Abstract
It is often challenging to find the right bin size when constructing a histogram to represent a noisy experimental data set. This problem is frequently faced when assessing whether a cell synchronization experiment was successful or not. In this case the goal is to determine whether the DNA content is best represented by a unimodal, indicating successful synchronization, or bimodal, indicating unsuccessful synchronization, distribution. This choice of bin size can greatly affect the interpretation of the results; however, it can be avoided by fitting the data to a cumulative distribution function (CDF). Fitting data to a CDF removes the need for bin size selection. The sorted data can also be used to reconstruct an approximate probability density function (PDF) without selecting a bin size. A simple CDF-based approach is presented and the benefits and drawbacks relative to usual methods are discussed.