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Abstract Scratch assays are routinely used to study the collective spreading

of cell populations. In general, the rate at which a population of cells spreads

is driven by the combined effects of cell migration and proliferation. To exam-

ine the effects of cell migration separately from the effects of cell proliferation,

scratch assays are often performed after treating the cells with a drug that

inhibits proliferation. Mitomycin-C is a drug that is commonly used to sup-

press cell proliferation in this context. However, in addition to suppressing cell

proliferation, Mitomycin-C also causes cells to change size during the experi-

ment, as each cell in the population approximately doubles in size as a result of

treatment. Therefore, to describe a scratch assay that incorporates the effects

of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size,

we present a new stochastic model that incorporates these mechanisms. Our

agent-based stochastic model takes the form of a system of Langevin equations

that is the system of stochastic differential equations governing the evolution
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of the population of agents. We incorporate a time-dependent interaction force

that is used to mimic the dynamic increase in size of the agents. To provide

a mathematical description of the average behaviour of the stochastic model

we present continuum limit descriptions using both a standard mean-field ap-

proximation, and a more sophisticated moment dynamics approximation that

accounts for the density of agents and density of pairs of agents in the stochas-

tic model. Comparing the accuracy of the two continuum descriptions for a

typical scratch assay geometry shows that the incorporation of agent growth in

the system is associated with a decrease in accuracy of the standard mean-field

description. In contrast, the moment dynamics description provides a more ac-

curate prediction of the evolution of the scratch assay when the increase in

size of individual agents is included in the model.

Keywords Cell migration; Scratch assay; Stochastic model; Langevin

equation; Continuum model; Mean-field approximation.

1 Introduction

In vitro cell biology assays are used to study the invasive properties of ma-

lignant cells, to quantify different mechanisms of wound repair, as well as in

the discovery of potential drugs (Riss 2005; Edmondson et al. 2014; Shah et

al. 2016). Typically, cells are placed on a two-dimensional substrate, and are

allowed to migrate, proliferate, and interact with each other, as illustrated in

Figure 1a-b. Different experimental geometries, such as circular barrier assays,

are possible, and modern imaging technologies provide means of collecting high

resolution images of the cell population as it evolves (Johnston et al. 2015).

An example of a two-dimensional cell biology assay is given in Figure 1a-b.

This kind of experimental design is routinely referred to as a scratch assay.

Scratch assays are initiated by uniformly distributing a population of cells on
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Fig. 1. (a)-(b) An example of a typical scratch assay, where cells are allowed
to close an artificially created gap. In this experiment the cells are PC-3
prostate cancer cells (Kaighn et al. 1979). (c)-(d) Scratch assay with PC-3
cells pretreated with Mitomycin-C to prevent proliferation. In (a)-(d) the
scale bars correspond to 300µm. (e)-(f) Images showing individual 3T3
fibroblast cells in a circular barrier assay where the cells are treated with
Mitomycin-C. In these images a cell nucleus stain is used, and each
individual cell is superimposed with a black disk. We denote the
two-dimensional coordinates as {x1, x2}, as indicated. Images in (e)-(f) show
a square region of length 400µm. The images in (a)-(d) are reproduced with
permission from Springer (Shah et al. 2016). The images in (e)-(f) are
reproduced with permission from The Royal Society (Simpson et al. 2013).

a cell culture plate, which is then incubated for some time to allow cells to at-

tach to the substrate and for the density of the monolayer of cells to increase.

After incubation, a sharp-tipped instrument is used to scratch the monolayer

to produce an artificial wound (Liang et al. 2007; Jin et al. 2016; Grada et al.

2017). The rate of the recolonisation of the wound space is then observed over

time and has been demonstrated to depend on the rate of cell motility, the
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rate of cell proliferation, and the strength of cell-to-cell interaction forces. It

is well known that quantifying the roles of these different mechanisms is chal-

lenging, as similar population-level outcomes can arise from different relative

contributions of these separate mechanisms (Treloar et al. 2013). One way of

overcoming these issues is to modify the experimental procedure to deliber-

ately separate the effects of cell migration from the effects of cell proliferation,

and this approach is routinely used to improve our understanding of the role

of cell motility in wound healing and malignant spreading (Glenn et al. 2016;

Nyegaard et al. 2016; Grada et al. 2017). The experimental images in Figure

1c-d show a scratch assay that is prepared in exactly the same way as the

experimental images in Figure 1a-b except that the cells are treated with a

drug to inhibit proliferation (Shah et al. 2016). A visual comparison of the

images in Figure 1a-b and Figure 1c-d shows that the combined effects of cell

migration and cell proliferation lead to a more rapid wound closure. The exper-

iment in Figure 1c-d involves treating the cells with a drug called Mitomycin-C

(Sadeghi et al. 1998). Mitomycin-C is a chemotherapy drug that suppresses

mitosis by blocking DNA replication (Sadeghi et al. 1998). While Mitomycin-C

is known to prevent cell proliferation without inhibiting cell migration (Simp-

son et al. 2013), a consequence of treating cells with Mitomycin-C is that cells

increase in size, as if they are about to divide into two daughter cells, but the

process of division does not take place. Therefore, cells that are treated with

Mitomycin-C do not divide, but instead they approximately double in size

over a period of approximately 24 hours, as illustrated in Figure 1e-f, where

we show fibroblast cells in a circular barrier assay. The images in Figure 1e-f

include a nuclear stain in red, and it is clear that the Mitomycin-C treated

cells approximately double in size during the experiment. This change in cell

size is typically neglected in mathematical models that describe the collective

spreading of cell populations (Simpson et al. 2013; Jin et al. 2016).
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Many experimental images, such as the images in Figure 1c-f, demonstrate

the potential for significant changes in cell size which may influence the be-

haviour of the entire cell population since crowding effects are thought to be

important in two-dimensional cell biology assays (Simpson et al. 2013). Many

classical continuum models of collective cell behaviour do not incorporate any

measure of cell size (Maini et al. 2004; Sherratt and Murray 1990). To address

this limitation, another common approach to model collective cell behaviour

is to use lattice-based stochastic models, where individual agents are allowed

to move on a discrete lattice (Penington et al. 2011; Markham et al. 2015).

Lattice-based models are attractive because they are conceptually straight-

forward, computationally efficient, and produce time-lapse images that are

similar to images obtained from experiments (Simpson et al. 2013). While

lattice-based models typically associate the cell size with the lattice spacing

(Simpson et al. 2013), modelling the collective behaviour of populations of

cells involving cell-to-cell crowding effects and dynamic changes in the size

of individual cells in this approach is not straightforward. In particular, in

a lattice-based model it is difficult to represent the cell size as a continuous

function of time (Binder and Simpson 2016). An alternative approach is to use

a lattice-free stochastic model (Codling et al. 2008; Galle et al. 2005; Newman

and Grima, 2004). Lattice-free models can be more computationally demand-

ing than lattice-based models when dealing with crowding effects. However,

lattice-free models are much more appealing than lattice-based models because

agents in the simulation can assume a continuous size, which may be allowed

to change dynamically.

While computational implementations of stochastic models are well suited

to capturing individual-level details, experimental data is routinely presented

in the form of population-level and tissue-level data. Consequently, it is con-

venient to have access to some continuum approximation to describe the col-
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lective behaviour associated with the stochastic simulations. The continuum

description often takes the form of a partial differential equation (Penington

et al. 2011; Dyson et al. 2012). Most continuum-based models used to describe

collective behaviour of cell populations invoke the mean-field approximation

(MFA) (Sherratt and Murray 1990; Maini et al. 2004; Penington et al. 2011;

Simpson et al. 2013). In effect, the MFA amounts to assuming that the po-

sitions of individuals in the population are independent. This assumption is

widely invoked, both implicitly (Sherratt and Murray 1990; Maini et al. 2004)

and explicitly (Penington et al. 2011; Dyson et al. 2012; Simpson et al. 2013).

However, since spatial structure, such as clustering and patchiness, is often

observed experimentally, the MFA is not always appropriate. Clustering and

patchiness are observed in a range of natural processes, including cell biol-

ogy experiments (Steinberg 1996; Treloar et al. 2013) and ecology (Levin and

Whitfield, 1994), therefore it is also of interest to derive continuum limit de-

scriptions that avoid the MFA, where appropriate. To achieve this, in this work

we describe a lattice-free model of the collective spreading of a population of

cells that incorporates cell motility, dynamic cell size changes, crowding ef-

fects, and cell-to-cell adhesion. We derive a continuum description using the

standard MFA, as well as introduce an alternative continuum description us-

ing a more sophisticated moment dynamics approach (Middleton et al., 2014).

Moment dynamics approaches are often used to describe spatially correlated

populations in ecological applications and in the study of epidemics (Bolker

and Pacala 1997; Keeling et al. 1997; Sharkey et al. 2006; Sharkey et al. 2015).

However, moment dynamics approaches are less common in the study of col-

lective cell behaviour. Moment dynamics approaches can invoke many different

approximations to account for spatial correlations (Murrell et al. 2004; House

2014; Plank and Law 2015; Binny et al. 2015; Binny et al. 2016a; Binny et al.

2016b), and in this work we use the Kirkwood superposition approximation
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(KSA) which was originally developed to describe the spatial arrangement

of molecules in liquids (Kirkwood 1935; Singer 2004), and only much later

adopted to describe the spatial arrangement of individual cells in the collec-

tive cell spreading (Baker and Simpson 2010; Middleton, et al. 2014).

In this manuscript we present discrete and continuum descriptions of collec-

tive cell behaviour formulated in both one and two dimensions. Two-dimensional

models allow us to reproduce the dynamics of experiments such as those de-

picted in Figure 1, and are perfectly suited for visualisation of the experiments.

However, as we demonstrate in the Supplementary Material document, there is

little motivation to use two-dimensional descriptions for the scratch assay ge-

ometry because the agent density, on average, does not depend on the vertical

coordinate.

We denote the position of an arbitrary point in the computational domain

by the vector u = {x1, x2}. The positions of two other arbitrary points in the

domain are given by the vectors u′ = {y1, y2} and u′′ = {z1, z2}, and so on.

We utilise the notation x, y, and z to denote the positions of distinct points in

the one-dimensional domain when introducing continuum descriptions in one

dimension. The position of the ith agent on a two-dimensional domain is u(i).

The position of an agent i in the one-dimensional discrete simulations is given

by x(i). This choice of notation allows us to distinguish between the positions

of agents in the discrete simulations and the coordinates of fixed points in the

continuum description. Furthermore, it is consistent with our previous work

which does not involve dynamical changes in agent size (Matsiaka et al. 2017).

This manuscript is organised as follows. In Section 2.1 we describe a stochas-

tic lattice-free model of collective cell migration. The model incorporates cell

migration, cell crowding effects and cell-to-cell adhesion, and allows individual

cells in the population to change size dynamically. In Section 2.2 we introduce
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two continuum descriptions of the stochastic model: (i) a mean-field based ap-

proximation; and (ii) a moment dynamics approximation, based on the KSA.

In Section 3 we compare the averaged data obtained from repeated simu-

lations of the stochastic model with numerical solutions of both continuum

approximations. Finally, in Section 4 we summarise our findings and discuss

the opportunities for further research.

2 Methods

2.1 Langevin stochastic model

In this section we describe the lattice-free stochastic model used to simulate the

collective behaviour of a population of N agents. Many two-dimensional cell

biology experiments, such as the scratch assays depicted in Figure 1a-d, can

be described using a one-dimensional coordinate system because the density of

cells is independent of the vertical coordinate (Johnston et al. 2015). Therefore,

we focus our attention and discussion on the one-dimensional discrete model in

the main manuscript. Additional results and discussion relating to justifying

the use of a one-dimensional model to describe a two-dimensional cell culture

experiment is presented in the Supplementary Material document.

In this work we denote the cell diameter using δ(t) > 0, and assume that

the dynamic change in cell diameter is logistic,

δ(t) =
2δ(0)

1 + exp(−kt)
, (1)

where the parameter k > 0 describes the growth rate, δ(0) is the initial cell

diameter, and lim
t→∞

δ(t) = 2δ(0). Plots showing typical δ(t) for different choices

of k are given in Figure 2. We note that the choice of using a logistic function
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for δ(t) is not essential, and all of the analysis presented here can be applied

to any other suitable choice of growth model.

t [h]
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Fig. 2. Logistic increase in agent diameter, given by Equation (1), for
k = 0.3 /h (red) and k = 0.2 /h (blue). In both cases δ(0) = 25 µm and
lim
t→∞

δ(t) = 2δ(0).

We assume that the movement of individual agents in the stochastic model

is described by an equation of motion (Newman and Grima 2004; Middleton

et al. 2014). We adopt the Langevin stochastic model where the collective

behaviour of the population is described by a system of Langevin equations

that can be written as

du(i)

dt
=
∑
j 6=i

Fij + ξi, i = 1, . . . , N, (2)

where u(i) is the position of the ith agent in a two-dimensional space, Fij is

the interaction force between agent i and agent j, ξi is the stochastic force

acting on the ith agent, and N is the number of agents in the simulation.
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The corresponding one-dimensional model is given by

dx(i)

dt
=
∑
j 6=i

Fij + ξi, i = 1, . . . , N. (3)

Since we consider unbiased movements of isolated individuals, we sample

ξi from a Gaussian distribution (Newman and Grima, 2004) with variance

Var(ξi) =
2D

∆t
, (4)

where ∆t is the value of the time step used to solve the system of Langevin

equations in a simulation of the stochastic model. Choosing ∆t in this way

ensures that the mean squared displacement of an isolated individual agent is

independent of the time step chosen to simulate the stochastic model, and the

mean squared displacement of an isolated agent is therefore 2Dt.

The force function, Fij , is chosen to be

Fij = f0 Z(r, t) sgn(x(i) − x(j)), (5)

where f0 is a constant that describes the strength of the interaction forces,

Z(r, t) is the dimensionless function describing how the interaction force de-

pends on the separation of the agents, r = |x(i)−x(j)|, t is time, and sgn is the

signum function (Middleton et al. 2014; Matsiaka et al. 2017). A schematic

showing the arrangement of agents in the model is given in Figure 3a-b, where

we can see the effects of agent movement and the increase in the size of the

agents with time.

We consider two main features of agent-to-agent interactions: (i) a short

range repulsion force, which can be thought of as a resistance to deformations

and crowding; and, (ii) longer range attraction forces which can be thought

of as adhesion between agents. To model these two forces we use a modified
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Morse potential,

Z(r, t) =


2
(

exp(−2a [r − δ(t)])− exp(−a [r − δ(t)])
)
, r < 2δ(t),

2
(

exp(−2a [r − δ(t)])− exp(−a [r − δ(t)])
)
g(r, t), 2δ(t) ≤ r ≤ 3δ(t),

0, r > 3δ(t),

(6)

where a > 0 is a parameter that controls the shape of the force function, δ(t)

is the time-dependent agent diameter, given by Equation (1) or some other

appropriate functional form. Here, the spatial range of interactions is finite,

and set to three agent diameters, giving Z(r, t) = 0 for r > 3δ(t). The function

g(r) is the Tersoff cut-off function (Tersoff et al. 1987), which is included to

capture the finite range of interactions,

g(r, t) =
1

2

(
1− sin

[π(2r − δ(t))
2δ(t)

])
. (7)

Figure 3c shows a typical interaction function, Z(r, t), over a period of

24 hours. At each instant in time the interaction force function incorporates

repulsion at short distances, and attraction at longer distances, up to a finite

range of three agent diameters. Since δ(t) increases with t, the interaction

function also changes with time, and we can interpret the change in Z(r, t) with

t in Figure 3c as a result of the increase in agent diameter with time. The choice

of the force function in Equation (6) is not unique, but rather one of many

other possible functional forms that incorporate short range repulsion and

longer range attraction such as the Lennard-Jones potential, Hertz potential,

or a nonlinear spring model (Byrne and Preziosi 2003; Jeon et al. 2010; Murray

et al. 2012).
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Fig. 3. (a)-(b) Schematic illustration of individual agent motility and
interaction forces in a population of agents where the diameters of individual
agents double over an interval of approximately t = 24 h, as described by
Equation (1). (c) Dimensionless potential, Z(r, t), at t = 0, 12, and 24 h in
black, orange and red, respectively. All plots correspond to k = 0.2 /h and
δ(0) = 25 µm. The horizontal line at Z(r, t) = 0 denotes the change from
short range repulsion (Z(r, t) > 0) to longer range attraction (Z(r, t) < 0).
The series of three vertical dashed lines indicate the diameter of the agent at
t = 0, 12 and 24 hours.

2.2 Continuum description

In this section we present two different continuum approximations of the

lattice-free stochastic model described in Section 2.1. In particular, we present
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both a standard continuum approximation, based on invoking the MFA, and

a moment dynamics continuum approximation, based on invoking the KSA.

We note that the process of deriving both continuum approximations has been

presented previously in the simpler case where the agent diameter is a constant

(Middleton et al. 2014; Matsiaka et al. 2017). The focus of the current study

is to consider the continuum approximations for the case where the agent di-

ameter increases with time. Therefore, we do not repeat the derivation of the

continuum limit descriptions here in the main document. Instead, complete

details of the derivations are given in the Supplementary Material document,

and here we focus on reporting the continuum descriptions and examining the

accuracy of the continuum descriptions.

2.2.1 Two-dimensional continuum model

Here we first present the two-dimensional continuum limit of the stochastic

model, and later consider the one-dimensional analogue of this model. The

mean-field continuum description is given by an integro-partial differential

equation (IPDE),

∂p1(u, t)

∂t
= D∆p1(u, t)− (N − 1)∇(p1(u, t)V(u, t)), (8)

where the agent density, p1(u, t), depends on the position u = {x1, x2} and

time t, D is the diffusivity, N is the number of agents, and

V(u, t) =

∫
Ω

F(u− u′, t) p1(u′, t) du′ (9)

is the velocity field induced by the agent-to-agent interactions. The force func-

tion F(u− u′, t) is defined as
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F(u− u′, t) = f0 Z(|u− u′|, t) u− u′

|u− u′|
, (10)

and depends on the separation distance, |u− u′| and time t.

The two-dimensional moment dynamics model, based on the KSA approx-

imation (Singer 2004; Middleton et al. 2014), can be written as

∂p1(u, t)

∂t
= D∆p1(u, t)− (N − 1)∇

(∫
Ω

F(u− u′, t) p2(u,u′, t) du′
)
,

(11)

∂p2(u,u′, t)

∂t
= D∆p2(u,u′, t)

− ∂

∂u

(
F(u− u′, t) p2(u,u′, t)

)
− ∂

∂u′

(
F(u′ − u, t) p2(u,u′, t)

)
− (N − 2)

∂

∂u

∫
Ω

F(u− u′′, t)
p2(u,u′, t) p2(u,u′′, t) p2(u′,u′′, t)

p1(u, t) p1(u′, t) p1(u′′, t)
du′′

− (N − 2)
∂

∂u′

∫
Ω

F(u′ − u′′, t)
p2(u,u′, t) p2(u,u′′, t) p2(u′,u′′, t)

p1(u, t) p1(u′, t) p1(u′′, t)
du′′,

(12)

where p2(u,u′, t) is the density-density correlation function that captures cor-

relations in the positions of agents at locations u and u′, at time t (Middleton

et al. 2014).

2.2.2 Simplified one-dimensional continuum model

The experimental images depicted in Figure 1a-d demonstrate the evolution

of the cell population on a two-dimensional substrate. We note that the cell

density in a scratch assay is independent of the vertical coordinate (Figure

1a-d) so that the experiment can be described in terms of a one-dimensional

coordinate system. The underlying discrete model for Equation (8) and Equa-
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Continuum approximations for lattice-free models of collective cell migration 15

tions (11)-(12) is a system of Langevin equations, Equation (3), as described

in Section 2.1. To justify the one-dimensional approach we reproduce the ex-

perimental image in Figure 1(a) using two-dimensional Langevin model, and

compare the density profiles obtained from the two-dimensional model with

the results from the one-dimensional stochastic model (Supplementary Mate-

rial document). Results presented in Figure 1 (Supplementary Material docu-

ment) show that the simpler one-dimensional model produces similar results

to the two-dimensional model for this special initial condition where the agent

density is independent of the vertical coordinate. Motivated by these con-

siderations, we neglect density variations in the vertical direction and write

Equation (8) and Equations (11)-(12) in a one-dimensional format. We note

that the use of one-dimensional continuum models to understand and interpret

multidimensional transport phenomena with appropriate symmetry imposed

by the initial conditions and boundary conditions is relatively common in both

the mathematical biology literature (Callaghan et al. 2006; Khain et al. 2011;

Smith et al. 2017), as well as in other areas of engineering and applied science

(Simpson 2009).

The mean-field continuum limit of the one-dimensional stochastic model is

given by an IDPE that can be written as

∂p1(x, t)

∂t
= D∆p1(x, t)− (N − 1)∇(p1(x, t)V (x, t)), (13)

where the agent density, p1(x, t), depends on the position x and time t, and

V (x, t) =

∫
Ω

F (x− y, t) p1(y, t) dy, (14)

is the velocity field induced by the interactions between agents. We note that

the diffusivity in Equation (13) is directly related to the stochastic force, ξi,

in the stochastic model, Equation (3).
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As stated previously, continuum limit descriptions based on the MFA

amount to assuming that the positions of agents are independent. However, in

many practical situations, cells and other living organisms can adhere to each

other and form clusters (Steinberg, 1996). In these situations the assumptions

underpinning MFA-based continuum models are questionable. To address this

limitation, we now make use of a more sophisticated moment dynamics con-

tinuum description that accounts for the density of agents and the density

of pairs of agents. The moment dynamics model, based on the KSA, can be

written as

∂p1(x, t)

∂t
= D∆p1(x, t)− (N − 1)∇

(∫
Ω

F (x− y, t) p2(x, y, t) dy
)
, (15)

∂p2(x, y, t)

∂t
= D∆p2(x, y, t)

− ∂

∂x

(
F (x− y, t) p2(x, y, t)

)
− ∂

∂y

(
F (y − x, t) p2(x, y, t)

)
− (N − 2)

∂

∂x

∫
Ω

F (x− z, t) p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz

− (N − 2)
∂

∂y

∫
Ω

F (y − z, t) p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz,

(16)

where p1(x, t) is the average density of agents at location x and time t, and

p2(x, y, t) is the density-density correlation function that captures correlations

in the positions of agents at locations x and y at time t.

3 Results and discussion

Here we focus our attention on a typical scratch assay geometry (Figure 1a-d).

In this experiment the cell density does not depend, on average, on the vertical
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position (Figure 1a-d). Therefore, we can approximate this experiment as a

one-dimensional problem.

The experimental images in Figure 1a-d show only a small region of the

population, which extends well beyond the vertical boundaries of the image

(Johnston et al. 2015). We apply periodic boundary conditions in all simula-

tions (Middleton et al. 2014). The initial condition is given by sampling from

a distribution, α(x), that is given by

α(x) =


12.5× 10−3, 0 µm ≤ x < 600 µm,

0, 600 µm ≤ x ≤ 1400 µm,

12.5× 10−3, 1400 µm < x ≤ 2000 µm,

(17)

where the length of the domain, 2000 µm, is a typical width of an experimental

image (Jin et al. 2016). To initialise the stochastic simulations we randomly

place agents in the two intervals, 0 ≤ x ≤ 600 µm, and 1400 ≤ x ≤ 2000

µm. This initial distribution of agents in the simulations mimics the initial

distribution of cells in the images of scratch assays, given in Figure 1a and

Figure 1c. In all of our results we report the agent density profiles in terms

of both the dimensional density of agents, p1(x, t) [agents/µm], as well as a

non-dimensional agent density, p1(x, t)/C, where C = N δ(0)/L is the carrying

capacity density of agents with diameter δ(0). Here N is the maximum number

of agents of diameter δ(0) that can be distributed, without compression, along

a line of length L. In Equation (17) we choose the maximum density to be

12.5 × 10−3 cells/µm because this corresponds to a non-dimensional density

of approximately p1(x, t)/C = 0.625, and this is a typical initial density used

in practice (Jin et al 2016; Liang et al. 2007). To initialise our simulations we

place agents of diameter δ(0), at random, until the density of agents in the two

intervals, 0 ≤ x ≤ 600 µm, and 1400 ≤ x ≤ 2000 µm, is p1(x, t)/C = 0.625.
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We describe the evolution of the scratch assay in three different ways.

First, we perform individual realisations of the stochastic model to produce

individual snapshots showing the distribution of agents in each simulation.

Second, we perform a large number of identically prepared realisations of the

stochastic model, and count the numbers of agents in I equally-spaced inter-

vals across the domain. Averaging the number of agents in each interval allows

us to quantify the spatial variation in the average agent density. Finally, we

solve both the MFA- and KSA-based continuum models numerically, and com-

pare the solutions of the continuum models with the average data from the

suite of stochastic simulations to examine the accuracy of the two continuum

descriptions. To quantify the accuracy of the two continuum descriptions we

use

EMFA(t) =
1

I

I∑
i=1

[
p1,MFA(i, t)− p1,discrete(i, t)

]2
, (18)

EKSA(t) =
1

I

I∑
i=1

[
p1,KSA(i, t)− p1,discrete(i, t)

]2
, (19)

where, the index i denotes spatial node, I is the total number of nodes used

to quantify the averaged agent density, p1,MFA(i, t) is the density of agents

predicted by the MFA-based continuum model, p1,KSA(i, t) is the density of

agents predicted by the KSA-based continuum model, and p1,discrete(i, t) is

the density of agents predicted by averaging a suite of identically prepared

realizations of the stochastic Langevin model. Here, EMFA(t) is a measure of

the error associated with the MFA-based continuum description, and EKSA(t)

is a measure of the error associated with the KSA-based continuum description.

We first examine the most straightforward situation where we consider a

scratch assay with a population of cells where the diameter of cells remains

constant. Following this preliminary case, we then examine two additional

situations where we consider the same scratch assay except that the diameter
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of individual agents in the populations increases at different rates: (i) relatively

slow growth, k = 0.2 /h; and (ii) faster growth, k = 0.3 /h. In all cases we

fix the diffusivity to be a typical value for the PC-3 prostate cancer cell line,

D = 1200µm2/h (Jin et al. 2016).

The stochastic model, Equation (3), is solved numerically using a first order

explicit Euler method (Press et al. 2007). The number of individual realisa-

tions used to construct the density profiles is chosen to be 105. This choice

produces averaged density data with fluctuations that are two orders of mag-

nitude smaller than the density data. For example, at t = 0, the density in

the region x < 600µm is approximately 10−2 agents/µm, whereas the stan-

dard deviation of the agent density is approximately 10−4 agents/µm. After

performing 105 identically prepared simulations of the stochastic model, the

spatio-temporal distribution of agent density is estimated by averaging results

from identically-prepared realisations. The initial condition for the MFA-based

continuum model, Equation (13), is p1(x, 0) = α(x), and the solution of the

MFA-based continuum model is obtained by solving Equation (13) numeri-

cally, as described in the Supplementary Material document. Since we choose

the positions of agents in the stochastic simulations to be random at t = 0,

there are no correlations in the initial distribution of agents. Consequently, the

initial condition for the KSA-based continuum model, Equations (15)-(16), is

p1(x, 0) = α(x), and p2(x, y, 0) = α(x)α(y). To predict the evolution of the sys-

tem using the KSA-based continuum model, numerical solutions of Equations

(15)-(16) are obtained using techniques outlined in the Supplementary Mate-

rial document. In all cases, the numerical solutions of both continuum models

are obtained using a sufficiently fine spatial and temporal discretisation that

the results are grid independent.

The results in Figures 4-6 compare solutions of the MFA- and KSA-based

continuum models with the averaged results from stochastic simulations in
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20 Oleksii M Matsiaka et al.

the cases of: (i) no growth, k = 0 /h; (ii) relatively slow growth, k = 0.2 /h;

and (iii) faster growth, k = 0.3 /h. To quantify the performance of the MFA

and KSA models we compute the time evolution of EMFA(t) and EKSA(t),

given by Equations (18)–(19), respectively. The only difference between the

continuum-stochastic comparisons in Figures 4-6 is the rate of increase of the

agent diameter, k. All other parameters in the simulations in Figures 4-6 are

held constant to avoid ambiguity and to highlight the influence of agent growth

on the dynamics of the population and the performance of the two different

continuum descriptions.

The results in Figure 4a-c, Figure 5a-c and Figure 6a-c show stochastic

simulations evolving from different realisations of the initial condition, Equa-

tion (17), to give a spatial distribution of agents after 24 and 48 hours. Note

that the distributions of agents in Figure 4a-c, Figure 5a-c and Figure 6a-c are

given as a series of 100 separate, one-dimensional simulations that are plotted

adjacent to each other (Matsiaka et al. 2017). Presenting the stochastic results

in this way is convenient because it highlights the randomness in the stochastic

model. In general, we see that over a period of 48 hours the wound, of initial

width 800 µm, becomes recolonised by agents and the wound appears to close.

Comparing the evolution of the stochastic models in Figure 4a-c, Figure 5a-c

and Figure 6a-c, with the experimental images in Figure 1c-d suggests that

this choice of parameters in the stochastic model is reasonable, as the rate of

wound closure in the stochastic simulations is similar to the rate of wound

closure in the experimental images.

In the case where there is no growth (Figure 4), the solution of the MFA-

based continuum model matches the averaged agent density profile from the

stochastic simulations very well (Figure 4d). Similarly, comparing the solution

of the KSA-based continuum model with the averaged agent density profile

(Figure 4e) reveals an excellent match. In this case, there seems to be little
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justification for use of the more complicated KSA-based continuum model as

the simpler MFA-based model captures the evolution of the averaged agent

density extremely well. Furthermore, quantitative comparison of the accuracy

of the MFA-based continuum model with the accuracy of the KSA-based con-

tinuum model (Figure 4f) confirms that there is no advantage in using the

KSA-based model for this problem where the size of the agents remains fixed.

In contrast, when we consider the situation where agents increase in size,

k > 0 (Figures 5 and 6), the improved performance of the KSA-based con-

tinuum model becomes clear. Results in Figure 5d compare the evolution of

the MFA-based model and averaged agent density data from the stochastic

model, showing that there is a clear and visually discernible difference be-

tween two sets of profiles. This difference is quantified in Figure 5f. In con-

trast, the accuracy of the KSA-based continuum model, shown in Figure 5f,

remains excellent. Similar comparisons between the performance of the MFA-

and KSA-based continuum models in Figure 6 for faster growth confirms the

improved accuracy of the KSA-based continuum model in the case when the

agents are allowed to increase in size dynamically.
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4 Conclusions

In this work we present stochastic and continuum models of collective cell

migration that can be applied to mimic scratch assays. In particular, we pay

careful attention to allow for the case where the agents in the stochastic simula-

tion change size dynamically. This feature can be important when we consider

scratch assays with cells that are treated with Mitomycin-C to prevent prolifer-

ation. The stochastic model we present takes the form of a system of Langevin

equations, and this framework can be used to describe the collective behaviour

of a population of cells with constant size, or the collective behaviour of a pop-

ulation of cells with variable size. In addition to considering variable cell size,

the stochastic framework describes random cell motility, crowding effects via

a short range repulsive force, and cell-to-cell adhesive effects via longer range

attraction. There is a crucial difference between two key parameter regimes

that we consider: constant agent size, and dynamically increasing agent size.

In the case when agent size remains constant, the average force acting on

each individual agent remains approximately constant in regions of spatially

uniform density. In contrast, increasing the size of individual agents leads to

increased interactions between agents. Consequently, when we consider cases

where the agent size increases dynamically, the MFA continuum description

provides poorer match to the averaged discrete results at later times (Figure

5d, Figure 6d).

In addition to relying on repeated stochastic simulations, we also wish to

develop continuum approximations of the stochastic model so that we can

predict population-level and tissue-level data. To achieve this we first consider

a continuum description based on the usual MFA that neglects correlations

in the positions of agents. In this approach the position of any individual

agent is treated as being independent of the positions of all other agents.
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The MFA-based model is relatively fast to simulate, as it takes only a few

minutes to produce results depicted in Figure 4d, Figure 5d, and Figure 6d on a

single desktop machine. While the MFA leads to a straightforward continuum

model, the neglect of spatial correlations suggests that the approach might

not always be valid, for example in situations where spatial structure and

clustering develops. To overcome these potential limitations we also make use

of a more advanced moment dynamics approach using the KSA. The KSA-

based continuum description is more complicated to derive and much more

numerically intense than the MFA-based approach, but it is attractive since

it avoids inaccuracies of the MFA.

Generally, both the MFA- and KSA-based continuum models lead to rea-

sonable predictions of the averaged stochastic results for the experimentally

motivated problems that we describe here. In the case when the agent size

remains constant, both the MFA- and KSA-based continuum models lead to

an excellent match with the averaged data from the stochastic simulations. In

this case, the simpler MFA-based continuum model is preferable to the com-

putationally expensive KSA-based continuum model. However, in cases where

agents increase in size, the KSA-based model outperforms the MFA-based

model. This is due to the fact that agent growth increases agent-to-agent

crowding effects, and these effects are incorporated in a relatively simplistic

way in the MFA-based continuum model. Instead of simply concluding that the

KSA-based model is always preferable to the MFA-based model, we acknowl-

edge that the increased accuracy of the KSA-based approach comes at the

cost of significantly increased computational expense. Specifically, it takes a

couple of days to produce the results shown in Figure 4e, Figure 5e, and Figure

6e on High Performance Computing facilities without parallelizing techniques

(QUT High Performance Computing, 2017). Therefore, we take a flexible view

and present both continuum models. Furthermore, we acknowledge that the
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MFA-based approach will be preferable in some circumstances, whereas the

KSA-based approach will be preferable in other circumstances.

There are many ways that the work presented here can be extended. For

example, all cases presented here involve particular choices of functional forms

for δ(t) and Z(r, t), yet many other choices are possible. Note that the stochas-

tic algorithm described here, and the two continuum approximations are suf-

ficiently flexible that other functional forms for δ(t) and Z(r, t) can be used

directly in these frameworks, if required. We note that, here we consider the

change in cell diameter since this is the simplest possible way that we can

mimic an increase in cell size. However, alternative approaches are possible,

such as modelling dynamic changes in cell volume. Our modelling approach

can be used to mimic dynamic changes in volume by assuming that cells are

spherical, and expressing the radius as a function of volume. Here we do not

pursue this approach as the experimental images in Figure 1 provide little in-

formation about the three-dimensional shape of the cells, so we feel it is more

natural to work with a simpler measure, namely the approximate diameter,

δ(t). Another assumption that we make is that all agents in the population

behave identically in that each agent has the same initial size and grows at the

same rate. An interesting extension of this work would be to consider a hetero-

geneous population of cells that is made up of distinct subpopulations. Using

the framework presented it would be possible to consider different subpopula-

tions with different initial sizes, and to consider different subpopulations that

grow at different rates. This kind of model could be described using a more

complicated multi-species framework (Matsiaka et al. 2017). However, since

this is the first time that a model of collective cell migration in a scratch assay

that incorporates crowding effects and cell size dynamics has been explored,

we leave this extension to the multi-species case for future consideration.
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