation	for	dizygotic	twins.	We	
took	the	weighted	average	of	the	same-sex	and	opposite-sex	dizygotic	twin	correlations	to	
estimate	𝑟DZ.	For	creatinine,	the	ACE	estimate	was	not	provided,	and	neither	were	the	twin	
correlations,	so	we	took	the	published	heritability	estimate	from	the	ADE	model	(additive-
dominance-environment).	The	studies	used	and	methods	used	are	summarised	in	
Supplementary	Table	5.	For	height,	heritability	estimates	were	only	provided	for	males	and	
females	separately,	so	we	took	the	average	estimate.	The	standard	error	was	not	provided.	
Height	and	weight	estimates	were	based	on	self-reported	data,	whereas	our	estimates	were	
based	on	approximately	80%	measured	and	20%	self-reported	data.	This	would	be	expected	to	
increase	our	heritability	estimates	for	height	and	BMI	relative	to	the	twin	estimates	due	to	a	
reduction	in	measurement	error.	For	education,	we	used	a	meta-analysis	of	twin	studies	in	
Scandinavian	countries,	including	Sweden,	to	give	a	more	precise	estimate22.	We	could	not	find	
published	estimate	based	on	the	Swedish	Twin	Registry	for	the	haemoglobin	traits	and	for	age	
at	first	child,	so	we	excluded	them	from	the	comparison.	

Calculation	of	relatedness	matrices	

To	calculate	𝑅,	𝑅par,	and,	𝑅o,par,	we	used	formulae	based	on	the	genetic	covariance	in	a	
population	descending	from	a	finite	number	of	ancestors40	(Supplementary	Note):	

[𝑅]9: =
1
2

(IBD9:^_ − 𝐾I)/(1 − 𝐾I)
^,_am,p

	

where	𝐾I	is	the	mean	kinship	over	all	pairs	in	the	population,	and	IBD9:
^_ 	is	the	proportion	of	the	

maternally	inherited	haplotype	of	𝑖	shared	identical-by-descent	(IBD)	with	the	paternally	
inherited	haplotype	of	𝑗;	

[𝑅par]9: =
𝐾b 9 b(:) + 𝐾b 9 c(:) + 𝐾c 9 b : + 𝐾c 9 c(:) − 4𝐾I

(1 − 𝐾I)
	

where	𝐾b 9 c(:)	is	the	kinship	between	the	father	of	𝑖	and	the	mother	of	𝑗;	

[𝑅o,par]9: =
𝐾9b(:) + 𝐾9c(:) + 𝐾c 9 : + 𝐾b 9 : − 4𝐾I

(1 − 𝐾I)
	

where	𝐾9c(:)	is	the	kinship	between	𝑖	and	the	mother	of	𝑗,	etc.		The	statistics	of	these	matrices	
are	recorded	in	Supplementary	Tables	6	and	7.			

	

	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2017. ; https://doi.org/10.1101/218883doi: bioRxiv preprint 

https://doi.org/10.1101/218883
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Model	Fitting	

To	obtain	heritability	estimates	from	the	Kinship	method,	we	fit	the	following	model	for	a	
vector	of	phenotype	observations	𝒀:		

𝒀~𝑁 𝑋kin𝑏, 𝑣(𝑅 + 𝜎3𝐼 .	

For	the	Kinship	F.E.	model,	we	added	a	variance	component	that	modelled	shared	family	
environment:		

𝒀~𝑁(𝑋kin𝑏, 𝑣(𝑅 + 𝑣f𝐶 + 𝜎3𝐼),	

where	[𝐶]9: = 1	if	𝑖	and	𝑗	shared	a	mother	according	to	the	deCODE	genealogy	database,	
otherwise		[𝐶]9: = 0.	For	all	of	the	simulated	traits	other	than	the	‘regional’	trait,	𝑋kin	was	a	
constant.	For	the	‘regional’	trait,	it	also	included	the	top	20	genetic	principal	components.	In	
the	real	trait	analysis,	𝑋kin	included	the	top	20	genetic	principal	components.	For	both	the	
Kinship	and	Kinship	F.E.	methods,	we	estimated	model	parameters	by	unconstrained	restricted	
maximum	likelihood	in	GCTA34.	

The	relatedness	disequilibrium	regression	(RDR)	covariance	model	is	
Cov 𝒀 = 𝑣(𝑅 + 𝑣*~(𝑅par + 𝑐(,*𝑅o,par + 𝜎3I.	

We	investigated	fitting	this	model	by	least	squares	regression	of	the	off-diagonal	elements	of	
the	sample	phenotypic	covariance	matrix	on	the	off-diagonal	elements	of	the	relatedness	
matrices:		

𝑦9 − 𝑦 𝑦: − 𝑦 ~[𝑅]9: + [𝑅par]9: + [𝑅o,par]9:,	
where	𝑦9 	is	the	phenotype	observation	for	individual	𝑖,	and	𝑦	is	the	sample	phenotype	mean.	
We	excluded	both	parent-offspring	and	grandparent-grandchild	pairs	from	the	regression,	as	
these	pairs	violate	the	relationship	between	[𝑅]9: 	and	[𝑅par]9: 	required	for	removal	of	
environmental	bias	from	estimation	of	𝑣(	(Figure	1	and	Supplementary	Note).	These	pairs	
comprised	around	0.0014%	of	all	the	pairs	we	could	have	used.	We	also	investigated	fitting	the	
model	by	unconstrained	restricted	maximum	likelihood	in	GCTA34,	under	the	assumption	the	
trait	follows	a	multivariate	normal	distribution:	

𝒀~𝑁(𝜇, 𝑣(𝑅 + 𝑣*~(𝑅par + 𝑐(,*𝑅o,par + 𝜎3I).	
For	the	maximum	likelihood	method,	one	can	only	remove	individuals,	and	all	the	pairs	
including	that	individual,	not	arbitrary	pairs.	Around	30%	of	the	sample	with	both	parents	
genotyped	have	an	ancestor	who	also	has	both	parents	genotyped.	We	therefore	did	not	
exclude	individuals	so	that	no	parent-offspring	and	no	grandparent-grandchild	pairs	were	
present,	as	this	would	have	resulted	in	a	large	loss	of	sample	size.		
	
In	our	simulations,	we	found	that	RDR	estimates	from	maximum	likelihood	and	RDR	estimates	
from	least-squares	were	both	approximately	unbiased,	with	no	consistent	advantage	in	bias	
evident	from	fitting	the	model	by	least-squares	after	excluding	parent-offspring	and	
grandparent-grandchild	pairs	(Supplementary	Table	1).	However,	least-squares	estimates	were	
considerably	less	precise	than	those	from	maximum	likelihood.	We	therefore	used	maximum	
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likelihood	without	exclusion	of	parent-offspring	and	grandparent-grandchild	pairs	(which	
comprised	only	0.0014%	of	the	pairs	with	both	parents	genotyped)	for	all	analyses	in	the	main	
text.	

To	obtain	Sib-Regression	estimates9,	we	fit	the	regression	model	

𝑦9 − 𝑦:
3~[𝑅]9: 	

for	all	𝑖, 𝑗	such	that	𝑖	and	𝑗	are	full-siblings.	We	fit	the	regression	model	by	least-squares	using	
custom	R	code.	The	estimate	of	𝑣(	is	then	minus	one	half	of	the	estimated	regression	
coefficient.	We	compared	estimating	standard	errors	by	the	approximate	formula	given	in	the	
original	Sib-Regression	paper9	(equation	17)	and	estimating	standard	errors	by	treating	Sib-
Regression	as	a	standard	univariate	linear	regression	with	uncorrelated	observations.	For	the	
‘additive’	simulated	trait,	both	gave	almost	exactly	the	same	estimated	standard	error,	which	
underestimated	the	standard	error	by	approximately	9%.	We	used	standard	errors	estimated	
from	treating	sib-regression	as	a	standard	univariate	linear	regression	with	uncorrelated	
observations	for	all	other	results.		
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