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Abstract

Nonlinear dynamical systems are increasingly informing both theoretical and
empirical branches of neuroscience. The Brain Dynamics Toolbox provides
an interactive simulation platform for exploring such systems in Matlab.
It supports the major classes of differential equations that arise in com-
putational neuroscience: Ordinary Differential Equations, Delay Differential
Equations and Stochastic Differential Equations. The design of the graphical
interface fosters intuitive exploration of the dynamics while still supporting
scripted parameter explorations and large-scale simulations. Although the
toolbox is intended for dynamical models in computational neuroscience, it
can be applied to dynamical systems from any domain.
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1. Introduction1

Computational neuroscience relies heavily on numerical methods for sim-2

ulating non-linear models of brain dynamics. Software toolkits are the man-3

ifestation of those endeavors. Each one represents an attempt to balance4

mathematical flexibility with computational convenience. Toolkits such as5

Genesis [1], Neuron [2] and Brian[3] provide convenient methods to sim-6

ulate conductance-based models of single neurons and networks thereof. The7

Virtual Brain [4] scales up that approach to the macroscopic dynamics of8

the whole brain by combining neural field models [5] with anatomical con-9

nectivity datasets [6]. Mathematical toolkits such as Auto [7], Xppaut10

[8], Matcont [9], PyDSTool [10] and CoCo [11] are useful for analyzing11

non-linear dynamics but assume advanced mathematical theory.12
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2. Problems and Background13

In our experience, the existing computational toolkits often present tech-14

nical barriers to broader audiences in cognitive neuroscience, systems neuro-15

science and neuroimaging. For example, Genesis [1], Neuron [2], Brian [3]16

and Xppaut [8] each use idiosyncratic languages for defining the differential17

equations. The Virtual Brain [4], CoCo [11] and PyDSTool [10] use conven-18

tional programming languages (Python and Matlab) but assume advanced19

object-oriented programming techniques that broader audiences often find20

confusing. Of all of the existing toolkits, only Xppaut [8] and the Virtual21

Brain [4] are capable of supporting Ordinary Differential Equations (ODEs),22

Delay Differential Equations (DDEs) and Stochastic Differential Equations23

(SDEs). Our Brain Dynamics Toolbox aims to bridge these technical barri-24

ers by allowing those with diverse backgrounds to explore neuronal dynamics25

through phase space analysis, time series exploration and other methods with26

minimal programming burden. A custom system of ODEs, DDEs or SDEs27

can typically be implemented in fewer than 100 lines of standard Matlab28

code. Object-oriented programming techniques are not required. Once the29

model is implemented, it can be run interactively in the graphical interface30

(Figure 1) where a variety of different plotting panels and numerical solvers31

can be applied with no additional programming effort. The internal states32

of the graphical interface are accessible to the user’s workspace so that pa-33

rameter sweeps can be semi-automated in the command window with simple34

for-loop statements. Additional command-line tools are also provided for35

scripting fully-automated simulations in batch mode. Such scripts may be36

called from third-party Matlab applications and vice versa. Large-scale37

simulations can be scripted to run in parallel using the Matlab Parallel38

Computing Toolbox or the Matlab Distributed Computing Server. Unfor-39

tunately the toolbox does not run on Octave [12] because of incompatibilities40

in the graphical interface class libraries.41

3. Software Framework42

The toolbox operates on user-defined systems of ODEs, DDEs and SDEs.43

The details differ slightly for each type of differential equation but the overall44

approach is the same. For an ODE,45

dY

dt
= F (t, Y ),
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Figure 1: Screenshots of selected display panels in the graphical interface as it simulates
a network of n=20 Hindmarsh-Rose [13] neurons. The parameters of the model appear
in the control panel on the right-hand side of the application window. The solution is
automatically recomputed each time any of those controls are altered. Individual controls
can be scalar, vector or matrix values thereby accommodating arbitrarily large parameter
sets. A Mathematical equations rendered with LaTeX. B Time portraits. C Phase
portrait. D Space-time portrait. E Hilbert transform. F Solver step sizes.
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the right-hand side of the equation is implemented as a matlab function of46

the form dYdt=F(t,Y). The toolbox takes a handle to that function and47

passes it to the relevant solver routine on the user’s behalf. The solver48

repeatedly calls F(t,Y) in the process of computing the evolution of Y (t)49

from a given set of initial conditions. The toolbox uses the same approach50

as the standard matlab solvers (e.g. ode45) except that it also manages51

the input parameters and plots the solver output. To do so, it requires52

the names and values of the system parameters and state variables. Those53

details (and more) are passed to the toolbox via a special data structure that54

we call a system structure. It encapsulates everything needed to simulate a55

user-defined model. Once a system structure has been constructed, it can be56

shared with other toolbox users.57

3.1. Software Architecture and Functionality58

The hub-and-spoke software architecture (Figure 2) allows arbitrary com-59

binations of solver routines and display panels to be applied to any model.60

The modular design also allows new solver routines and display panel classes61

to be added to the toolbox incrementally. The list of numerical solver62

routines and graphical panels that the toolbox supports continues to grow63

rapidly. The current version (2017c) supports the standard ODE solvers64

(ode45, ode23, ode113, ode15s, ode23s) and DDE solver (dde23) that65

are shipped with matlab. As well as a fixed-step ODE solver (odeEul) and66

two SDE solvers (sdeEM, sdeSH) that are specific to the Brain Dynamics67

Toolbox. The two SDE solvers are specialized for stochastic equations that68

use Itô calculus and Stratonovich calculus respectively.69

The display panels can be used to visualize the dynamics, compute met-70

rics from the time-series, or transform them into new time-series. The tool-71

box currently includes display panels for rendering mathematical equations,72

time plots, phase portraits, space-time plots, computing linear correlations,73

Hilbert transforms, surrogate data transforms and inspecting the individual74

steps taken by the solvers. The panel outputs are themselves accessible to75

the user’s workspace as read-only variables. New panels can be added to the76

toolbox at any time and we encourage advanced users to write custom panels77

for their own projects although that level of graphical interface development78

does involve object-oriented programming.79
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Figure 2: The hub-and-spoke software architecture of the Brain Dynamics Toolbox. Nu-
merical solvers marked with an asterisk are unique to the toolbox.

4. Illustrative Example80

We demonstrate the implementation of a network of recurrently-connected
Hindmarsh-Rose [13] neurons,

Ẋi = Yi − aX3
i + bX2

i − Zi + Ii − Ineti , (1)

Ẏi = c− dX2
i − Yi, (2)

Żi = r (s (Xi − x0) − Zi), (3)

where Xi is the membrane potential of the ith neuron, Yi is the conductance81

of that neuron’s excitatory ion channels, and Zi is the conductance of its82

inhibitory ion channels. Each neuron in the network is driven by a locally83

applied current Ii and a network current Ineti = gs (Xi−Vs)
∑

j KijF (Xj−θ)84

that represents the synaptic bombardment from other neurons. The sig-85

moidal function F (x)=1/(1 + exp(−x)) transforms that synaptic bombard-86

ment to an equivalent ionic current. The connectivity matrix Kij defines the87

weightings of the synaptic connections between neurons. All other parame-88

ters in the model are scalar constants. The model is a typical example of a89

neuronal network as a system of coupled ODEs.90
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4.1. Defining the equations91

We define the right-hand side of equations (1–3) as Matlab function92

of the form dY=F(t,Y,...) where the vector Y contains the instantaneous93

values of [X(t), Y (t), Z(t)] at time t. The ellipses denote model-specific pa-94

rameters.95

1 % The ODE function for the Hindmarsh Rose model.96

2 function dY = odefun(t,Y,Kij ,a,b,c,d,r,s,x0,I,gs,Vs,theta)97

3 % extract incoming variables from Y98

4 Y = reshape(Y,[],3); % reshape Y to (nx3)99

5 x = Y(:,1); % x is (nx1) vector100

6 y = Y(:,2); % y is (nx1) vector101

7 z = Y(:,3); % z is (nx1) vector102

8103

9 % The network coupling term104

10 Inet = gs*(x-Vs) .* Kij ./(1+ exp(-x+theta));105

11106

12 % Hindmarsh -Rose equations107

13 dx = y - a*x.^3 + b*x.^2 - z + I - Inet;108

14 dy = c - d*x.^2 - y;109

15 dz = r*(s*(x-x0)-z);110

16111

17 % return result (3n x 1)112

18 dY = [dx; dy; dz];113

19 end114

It is no coincidence that the form of this function is identical to that required115

by the standard ODE solvers, since the toolbox applies those same solvers116

to this function. In order to do so, it requires the names and initial values117

of the model’s parameters and state variables to also be defined. That is the118

purpose of the model’s system structure.119

4.2. Defining the system structure120

The system structure (named sys by convention) encapsulates the func-121

tion handles and parameter settings that the toolbox needs to pass the user-122

defined ODE function to the solver and plot the solution that is returned.123

The most important fields of the structure are the handle to user-defined124

function (sys.odefun), the names and initial values of the system vari-125

ables (sys.vardef) and the names and values of the system parameters126

(sys.pardef). Once a system structure has been constructed, it can be127

saved to a mat file and used by the toolbox as is. Nonetheless it is common128

practice to provide a helper function that constructs a new system structure129
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for a particular configuration of the model. In this example, the configura-130

tion of the system variables depends on the size of the network connectivity131

matrix, Kij.132

1 % Construct a system structure for the Hindmarsh -Rose model133

2 function sys = HindmarshRose(Kij)134

3 % Infer the number of neurons from the size of Kij135

4 n = size(Kij ,1);136

5137

6 % Handle to our ODE function138

7 sys.odefun = @odefun;139

8140

9 % Our ODE parameters141

10 sys.pardef = [ struct(’name’,’Kij’, ’value’,Kij);142

11 struct(’name’,’a’, ’value’ ,1);143

12 struct(’name’,’b’, ’value’ ,3);144

13 struct(’name’,’c’, ’value’ ,1);145

14 struct(’name’,’d’, ’value’ ,5);146

15 struct(’name’,’r’, ’value’ ,0.006);147

16 struct(’name’,’s’, ’value’ ,4);148

17 struct(’name’,’x0’, ’value’ ,-1.6);149

18 struct(’name’,’Iapp’, ’value’ ,1.5);150

19 struct(’name’,’gs’, ’value’ ,0.1);151

20 struct(’name’,’Vs’, ’value’ ,2);152

21 struct(’name’,’theta ’, ’value’ ,-0.25) ];153

22154

23 % Our ODE variables155

24 sys.vardef = [ struct(’name’,’x’, ’value’,rand(n,1));156

25 struct(’name’,’y’, ’value’,rand(n,1));157

26 struct(’name’,’z’, ’value’,rand(n,1)) ];158

27159

28 % Latex (Equations) panel160

29 sys.panels.bdLatexPanel.title = ’Equations ’;161

30 sys.panels.bdLatexPanel.latex = {162

31 ’\textbf{HindmarshRose}’;163

32 ’’;164

33 ’Network of coupled Hindmarsh -Rose neurons ’;165

34 ’\qquad $\dot X_i = Y_i - a\,X_i^3 + b\,X_i^2 - Z_i +166

I_{app} - g_s\,(X_i -V_s) \sum_j K_{ij} F(X_j -\ theta)$’;167

35 ’\qquad $\dot Y_i = c - d\,X_i^2 - Y_i$’;168

36 ’\qquad $\dot Z_i = r\,(s\,(X_i -x_0) - Z_i)$’;169

37 ’where’;170

38 ’\qquad $K_{ij}$ is the connectivity matrix ,’;171

39 ’\qquad $a , b, c, d, r, s, x_0 , I_{app}, g_s , V_s$172

and $\theta$ are constants ,’;173
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40 ’\qquad $I_{app}$ is the applied current ,’;174

41 ’\qquad $F(x) = 1/(1+\ exp(-x))$,’;175

42 ’\qquad $i{=}1 \dots n$.’ };176

43 end177

The order of the parameter definitions in the pardef field must match that178

of the odefun function. Likewise for the system variables in the vardef field.179

The final part of the helper function (lines 28–42) defines the model-180

specific strings for rendering the mathematical equations in the LaTeX dis-181

play panel. Those LaTeX strings are important for documenting the model182

in the graphical interface but they play no part in the simulation itself.183

4.3. Running the model.184

The model is run by loading an instance of the system structure into the185

toolbox graphical user interface, which is called bdGUI.186

>> n = 20; % Define number of neurons.187

>> Kij = circshift(eye(n),1) ... % Define connection matrix,188

+ circshift(eye(n),-1); % as a chain in this case.189

>> sys = HindmarshRose(Kij); % Construct the sys struct.190

>> bdGUI(sys); % Run the model in the GUI.191

The graphical interface (Figure 1) allows the solution to be visualized with192

any number of display panels, all of which are updated concurrently. The193

solution is automatically recomputed whenever any of the graphical controls194

are adjusted; including the system parameters, the initial conditions of the195

state variables, the time domain of the simulation and the solver options.196

4.4. Controlling the model197

The bdGUI application returns a handle to itself which can be used to198

control the simulation from the matlab command window.199

>> gui = bdGUI(sys)200

gui =201

bdGUI with properties:202

version: ’2017c’ % toolbox version string203

fig: [1x1 Figure] % application figure handle204

par: [1x1 struct] % system parameters (read-write)205

var0: [1x1 struct] % initial conditions (read-write)206

var: [1x1 struct] % solution variables (read-only)207
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t: [1x9522 double] % solution time points (read-only)208

lag: [] % DDE lag parameters (read-write)209

sys: [1x1 struct] % system structure (read-only)210

sol: [1x1 struct] % solver output (read-only)211

sox: [] % auxiliary variables (read-only)212

panels: [1x1 struct] % display panel outputs (read-only)213

The parameters of the model are all accessible by name via the gui.par214

structure. Likewise, the computed solution variables are accessible by name215

via the gui.var structure and also in the native format returned by the solver216

via the gui.sol structure. Parameter values written into the gui.par handle217

are immediately applied to the graphical user interface, and vice versa. Hence218

it is possible to use workspace commands to orchestrate parameter sweeps219

in the graphical user interface. For example, the workspace command220

>> for r=linspace(0.05,0.001,25); gui.par.r=r; end;221

sweeps the r parameter (time constant of inhibition) from 0.05 to 0.001 in 25222

increments. The graphical interface automatically recomputes the solution223

every time that gui.par.r is assigned a new value in the loop. The result is224

an animated sequence of simulations where bursting phenomenon is observed225

for r . 0.01.226

4.5. Scripting the model227

The toolbox also provides a small suite of command-line tools for running228

models without invoking the graphical interface. Of these, the most notable229

commands are bdSolve(sys,tspan) which runs the solver on a given model230

for a given time span; and bdEval(sol,t) which interpolates the solution231

for a given set of time points.232

>> t = 0:1000;233

>> sol = bdSolve(sys,[t(1) t(end)]);234

>> X = bdEval(sol,t);235

>> plot(t,X);236

The bdEval function is equivalent to the matlab deval function except that237

it also works for solution structures (sol) returned by third-party solvers.238
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5. Conclusions239

The Brain Dynamics Toolbox provides researchers with an interactive240

graphical tool for exploring user-defined dynamical systems without the bur-241

den of programming bespoke graphical applications. The graphical interface242

imposes no limit the size of the model nor the number of parameters involved.243

System parameters and variables can range in size from simple scalar values244

to large-scale vectors or matrices without loss of generality. The design also245

imposes no barrier to scripting large-scale simulations and parameter sur-246

veys. The toolbox is aimed at students, engineers and researchers in com-247

putational neuroscience but it can also be applied to general problems in248

dynamical systems. It is supported with an extensive user manual [14] that249

provides detailed instructions for implementing new systems of ODEs, DDEs250

and SDEs. Once a new model is implemented, it can be readily shared with251

other toolbox users. The toolbox thus serves as a hub for sharing models as252

much as it serves as a tool for simulating them.253
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Required Metadata292

Current executable software version293

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version 2017c
S2 Permanent link to executables of

this version
https://github.com/breakspear/
bdtoolkit/releases/tag/bdtoolkit-
2017c

S3 Legal Software License BSD 2-clause
S4 Computing platform/Operating

System
Matlab 2014b or newer

S5 Installation requirements & depen-
dencies

Signal Processing Toolbox (op-
tional). Statistics and Machine
Learning Toolbox (optional).

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

http://www.bdtoolbox.org

S7 Support email for questions heitmann@bdtoolbox.org

Table 1: Software metadata (optional)

Current code version294
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Nr. Code metadata description Please fill in this column
C1 Current code version 2017c
C2 Permanent link to code/repository

used of this code version
https://github.com/breakspear/
bdtoolkit/releases/tag/bdtoolkit-
2017c

C3 Legal Code License BSD 2-clause
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Matlab 2014b or newer

C6 Compilation requirements, operat-
ing environments & dependencies

Signal Processing Toolbox (op-
tional). Statistics and Machine
Learning Toolbox (optional).

C7 If available Link to developer docu-
mentation/manual

http://www.bdtoolbox.org

C8 Support email for questions heitmann@bdtoolbox.org

Table 2: Code metadata (mandatory)
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