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 1 
 2 
 3 
ABSTRACT 4 
 5 
Parsing diverse nerve cells into biological types is necessary for understanding neural circuit 6 
organization. Morphology is an intuitive criterion for neuronal classification and a proxy of 7 
connectivity, but morphological diversity and variability often preclude resolving the granularity of 8 
discrete cell groups from population continuum. Combining genetic labeling with high-resolution, 9 
large volume light microscopy, we established a platform of genetic single neuron anatomy that 10 
resolves, registers and quantifies complete neuron morphologies in the mouse brain. We discovered 11 
that cortical axo-axonic cells (AACs), a cardinal GABAergic interneuron type that controls pyramidal 12 
neuron (PyN) spiking at axon initial segment, consist of multiple subtypes distinguished by laminar 13 
position, dendritic and axonal arborization patterns. Whereas the laminar arrangements of AAC 14 
dendrites reflect differential recruitment by input streams, the laminar distribution and local geometry 15 
of AAC axons enable differential innervation of PyN ensembles. Therefore, interneuron types likely 16 
consist of fine-grained subtypes with distinct input-output connectivity patterns. 17 
 18 
 19 
  20 
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INTRODUCTION 1 
 2 
Diverse nerve cells wire up intricate neural circuits that underlie animal behavior.  Defining and 3 
cataloging the basic elements, groups of neurons that share anatomical, physiological and molecular 4 
properties are necessary for understanding the organizational logic of neural circuits (Huang and Zeng, 5 
2013; Lerner et al., 2016). As phenotypic variations of neurons often span substantial parameter space 6 
and appear continuous as well as discrete, it is necessary to carry out comprehensive, quantitative, and 7 
scalable single cell analysis (instead of tissue level analysis of mixed cell populations) to resolve the 8 
appropriate granularity of cell type definition (Zeng and Sanes, 2017). Recent advances in single cell 9 
RNA sequencing (scRNAseq) enable comprehensive and quantitative measurements of cellular 10 
transcriptome profiles at massive scale, and computational analyses reveal increasing number of 11 
“transcriptional types” and discrete as well as continuous variations (Macosko et al., 2015; Paul et al., 12 
2017; Poulin et al., 2016; Tasic et al., 2016; Zeisel et al., 2015). As neuronal phenotypes are inherently 13 
multi-modal, it is necessary to achieve single cell analyses across multiple cell features toward an 14 
integrated definition of neuron types that encapsulate the issue of granularity.  15 
 16 
Neuronal morphology has been an intuitive first level description of cell features and types since 17 
Cajal’s initial observation. In several invertebrate systems (Aso et al., 2014; Chiang et al., 2011) and 18 
the vertebrate retina (Sanes and Masland, 2015) in which neurons are relatively small and stereotyped, 19 
comprehensive and quantitative single neuron morphometry has allowed operational and consensual 20 
definition of neuron types. Morphology based cell catalogues in these systems have been achieved or 21 
within reach (Aso et al., 2014; Hobert et al., 2016; Seung and Sumbul, 2014), which provide a 22 
foundation for multi-modal analysis and for exploring neural circuit organization. In the mammalian 23 
brain, however, the vast diversity, large spatial span (e.g. 100nm axon extending centimeters), and 24 
seemingly endless variations of neuronal shapes present unique challenges in morphological tracing 25 
and analysis (Huang and Zeng, 2013; Lichtman and Denk, 2011). Single neuron anatomy in the 26 
mammalian brain requires overcoming several technical hurdles. The first is labeling: to 27 
systematically, reliably, sparsely and completely label specific sets of individual neurons. The second 28 
is imaging: to achieve axon resolution imaging in brain-wide volume (Economo et al., 2016; Gong et 29 
al., 2013; Li et al., 2010). The third is cell reconstruction: to convert large image stacks into digital 30 
datasets of single neuron morphology. The fourth is analysis: to register neuronal morphology within 31 
appropriate spatial coordinate framework, and to extract, quantify and classify biologically relevant 32 
attributes (e.g. those relate to neural connectivity). 33 
 34 
Here, we have established a robust genetic Single Neuron Anatomy (gSNA) platform in the mouse that 35 
overcomes some of these challenges. We designed a genetic method to achieve specific, sparse, 36 
complete, and reliable cell labeling. Combined with dual-color fluorescence Micro-Optic Sectioning 37 
Tomography (dfMOST; (Gong et al., 2016), this enabled axon resolution and brain-wide imaging and 38 
spatial registration of genetically targeted neurons. We focused our analysis on one of the most 39 
distinctive cortical GABAergic interneurons - the axo-axonic cells (AACs) that specifically innervate 40 
the axon initial segment (AIS) of glutamatergic pyramidal neurons (PyNs) (Somogyi et al., 1982; 41 
Taniguchi et al., 2013) and likely control spike initiation. Complete reconstruction of single AACs and 42 
their precise registration along cortical laminar coordinate allowed quantitative analysis of AAC 43 
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morphology in the context of input-output connectivity. We discovered that cardinal AACs consists of 1 
multiple discrete subtypes distinguished by their laminar position, dendritic and axonal arborization 2 
pattern, and geometric features. The laminar arrangements of AAC dendrites may allow differential 3 
recruitment by presynaptic input streams. Furthermore, the laminar stratification of AAC axon arbors 4 
correlates with the distribution of PyN subsets and the local geometry of AAC axon terminals 5 
differentially conform to the laminar features of PyN AIS, suggesting AAC subtypes that differentially 6 
innervate PyN ensembles. Our results support a hierarchical scheme of neuronal classification (Zeng 7 
and Sanes, 2017) and suggest that cardinal neuron types consist of fine-grained subtypes, which can be 8 
deduced from light microscopy and mesoscale analyses that inform input-output connectivity patterns. 9 
The gSNA platform enables scalable and comprehensive single neuron anatomical analysis, which will 10 
provide foundational datasets for neuron type definition, classification, and census in the mammalian 11 
brain.  12 
 13 
 14 
RESULTS 15 
 16 
Establishing a genetic single neuron anatomy (gSNA) platform 17 
Our gSNA platform consists of four components (Fig. 1a). The first is a method to systematically label 18 
different sets of genetically targeted individual neurons to their entirety; the second is a technology for 19 
simultaneous imaging of labeled neurons at axon resolution and all other cell body positions 20 
throughout the entire mouse brain (dfMOST) (Gong et al., 2016); the third is a procedure to 21 
completely reconstruct single neurons from brain volume image stacks; the fourth is an analysis 22 
pipeline that registers and quantifies neuronal morphology within an appropriate spatial coordinate 23 
system that reflect network connectivity.  24 
 25 
Cell labeling is the starting point of neuroanatomy, yet specific, sparse, complete, and systematic 26 
labeling of diverse nerve cells has been an enduring challenge since the invention of Golgi stain. We 27 
combined genetic and viral methods to solve this problem in the mouse brain in several steps. We first 28 
generated gene knockin recombinase driver lines that allow specific and reliable targeting of cell 29 
populations defined by single or combinatorial gene expression (He et al., 2016; Taniguchi et al., 30 
2011). Next, inducible CreER drivers enable titration of sparseness for single cell labeling (He et al., 31 
2016). Further incorporation of recombinase-activated AAV vectors achieves high level reporter gene 32 
expression for complete cell labeling (Fig. 1b, Fig. 2). Systematic iterations of this strategy with the 33 
accumulation of driver lines (e.g. similar to those in Drosophila; (Jenett et al., 2012)) will enable 34 
increasingly comprehensive coverage of genetically defined populations across the mouse brain. Here 35 
we demonstrate the gSNA platform in resolving morphological diversity and granularity by analyzing 36 
a well-recognized interneuron type in the cerebral cortex.  37 
 38 
Despite the vexing diversity of cortical GABAergic neurons and the enduring debate on their 39 
classification scheme (DeFelipe et al., 2013), AACs were recognized as a bona-fide type soon after 40 
their discovery, largely based on their unique morphology and specific innervation of PyNs at AIS 41 
(Somogyi et al., 1982). Although the precise physiological action of AACs remains be elucidated (Lu 42 
et al., 2017; Szabadics et al., 2006; Woodruff et al., 2010), the defining feature is their specialization in 43 
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regulating the spike initiation of PyNs. However, multiple variants of AACs have been found in 1 
several cortical structures (e.g. the hippocampus, piriform cortex, neocortex) and in different cortical 2 
layers that manifest different morphological features (Lewis and Lund, 1990; Somogyi et al., 1982; 3 
Taniguchi et al., 2013). This raises the questions of whether the cardinal AAC type consist of multiple 4 
“subtypes”, how should subgroups be defined, and what is the appropriate granularity.  5 
  6 
We have previously captured cortical AACs through genetic fate mapping of neural progenitors of the 7 
embryonic medial ganglionic eminence (MGE) using the Nkx2.1-CreER driver line (Taniguchi et al., 8 
2013). Conversion of transient Nkx2.1-CreER expression in MGE progenitors to a constitutive Flpase 9 
activity in AACs enabled postnatal viral targeting (He et al., 2016). By controlling CreER efficiency 10 
(i.e. tamoxifen dose), AAV injection volume and location, we were able to achieve specific, sparse, 11 
and complete labeling of AACs in defined cortical areas (Fig. 2; Supplemental Fig. 1). Here we 12 
analyzed AACs in the medial prefrontal (mPFC), primary motor (MC), and whisker-barrel 13 
somatosensory (SSC) cortex. We use the original nomenclature axo-axonic cells (AACs) (Somogyi et 14 
al., 1982) to refer to all GABAergic interneurons that innervate PyNs at AIS. Under this category, we 15 
use the term chandelier cells (ChCs) to refer to the subsets of AACs in the cerebral cortex (especially 16 
those in supragranular layers), whose axon arbors resemble the candle sticks of a chandelier light.   17 
      18 
Following tissue resin-embedding and processing (Gong et al., 2016; Xiong et al., 2014), we used a 19 
dual-color fluorescence micro-optical sectioning tomography (dfMOST) system to image the whole 20 
brain samples at submicron resolution (Fig. 1c; Movie 1). The dual-channel capturing of neural 21 
morphology labeled by GFP and brain cytoarchitecture stained by propidium iodide (PI, red) were 22 
achieved by using a wide-field upright epi-fluorescence microscopy with a blue laser (488 nm) for 23 
fluorescence excitation and two separate TDI-CCD cameras for signal detection. Importantly, the PI 24 
channel provided each brain dataset with a self-registered Nissl like reference atlas of cell body 25 
distribution information, which allowed reliable delineation of cortical areas and layer boundaries 26 
(Supplemental Fig. 1, 2). Furthermore, the image contrast in PI channel was sufficient for the 27 
reconstruction of pyramidal neuron main dendrites which were used for identifying local laminar and 28 
vertical coordinates, readjusting cell orientation, and establishing a standardized platform for 29 
comparative analysis between cells in different cortical areas (Supplemental Fig. 3).  30 
 31 
From 11 whole brain dfMOST datasets, we completely reconstructed 62 AACs from mPFC, MC and 32 
SSC (Fig. 3a; Supplemental Fig.14; Supplemental Table 1). As axon arbors of AACs were 33 
extremely dense and complex, all AACs were manually reconstructed. This dataset represents the first 34 
set of complete and comprehensive AAC reconstructions in a brain region since their discovery 4 35 
decades ago. The average length of AAC axons was ~2.1cm, average number of axon branches was 36 
~1369, and average axon branch order was ~31. A major goal of our analysis is to define and discover 37 
AAC subtypes based on morphological features that inform connectivity, taking full advantage of the 38 
obligatory synaptic relationship between AAC axon terminals and PyN AIS. Our strategy was to 39 
examine the location and distribution of AAC cell bodies, their dendrite and axon arbor distribution, 40 
and their axon arbor geometry in the well-established coordinates of cortical laminar organization 41 
based on AAC postsynaptic targets – the PyNs (Fig. 3b).      42 
 43 
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 1 
AACs tend to localize at the borders between cortical layers 2 
We have previously found that AACs are distributed across most if not all cortical areas and in 3 
multiple cortical layers (Taniguchi et al., 2013), but more precise description of AAC distribution has 4 
not been reported. The cellular resolution spatial coordinate information in the dfMOST datasets 5 
allowed unambiguous and quantitative localization of AACs. Within all three areas, the largest 6 
proportion of our reconstructed AACs was located within the supragranular layers, with a major 7 
fraction at the layer 2 to layer 1 (L2/1) border (55%) and a much smaller set in layer 3 (5%) (Fig. 2, 3; 8 
supplementary Fig. 1). A significant portion of AACs were found in infragranular layers, both in 9 
layer 5 (L5 22%) and L6 (16%). We found one AAC in layer 4 of SSC. Interestingly, in most case, 10 
AAC somata tended to localize at the border between cortical layers, with prominent apical dendrites 11 
and basal axons (Figure 2, 3). At the areal border (defined by PI signal and cell distribution pattern), 12 
AAC axons appeared to restrict to one area and did not cross areas (supplementary Fig. 5). 13 
 14 
 15 
AACs elaborate laminar restricted and predominantly apical dendrites that protrude dendritic 16 
spines 17 
Almost all the reconstructed AACs elaborated prominent apical dendrites, while their basal dendrites 18 
were often sparse and restricted to the close vicinity of cell bodies (Fig. 4). The average span of apical 19 
dendrites of L2 AACs was 85.0 µm (90% of dendrite arbors horizontally cover 85.0 ±23.0 µm radial 20 
distance, mean ±SD, n=61) from soma (Supplemental Fig.6). In most cases, the apical dendrite 21 
extended within the one layer above the soma location (e.g. L1 for L2 AACs and L5 for L6 AACs). In 22 
several cases, L3 and L5 AACs extended apical dendrites all the way to the pia (Fig. 3a; Movie 5 and 23 
Movie 6). In particular, all L2 and some L3, L5 AAC dendrites appeared to tightly attach to the pia 24 
with thickened apical tufts; this is in contrast to many pyramidal neuron apical dendrites in L1 that do 25 
not reach near or adhere to pia surface (Fig. 4a, Supplemental Fig. 4). Interestingly, the apical but not 26 
basal dendrites of L2 ChCs sprouted filopodia-like slender dendritic spines, which were especially 27 
enriched in the upper half (68% in upper L1, the rest near L1/2 border) of L1 (Fig. 4c-k). The 28 
polarized dendritic arborization suggests that AACs receive most of their inputs from above their cell 29 
bodies. In particular, pia-attached AAC dendrites may recruit the most superficial L1 inputs and select 30 
or modify these inputs through dendritic spines.  31 
 32 
 33 
AACs elaborate laminar-stratified axon arbors, some with translaminar arbors   34 
Although the characteristic shape and exquisite specificity of AAC axons have been recognized 35 
decades ago, few or none have been reconstructed to their entirety. We found that AACs axons 36 
arborized very extensively near the cell soma (below the soma for L2 AACs and both above and below 37 
the soma for other cortical AACs; Fig. 5a-c; Supplement Fig. 7). The average span of AAC axon 38 
arbors was 129.2 µm (90% of axon arbors horizontally cover 129.2±27.5 µm radial distance; mean±39 
SD,n=61 ). In addition to the highly predominant local arbor (i.e. intralaminar), a significant fraction 40 
of L2 and L3 AAC axons (~74% of our L2 AAC reconstructions) further extended to the deeper layers 41 
(i.e. cross- and trans- laminar, Fig. 3, 5b, d, Supplement Fig. 9; Movie 2, 3, 4). In particular, 42 
translaminar axons of L2 AACs descended through intervening layers (e.g. L3-L5A in MC or L4 in 43 
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SSC) before elaborating terminal branches with presynaptic boutons (Fig. 5d). This result suggests 1 
that, in addition to exerting powerful control over local PyN populations, some L2/3 AACs likely 2 
coordinate firing between local PyNs and a distant ensemble in an infragranular layer. Interestingly, 3 
we observed one L6 AAC with an inverted polarity – its dendrite extended below toward the white 4 
matter whereas the axon extended above toward L5 (Fig. 3a, Supplement Fig. 13).  5 
 6 
 7 
AACs consist of multiple subtypes distinguished by dendrite-axon distributions that reflect 8 
input-output connectivity patterns 9 
The substantial variations in the location and morphology of AACs raise questions of whether they 10 
consist of anatomical “subtypes” and how subtypes can be resolved with biologically relevant 11 
granularity. As morphology is a proxy to and serves the purpose of connectivity, we first adopted a 12 
connectivity-guided approach to morphology-based AAC subtyping. Our analysis was based on the 13 
premise that at a mesoscale, establishing a synaptic connection requires the physical overlap between a 14 
presynaptic axon and its postsynaptic element within a specific anatomic location, i.e. an “anatomic 15 
parcel”, that represents the input or output component of a neural network (Ascoli and Wheeler, 2016); 16 
this tight spatial correlation often extends to the matching of fine-scale geometric features (e.g. 17 
presynaptic climbing fibers and postsynaptic Purkinje cell dendrites in the cerebellum). This obligatory 18 
correlation between pre- and post-synaptic elements, when framed in the context of circuit 19 
connectivity, provides a biologically relevant coordinate for morphological analyses.  20 
 21 
The mesoscale correlation between pre- and post-synaptic elements is particularly identifiable and 22 
compelling for AAC and PyNs. Within the laminar architecture of the cortex, different types of PyNs 23 
that project to distinct cortical and subcortical targets are organized, to the first approximation, into 24 
different layers, and different sources of cortical and subcortical inputs are routed through laminar 25 
streams (Harris and Shepherd, 2015) (Fig. 3b). Importantly, the obligatory relationship between AAC 26 
axon terminals and PyN AIS represents a rare case where AAC axon distribution alone indicates 27 
connectivity to specific types of postsynaptic targets. Together these provide an inherent spatial 28 
coordinate system to register AAC position and morphology in the larger framework of cortical input 29 
and output streams (Fig. 3b). As the laminar arrangement of AAC dendrites recruit different input 30 
streams and the laminar stratification of axons mediate their output to separate PyN ensembles, we 31 
designed a AAC clustering analysis that emphasized the laminar density distribution of AAC dendritic 32 
and axonal arbors (Fig. 6) We excluded L3, L4 AACs (Supplemental Fig 14) from this analysis as 33 
there were few such examples (less than 4) in our current dataset.  34 
 35 
Based on brain cytoarchitecture information of dfMOST datasets, we normalized AAC dendrite and 36 
axon density distribution to a standardized cortex template (Supplemental Fig. 11). Hierarchical 37 
clustering based on cortical laminar density distribution of axons and dendrites revealed multiple AAC 38 
subtypes grouped according to the laminar distribution of their cell body position and dendritic and 39 
axonal arborization. The identified L2 ChC clusters correspond to intra- (cluster 4), cross- (cluster 1) 40 
and trans- (cluster 2 and cluster 3) ChC subtypes. The axon arbors of cluster 3 extend both the L5 and 41 
L6 branches, but more dominantly innervate L5 (Supplementary Fig 12). Cluster 7 AACs resided at 42 
L5 and L6 border (i.e.L6a), their dendrites were restricted in L5 and L6a and their axons arborized 43 
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mainly in L6. Cluster 8 consisted of L6 AACs with intralaminar dendrite and axon arbors. These AAC 1 
subtypes likely receive different inputs and control different subsets of PyNs, and thus are 2 
distinguished by their circuit connectivity patterns. As the dendritic and axonal arbors of AACs are 3 
either present or not present in specific cortical layers to recruit inputs or innervate targets, 4 
respectively, AAC subtypes are likely unitary groups rather than subsets of a continuum. This was 5 
particularly apparent for two broad groups of L5 AACs, one extended short, L5-restricted apical 6 
dendrite and the other extended long, layer 1-reaching apical dendrites (Fig. 3, Supplemental Fig 10). 7 
We noted that this clustering method was not perfect as it assigned cell #38 to cluster 5, even though 8 
cell #38 extended apical dendrite to layer 1, as those characteristic to cluster 6 (Fig. 6, Supplemental 9 
Fig. 8, 10). In addition to these 8 clusters (Fig. 6), we detected 3 Layer 3 AACs (2 in SC, 1 in MC) 10 
with translaminar axon arbors and apical dendrite reaching layer 1 (Supplemental Fig. 9; Movie 5), 1 11 
Layer 4 AACs in SC (Movie 7), and 1 inverted layer 6 AAC in mPFC (Supplemental Fig. 13 show 12 
the projection image of L4 AAC).   13 
 14 
Hierarchical clustering based on the laminar distribution of axon density alone has a potential 15 
shortcoming: it may over cluster or miss cluster two identical density profiles appearing at different 16 
layer depths. Further, low dimensional projections do not always show well-separated clusters and 17 
may need other indirect evidence about clustering in the high dimensional space such as silhouette 18 
plots. We therefore carried out a robust comparative analysis of morphological types using additional 19 
geometrical and topological characteristics of the neurons. For analyzing topological characteristics we 20 
used a recently developed framework employing persistent homology (Li et al., 2017) to derive a 21 
metric in the space of neuronal shapes. Briefly, this framework employs a descriptor function defined 22 
on the neurons, and a topological summary independent of neuronal location and orientation is derived 23 
from the descriptor function. We utilized three descriptor functions based on three different ways of 24 
measuring distances from the soma (Euclidean, Geodesic and Cortical Depth). In addition, we also 25 
used a community-standard metric(Scorcioni et al., 2008), employed on neuromorpho.org.  26 
 27 
We performed hierarchical clustering employing each of these metrics, varying the number of clusters. 28 
By examining the overlap between the resulting clusters (ARI and SI indices, Figure 6d, e) we 29 
concluded that the metrics carry independent information about neuronal shape. We hypothesized that 30 
if a pair of neurons appears in the same cluster across all the metrics, this provides robust evidence that 31 
those neurons belong to the same morphological type. We thus proceeded by defining a graph in which 32 
each neuron is a node, and two nodes are connected if and only if they appear in the same cluster 33 
across all five metrics considered. This procedure produced a set of disconnected cliques (fully 34 
connected clusters). The three largest cliques corresponded to three robustly identified AAC cell types 35 
that are also visible in the hierarchical clustering using only the laminar density of the axons: the intra-, 36 
cross-, and trans- layer 2 AAC subtypes (Figure 6g; Supplementary Figure 17). A significant 37 
number of AACs could not be grouped into cliques, likely due to less than enough sample size. We 38 
hypothesize that with larger data sets, we will obtain similar robust cliques corresponding to other 39 
AAC subtypes for which preliminary evidence is provided by the hierarchical clustering shown in 40 
Figure 6d-g. 41 
 42 
 43 
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AAC subtypes can be revealed by axon terminal geometry that correlates with that of 1 
postsynaptic AIS 2 
In addition to the laminar stratification of axon arbors, AAC axon terminals in different cortical layers 3 
manifested different geometric characteristics such as orientation, tortuosity, path distance, and branch 4 
order (Fig. 5e-h, Fig. 7). As strings of AAC presynaptic terminals (i.e. “cartridges”) mostly align with 5 
the AIS of postsynaptic PyNs, we hypothesized that certain geometric features of AAC terminals 6 
reflect and correlate with those of the AIS. For example, the orientations of AIS in supragranular 7 
layers of mPFC were largely vertically aligned, but deviated substantially from this columnar 8 
orientation in infragranular layers (especially in L6; Fig. 7a-c, Supplemental Fig. 12). Consistent with 9 
this postsynaptic feature, AAC axon terminals in supragranular layers were also organized in 10 
predominantly vertical and parallel orientations, each largely straight and decorated with strings of 11 
presynaptic boutons (e.g. cartridges), which together earned them the name “chandelier cell”. In 12 
infragranular layers, on the other hand, the orientation of AAC terminals varied significantly with 13 
increased tortuosity that correlated with local PyN AISs (Fig. 7d-i). Interestingly, analysis of several 14 
geometrical features of AAC terminals properly grouped AACs according to areas, laminar positions, 15 
and L2 subtypes (Fig. 7j). In particular, several pairwise combinations of features classified AACs 16 
according to their areal, laminar locations and even the three subtypes within layer 2 (Fig. 7k-o). It is 17 
notable that AAC subtypes identified by axon local geometry are consistent with those identified by 18 
analyzing the laminar distribution of dendritic and axonal arbors (Fig. 6), both rooted in their 19 
connectivity to PyNs. Together, these results suggest that a connectivity-based framework of 20 
morphological analysis is informative in resolving the granularity of AAC subtypes.    21 
 22 
 23 
DISCUSSION 24 
 25 
As individual neurons are the basic building blocks of the nervous system, single neuron analysis is 26 
essential to reveal the true degree of cell diversity and principles of circuit organization. Single unit 27 
recording was key to discovering functional columnar organization in the cerebral cortex (Hubel and 28 
Wiesel, 1962), and single cell transcriptomics has facilitated understanding the molecular genetic basis 29 
of neuronal identity (Paul et al., 2017) and diversity (Shekhar et al., 2016; Tasic et al., 2016). As 30 
morphology is an intuitive depiction of neuron types that reflects their input-output connectivity, the 31 
visualization and quantification of complete single neuron shapes are necessary to identify and classify 32 
neuron types and deduce their anatomic relationships. However, the vast diversity, large spatial span, 33 
and vexing variations of mammalian neurons present unique challenges in cell labeling, imaging, and 34 
analysis. Recent advances in light microscopy begin to overcome the technical hurdle of submicron 35 
resolution imaging of the entire mouse brain using either wide field structured light illumination 36 
microscopy (i.e. MOST and fMOST; (Gong et al., 2013; Li et al., 2010) or fast scanning two-photon 37 
microscopy (Economo et al., 2016). In particular, the dual-channel dfMOST approach allows fast and 38 
simultaneous acquisition of both neural structures and their whole brain spatial reference at cellular 39 
resolution (Gong et al., 2016).  40 
 41 
Another key requirement for reconstructing complete single neurons using light microscopy is sparse 42 
and robust labeling; and systematic labeling across neuronal populations is necessary to achieve 43 
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comprehensive discovery of neuron types toward a cell census. Conventional transgenic approach 1 
lacks specificity and sparseness. Although viral vectors can achieve sparse labeling of distal axons 2 
(Economo et al., 2016), their limitations include 1) dense labeling of local collaterals that are difficult 3 
to reconstruct, 2) lack of specificity to local interneurons, and 3) lack of orthogonal information (e.g. 4 
molecular markers) to further restrict labeling and help interpret morphological variations in cell type 5 
identification. Our combinatorial genetic strategy overcomes these limitations. We engage multiple 6 
cell features to target subpopulations defined by gene combinations, lineage, birth time and anatomy 7 
(He et al., 2016). We further incorporate inducible and viral methods to achieve reliable single cell 8 
labeling (Fig. 1b), which enables “saturation screening” of morphological types or subtypes within the 9 
subpopulation. Although here we have not reached saturation screening of cortical AACs, as L4 and 10 
inverted L6 AACs were detected only once in our dataset, the approach demonstrates unprecedented 11 
specificity and comprehensiveness to one of most rare cortical cell types known to date. Iterations of 12 
this labeling scheme through systematic generation of mouse driver lines (Harris et al., 2014) will 13 
enable comprehensive targeting of neuron types as has been demonstrated in genetic targeting in 14 
Drosophila (Aso et al., 2014; Jenett et al., 2012). Thus together with scRNAseq, gSNA provide an 15 
orthogonal quantitative and scalable single neuron analysis platform. Currently, the bottleneck of the 16 
gSNA is single neuron reconstruction, which mostly relies on manual procedures. Future innovation in 17 
machine learning-based automatic reconstruction algorithms may increasingly overcome this 18 
limitation (Peng et al., 2015; Peng et al., 2017).   19 
 20 
The goals of single neuron anatomy are to identify and catalog cell types and, ultimately, to inform the 21 
study of cell function through inferring connectivity. With the prospect of increasing throughput in 22 
single neuron reconstruction, a pressing issue is how to extract biologically relevant information from 23 
morphology datasets. Traditional approaches deploy a large set of geometric and topological metrics 24 
(e.g. (Petilla Interneuron Nomenclature et al., 2008)) to quantify single neuron morphology in isolation 25 
often without a proper spatial coordinate and circuit context; these analyses are mostly ineffective in 26 
parsing neurons into reliable and biologically informative groups. As morphology is a proxy to and 27 
serves the purpose of connectivity (Seung and Sumbul, 2014; Sumbul et al., 2014), we have adopted a 28 
connectivity guided approach to morphological analysis. This approach is based on the premise that, 29 
although single neuron shape by itself does not contain information about presynaptic sources and 30 
postsynaptic targets, such information can be extracted, to a varying degree, if neuron morphology can 31 
be registered and analyzed in an appropriate spatial coordinate that reflect local and/or global 32 
connectivity patterns.  Indeed, the inherent polarity of dendrites and axons ensures that their 33 
distribution and geometry reflect the input source and output targets in the corresponding spatial 34 
domains, or “anatomic parcels” (Ascoli and Wheeler, 2016). Although the precise identity of input and 35 
output elements cannot be inferred from spatial location alone, anatomic parcels based on decades of 36 
classic studies provide significant information to include and exclude pre- and post-synaptic elements 37 
and thus to infer possible as well as impossible connectivity. This analysis framework is likely to 38 
recognize seemingly “subtle” morphological variations (e.g. translaminar dendrite or axon branches of 39 
AACs) which yet have significant impact on connectivity and thus cell function. In this context, the 40 
dfMOST datasets, which allow automatic registration of single neuron morphology into proper global 41 
and local coordinates at cellular resolution within the same brain (Gong et al., 2016), is key in analysis 42 
strategies to identify and distinguish cell types and to inform connectivity. In analyzing AAC 43 
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morphology, for example, the precise cell distribution information of the dfMOST dataset is crucial to 1 
derive and normalize laminar coordinates in different cortical areas, which enabled areal and laminar 2 
comparisons and inferences of input-output connectivity patterns that distinguished AAC subtypes. 3 
Our results indicate that high resolution morphology dataset alone, when registered within proper 4 
spatial coordinates that reflect brain circuit organization, contain rich anatomical information on cell 5 
identity and connectivity. This analysis framework should apply to projection neurons as dfMOST 6 
datasets contain brain wide information on anatomical parcels that will inform the potential synaptic 7 
targets of long range axon branches. Therefore, light microscopy-based high throughput single neuron 8 
anatomy will likely provide substantial information and insight on cell type diversity and mesoscale 9 
connectivity in the mammalian brain.  10 
 11 
A recent study suggests that cardinal GABAergic neuron types are distinguished by their input-output 12 
synaptic communication patterns encoded in transcription profiles (Paul et al., 2017). This synaptic 13 
communication framework of neuronal identity may integrate anatomical, physiological, molecular, 14 
and functional descriptions of neuron types (Lerner et al., 2016; Paul et al., 2017). Beyond cardinal 15 
types, finer division into subtypes may better represent and explain the intricacies of neural circuit 16 
organization (Zeng and Sanes, 2017), but there is no consensus and mechanistic basis on the 17 
granularity and boundary of neuronal subtypes. Our results on cortical AACs suggest that input-output 18 
connectivity, reflected in cell morphology, is likely a key arbiter of neuronal subtypes. Differential 19 
gene expression in supragranular or infragranular AACs in the frontal cortex (Paul et al., 2017) is 20 
consistent with this interpretation. We therefore suggest that synaptic communication patterns may 21 
distinguish neuronal subtypes as well as cardinal types. It is notable that AAC subtypes, when 22 
registered along cortical laminar coordinates, appear to manifest a degree of stereotypy and fine 23 
granularity that is similar to those of retinal bipolar cell subtypes registered upon the much finer 24 
coordinates of retinal sub-laminae (Shekhar et al., 2016). A true saturation anatomical analysis of 25 
cortical AACs will most likely reveal additional subtypes. While the division of retinal bipolar 26 
subtypes is further supported by molecular, physiological and functional evidence (Euler et al., 2014), 27 
the division of AACs subtypes based on anatomy needs to be substantiated by orthogonal datasets, 28 
including their physiological connectivity (Lu et al., 2017), gene expression profiles (Paul et al., 2017), 29 
and possibly developmental genetic basis (Taniguchi et al., 2013).   30 
 31 
 32 
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 1 
Main Figure Legends 2 
 3 
Figure 1. Schematic of the genetic Single Neuron Anatomy (gSNA) platform applied to the mouse 4 
brain. (a) Pipeline and components of gSNA. (b) Left: scheme of genetic and viral strategy for the 5 
labeling of axo-axonic cells (AACs). A transient CreER activity in MGE progenitors is converted to a 6 
constitutive Flp activity in mature AACs. Flp-dependent AAVs injected in specific cortical areas 7 
enables sparse and robust AAC labeling. (c) fMOST high resolution whole-brain imaging. Two-color 8 
imaging for the acquisition of GFP (green) channel and PI (propidium iodide, red) channel signals. PI 9 
stains brain cytoarchitecture in real time, therefore provides each dataset with a self-registered atlas. A 10 
488 nm wavelength laser was used for the excitation of both GFP and PI signals. Whole-brain coronal 11 
image stacks were obtained by sectioning (with a diamond knife) and imaging cycles at 1 µm z-steps, 12 
guided by a motorized precision XYZ stage. 13 
 14 
Figure 2. Areal and laminar distribution ofAACs revealed from whole-brain fMOST dataset. (a) A 15 
schematic of whole-brain coronal dataset collection (top) with an example of GFP channel (center) and 16 
PI channel (bottom) images. Scale bars: 1000 µm. (b) An example of the distribution of sparsely 17 
labeled AACs in mPFC.. Green: AAC morphology, 100 µm max-intensity projection. Blue: 18 
cytoarchitecture revealed by PI, 5 µm max-intensity projection. Scale bar: 1000 µm. (c-d) Laminar 19 
distribution of L2 AACs in mPFC. Enlargement of PI channel (c) and GFP channel (d) images from 20 
the left box in (b). (e-f) Laminar distribution of L5 AACs in mPFC. Enlargement of PI channel (e) and 21 
GFP channel (f) images from the right box in (b). Dashed lines in (c-f) indicate the layer boundaries. 22 
Cortical layers were discriminated based on cell body distributions in PI channel according to the 23 
Allen Mouse Brain Reference Atlas (http://www.brain-map.org). Scale bars in (e-f): 100 µm 24 
 25 
Figure 3. (a) Representative AAC single cell reconstructions in mPFC, MC and SSC. Cortical layers 26 
in each area were indicated by dashed lines. Black: soma body. Red: dendrites. Blue: axons. The 27 
orientation of each reconstruction was re-adjusted according to the local cortical vertical axis (see 28 
more details in Methods and Supplementary Figure 3). (b) Left: Scheme of the laminar arrangement 29 
of the input and output streams of SSC, in part rooted in the laminar organization of pyramidal neuron 30 
types with distinct projection targets. Right: a schematic of representative AACs in the SSC with 31 
characteristic laminar dendritic and axonal distribution patterns. . 32 
 33 
Figure 4. Characteristics of L2 AAC dendrites. (a) A representative L2 AAC in mPFC. 100 µm max 34 
intensity projection. Scale bar: 100 µm. (b) Dendrites of L2 AAC. Image was enlarged from the box in 35 
(a). Scale bar: 50 µm. Apical (c) and main dendrites (d) were enlarged from boxes in (b). Scale bars: 36 
30µm (c) and 5 µm (d). (e) Spines (arrows) on the apical dendrites were enlarged from the box in (c). 37 
Scale bar: 5 µm. (f) Complete reconstruction of dendrites (red) and spines (black). Insert: enlarged 38 
from the box. Black circle: cell body. Gray lines: pia and L1/2 border. Scale bar: 50 µm. (g) Horizontal 39 
dendritic arbor distributions of up-layer (L2 and L3) and deep-layer (L4, L5 and L6) AACs in mPFC, 40 
MC and SSC. Data are mean ± SD. (h) An example of heat-maps showing the density distribution 41 
patterns of a L2 AAC dendritic arbor length (left), branching nodes (middle left), terminal nodes 42 
(middle right) and spines (right). Scale bar: 200 µm. (i) Single-cell density plots of a L2 AAC 43 
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dendrites (same as in g) along the cortical depth. (j) Density plots of dendrites from 11 L2 AACs in 1 
mPFC. Different colors indicate different cells. (k) Normalized density plots of (j) based on pia and 2 
L1/2 border positions (see methods). Black circles in (i-k) indicate AAC soma positions in the 3 
coordinate. Dashed lines correspond to the place of pia (top) and L1/2 border (bottom). Dark black 4 
curve in (j) and (k) are averages of all the cells. Density value was presented by ratio. 5 
 6 
Figure 5. Morphology and distribution patterns of AAC axons in the neocortex. (a) A representative 7 
image (100 µm thick) of 2 nearby L2 AACs in mPFC. Inserts are enlarged images (boxes) showing the 8 
main axon (1; arrow) and typical axon cartridge clusters and individuals (2, 3, 4). Scale bars: 100 µm 9 
(low-mag image) and 10 µm (inserts) (b) A representative image containing nearby L2, L4 and L5 10 
AACs in SSC. Enlarged L4 and L5 AACs were from the boxes in the left panel. Scale bars: 100 µm 11 
(left) and 10 µm (right). Dashed lines in (a) and (b) indicate cortical layers. (c) S Horizontal dendritic 12 
arbor distributions of up-layer (L2 and L3) and deep-layer (L4, L5 and L6) AACs in mPFC, MC and 13 
SSC. Data are mean ± SD. (d) Length density analysis of axons and dendrites from the AACs shown 14 
in (a) and (b). Left: projection of reconstructions (dendrites in red, axons in blue). Middle: heatmap of 15 
length density distribution of dendrites (middle left) and axons (middle right). Right: Length density 16 
plots of AAC dendrites and axons along cortical depth (y-axis). Dashed lines indicate layer boundaries. 17 
Insets in row 3 and 4 highlight axon branches in deep layers. (e) An example of axon bouton 18 
reconstruction of L2 AAC in mPFC. Insert: magnified view of the boxed region. (f) Axon cartridges 19 
that innervate PyN AIS can point upward, downward, or split from the middle. (g-h) The numbers of 20 
synaptic boutons correlate with axon length quantified by absolute value (g) or ratio (h).  21 
 22 
Figure 6. Hierarchical clustering of AACs based on cortical laminar density distribution of axons and 23 
dendrites. (a) Dendrogram of hierarchically clustered AACs (n=53). KL divergences (Kullback–24 
Leibler divergence) of normalized arbor distribution functions along cortical depth were taken as the 25 
distance metric and furthest distance was taken as the linkage rule. See more details in Methods and 26 
Supplementary Figure? for the normalization procedures. Dashed lines correspond to the cutoff 27 
linkages of the identified 8 cell clusters. Insert: silhouette analysis of the 8 AAC clusters. (b) 3D-28 
scattering plots of the 8 AAC clusters from (a) based on three principal components. (c) Axon (blue) 29 
and dendrite (red) length density distribution profiles of the 8 AAC clusters. Dashed lines: cortical 30 
layer boundaries. Black circles: soma body positions. Bold lines: average of all the neurons in each 31 
cluster. Note that cell #38 in cluster 5 has apical dendrites (arrow) reading L1 - a defining feature of 32 
cluster 6, but its lack of L3 axon branches (as it is located in SSC with a prominent L4) likely assigned 33 
it to cluster 5.  34 
(d-g) Clique analysis for the identification of robust AAC clusters. Clique analysis was conducted 35 
based on hierarchical clustering with 5 different metrics on AAC axons: Three persistent-homology 36 
based metrics, using 3 different ways of measuring distance from the soma, as scalar descriptor 37 
functions defined on the neuronal processes: euclidean, geodesic, and depth from cortical surface (“y-38 
axis”), and the length density and L-measure metrics(Scorcioni et al., 2008) defined in the text (d-e). 39 
Laplacian eigenmap embedding of hierarchical clustering for the ‘y- axis’based metric (d) and other 40 
descriptors (Suppl Fig. 16). The selection of ‘K’ was based on silhouette analysis. Silhouette plot for 41 
K = 4 with y-axis as the input metric, thickness denotes sizes of clusters, red dotted line denotes 42 
average silhouette score, larger score means better clustering (Figure 6e and Suppl Fig. 15). The 43 
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relations between the 5 metrics were quantified by Similar Index (SI) and Adjusted Rand Index (f). 1 
Three robust AAC clusters were identified based on the clique analysis (Figure 6g and Suppl Fig.17). 2 

 3 
Figure 7. AAC subtypes revealed by axon terminal characteristics that correlate with AIS. (a) 4 
Distributions of AACs in mPFC (50 µm thick). AACs were labeled by the crossing of Nkx2.1-CreER 5 
mouse and Ai14 (LSL-tdTomato) mouse with low dose of TM induction at E18.5. Top: AACs (green) 6 
shown by the immunostaining of tdTomato. Center: cortical layers shown by the immunostaining of 7 
m2AchR. Bottom: color merged. Scale bar: 1000 µm. (b) AIS distributions in PrL (prelimbic cortex). 8 
Images were captured from the box in (a). Left: overlay image of AAC (green) and AIS (red). Right: 9 
immunostaining of AISs with Ankyrin-G. Inserts: enlarged images. Gray lines indicate layer 10 
boundaries. Scale bars: 100 µm (low-mag) and 20 µm (inserts). (c) AIS reconstructions (purple). 11 
Inserts: representative reconstructions of presynaptic AAC cartridge and postsynaptic PyN AIS pairs in 12 
L2/3, L5 and L6. Green: cartridges. Red: AISs. Scale bar: 100 µm. (d-e) Distribution differences of 13 
AIS angles among cortical layers in mPFC (***P < 0.0001, 95% confidence level, Kruskal-Wallis test 14 
followed by Dunn’s multiple comparisons test). Plots indicate median (full horizontal bar), mean (×), 15 
quartiles and range. AIS data (d) and cumulative plots (e) are from the reconstructions in (c). (f-g) The 16 
corresponding distribution differences of AAC axon terminal angles in mPFC (***P < 0.0001, 95% 17 
confidence level, Kruskal-Wallis test followed by Dunn’s multiple comparisons test). Plots indicate 18 
median (full horizontal bar), mean (×), quartiles and range. (h-i) Averaged distribution differences of 19 
AAC axon terminal angles across mPFC, MC and SSC (***P < 0.0001, 95% confidence level, 20 
Kruskal-Wallis test followed by Dunn’s multiple comparisons test). Plots indicate median (full 21 
horizontal bar), mean (×), quartiles and range. (j) Summary of axon terminal geometric features that 22 
separate AAC categories (cortical areas and cortical layers refer to somatic location). Green: 23 
statistically significant differences between all 3 pairs compared. Yellow: statistically significant 24 
differences between 2 of 3 pairs compared. Orange: statistically significant differences between 1 of 3 25 
pairs compared. Red: no statistically significant differences. (k-l) Areal and laminar categories of 26 
AACs separated by axon terminal geometric parameters. Data are mean ± SEM. (m) Reconstructions 27 
of representative L2 AAC subtypes (L2-intra, L2-cross, L2-trans). (n-o) Axon terminal geometric 28 
parameters separate L2 AAC subtypes. Data are mean ± SEM. 29 
 30 
 31 
 32 
 33 
TABLES 34 
 35 
Table 1. Complete cell list and Neurolucida dataset on morphometry  36 
 37 
 38 
 39 
MOVIES 40 
 41 
Movie 1. dfMOST imaging of viral labeled AACs at single-axon resolution. 100 µm max intensity 42 
projection of original GFP channel images without any imaging processing.  43 
 44 
Movie 2. Nearby L2-intra and L2-cross AACs in mPFC. 45 
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 1 
Movie 3. Reconstructions of nearby L2-intra and L2-cross AACs in mPFC. 2 
 3 
Movie 4. Reconstructions of nearby L2-intra and L2-cross AACs in SSC. 4 
 5 
Movie 5. Reconstructions of nearby L3 and L5-intra AACs in MC. 6 
 7 
Movie 6. A L5a (L5-cross) AAC in mPFC. 8 
 9 
Movie 7. Nearby L4 and L6a (L5/L6 border) AAC in SSC. 10 
 11 
  12 
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Materials and Methods 1 
 2 
1. Experimental animals and low dose TM induction 3 
To achieve sparse and specific targeting of AACs across neocortical areas, we crossed Nkx2.1-CreER 4 
mice (The Jackson Laboratory stock 014552) with Rosa26-loxp-stop-loxp-flpo (LSL-Flp) mice (The 5 
Jackson Laboratory stock 028584). At postnatal day 0 (P0) or day 1 (P1), we intraperitoneally induced 6 
each pup with low dose of tamoxifen (TM, 0.25 mg per pup). Tamoxifen stock solution (5mg/ml in corn 7 
oil) were prepared beforehand. Sparsely targeted AACs would express FlpO constitutively (He et al., 8 
2016).   9 
 10 
For immunostaining experiments, we crossed Nkx2.1-CreER mice with Rosa26-lox-stop-lox-tdTomato 11 
(Ai14) mice (The Jackson Laboratory stock 007905). To ensure embryonic day 18.5 (E18.5) TM 12 
inductions, Swiss Webster or C57B6 females (Taconic) were housed with Nkx2.1CreER;Ai14 13 
(ht/homo) males overnight and females were checked for vaginal plug by 9am the following morning. 14 
At E18.5, pregnant females were given oral gavage administration of TM (dose 3mg / 30g of body 15 
weight) for sparse labeling of AACs. AACs are labeled with tdTomato. Genetic hybrids of C57B6 and 16 
Swiss Webster animals were used in these experiments. All animal breeding and surgical experiments 17 
were approved by the Institutional Animals Care and Use Committee (IACUC) of Cold Spring Harbor 18 
Laboratory or the Institutional Animal Ethics Committee of Huazhong University of Science and 19 
Technology. 20 
 21 
2. Stereotaxic virus injection 22 
Flp dependent AAV-fDIO-TVA-GFP (TVA: avian glycoprotein EnvA receptor) cassette was assembled 23 
and cloned using standard molecular cloning protocols with restriction enzymes from New England 24 
Biolabs. TVA-GFP (pAAV-EF1a-FLEX-GT) was a gift from Ed Callaway  (Addgene plasmid # 26198). 25 
The cassette was subcloned into AAV-Ef1a-FD-YFP-WPRE (a gift from the Deisseroth laboratory, 26 
Stanford University) using NheI and AscI cloning sites(Fenno et al., 2014). All constructs were 27 
sequenced to ensure their fidelity and proper reversed orientation of the inserts, and packed into AAV8 28 
viral vectors with titers ranging from 1.0 × 1012 to 2.4 × 1012 pfu from the UNC Vector Core (Chapel 29 
Hill, North Carolina). 30 
 31 
For stereotaxic injection, post-weaned animals (3 to 4-week-old) were anesthetized by intraperitoneal 32 
injection with katamine and xylazine (ketamine:100 mg/kg, xylazine: 10 mg/kg in saline), and then were 33 
fixed in a stereotaxic headframe (Kopf Instruments Model 940 series) for the identification of the 34 
coordinates of mPFC, MC and SSC areas based on the Allen Mouse Brain Reference Atlas 35 
(http://atlas.brain-map.org). Each animal received bilateral injection in mPFC, MC and SSC areas (6 36 
injection sites per mouse). At each site, we injected 100 nl virus with Nanoliter 2010 Injector (World 37 
Precision Instruments). And we let virus express more than 21 days for strong labeling. The membrane 38 
tagged labeling by TVA-GFP fusion significantly improved the labeling of fine axon terminal. The 39 
stereotaxic coordinates are: mPFC (A/P: 1.98 mm, M/L: ±0.5 mm; D/V: 1.5mm depth from pial surface), 40 
MC (A/P: 0.5 mm, M/L: ±1.5 mm; D/V: 0.5 mm) and SSC (A/P: -1.5 mm, M/L: ±3.0 mm; D/V: 41 
0.5mm). 42 
 43 
3. Perfusion and whole-brain resin embedding(Gang et al., 2017).  44 
Mice were deep anesthetized by overdose of ketamine and xylazine, and then intracardially perfused 45 
with 0.01M PBS (Sigma-Aldrich Inc., St Louis, MO, USA) and 4% paraformaldehyde (PFA, Sigma-46 
Aldrich Inc., St Louis, MO, USA). After brain dissection and about 18 hours of post-fixing in 4% PFA, 47 
brain samples were rinsed in 0.01M PBS overnight. Then samples were dehydrated in graded series of 48 
ethanol (with distilled water): 50% ethanol (2h, 3 times), 75% ethanol (2h, 1 time), 100% ethanol (2h, 2 49 
times). After dehydration, we replaced ethanol with graded series of xylene (with pure ethanol): 50% 50 
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xylene (2h, 2 times) and 100% xylene (2h the first time, and then overnight). We then infiltrated 1 
samples in graded series of Lowicryl HM20 resin (in xylene): 50% HM20 (2h), 75% HM20 (2h), 100% 2 
HM20 (2h, 2 times), 100% HM20 (2 days). After resin infiltration, samples were heat-polymerized at 50 3 
℃for 8 hours in a vacuum oven. All dehydration and infiltration procedures were treated at 4 ℃. All 4 
solutions were prepared in weight.  5 
 6 
Note: During wide-field based dfMOST imaging, autofluorescence produced by lipofuscin in the resin-7 
embedded brain tissue often interfered with image contrast. Swiss Webster mice, especially after 8 
2months of age, usually express more lipofuscin compared with C57/BL6 mice. To reduce the effect of 9 
lipofuscin, all animals in this study were sacrificed around P51-P54. 10 
 11 
4. Whole-brain dual-color fMOST (dfMOST) imaging  12 
Plastic embedded brain samples were mounted on a metal base and then installed under a dual-color 13 
fluorescence micro-optical sectioning tomography (dfMOST) system for whole-brain imaging. The 14 
dfMOST system is a wide-field block-face imaging system. A blue laser (488nm) was used as the 15 
excitation light source with two separate TDI-CCD cameras for signal detection. This system runs in a 16 
stripe scanning mode (X axis) and combines with an afterward image montage to realize the centimeter-17 
scale coronal data acquisition(Yang et al., 2015). A precision motorized XYX stage is used to conduct 18 
imaging scanning, areal expansion and ultra-thin sectioning by a diamond knife (Li et al., 2010).  The 19 
high throughput and high resolution imaging of fluorescent protein labeled samples is realized with 20 
chemical sectioning (Xiong et al. in preparation). Following each scanning of one coronal plane (X-Y 21 
axes),  the sample was  sectioned to remove the top layer (Z axis), and then  imaged  again. The 22 
imaging-sectioning cycles were performed automatically with 1.0 µm Z steps until whole brain was 23 
imaged. The resin-embedded GFP fluorescence were well preserved through chemical reactivation 24 
(Xiong et al., 2014) provided by adding Na2CO3 in the imaging water bath (0.05 M, PH = 11.4).  25 
 26 
We used a 60X water immersion objective (NA 1.0) for imaging, which provided the system with 27 
submicron resolution at 0.2 × 0.2×1 µm voxel sampling rate for each whole-brain dataset. High 28 
resolution and high density sampling rate greatly facilitated our cell reconstruction procedures and are 29 
especially necessary for reconstructing dense neural arborizations and fine structures (such as axon 30 
boutons and spines).  31 
 32 
The red channel was used to capture the whole brain cytoarchitecture which was counterstained by 33 
propidium iodide (PI)(Gong et al., 2016). PI dyes were dissolved in the imaging water bath, thus stained 34 
the exposed DNAs and RNAs on the tissue surface (also see SupplementaryFig. 2).. The staining 35 
occurred within thus was in real time. The 488 nm laser was strong enough for PI excitation. The 36 
counterstained cytoarchitecture provided a self-registered Nissl like brain atlas for the GFP channel and 37 
was used for the identification of cortical areas and layers. Furthermore,  the image contrast in the PI 38 
channel was sufficient for identification and reconstruction of pyramidal neuron main dendrites  39 
(SupplementaryFig. 2 and SupplementaryFig. 3). Weakly stained or unstained tubular cellular 40 
objectives, such as blood vessels and pyramidal main dendrites, can be seen in good contrast in PI 41 
channel.  42 
 43 
5. Single cell reconstruction and layer boundaries discrimination. 44 
To reconstruct sparsely labeled single ChCs from the whole-brain image datasets (~ 8 TB ), we 45 
transformed TIFF format raw images series to LDA type(Li et al., 2017a). We then used Amira software 46 
(v 5.2.2, FEI, Me´rignac Cedex, France)  to load the LDA data and identify cells for initial 47 
reconstruction. We only chose cells with highly characteristic axon terminal cartridges which were true  48 
ChCs (~30% GFP-labeled neurons were not the ChC type). The areal and laminar location of selection 49 
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of cells were identified based on the cytoarchitecture provided by PI staining according to Allen Mouse 1 
Brain Reference Atlas. All initial reconstructed cells were saved in SWC format.  2 
 3 
The arborization of a complete single ChC was extremely dense: the average length of AAC axons was 4 
~ 2.1cm, the average number of AAC axon branches was ~ 1369, and the average axon branch order 5 
was ~ 31. Only manual procedure was feasible to reconstruct cells with such arbor complexity. Each 6 
AAC took up to one week to complete by one person. 7 
 8 
To ensure all AAC reconstructions were correct and complete, we carried out revisions on each initial 9 
reconstruction in Neurolucida360 software (Neurolucida, MBF Bioscience, Williston, VT). Since 10 
neurolucida 360 was not compatible with the reading of SWC format files and couldn’t hold TB-size 11 
image datasets, we transformed all the SWC files to Neurolucida ASC format using the Neuronland 12 
software (Neuromorpho.org), and we cropped smaller image stacks (GB-size) of GFP and PI channels 13 
from the whole brain data sets. The Cropping areas were based on the coordinates calculated from the 14 
initial SWC reconstructions. 15 
 16 
Cortical layer boundaries were reconstructed in the co-registered PI channel in Neurolucida 360. 17 
Laminar positions were discriminated based on cell body distributions according to the online version of 18 
Allen Mouse Brain Atlas (http://www.brain-map.org). 5µm max intensity projections of PI images were 19 
used to better show the cell body distributions (SupplementaryFig. 2).  20 
 21 
6. Adjusting the orientation AACs to the vertical axis of local cortical column 22 
To identify the local vertical axis of cortical depth, we randomly reconstructed a few pyramidal main 23 
dendrites near the reconstructed AAC cell body in PI channel. We took the main direction of pyramidal 24 
neuron apical dendrites near the AAC cell body as the cortical column vertical axis. We first randomly 25 
reconstructed a few pyramidal apical dendrites. We then centered all the traced pyramidal dendrites and 26 
calculated their main orientation by Principal Component Analysis (PCA). Using this orientation as the 27 
proxy of cortical vertical axis,  we re-orientated each AAC reconstruction using the MATLAB software. 28 
More details in SupplementaryFig. 3. 29 
 30 
7. Length density analysis 31 
Length density analysis of AAC morphology 32 
Length density analysis of dendrites and axons were performed using custom Matlab 33 
routines(Yamawaki et al., 2014). Briefly, for each orientation-readjusted AAC, we set the soma center 34 
as origin of coordinate. The neuronal arbors were divided into 15 μm × 15 μm grid space in the xy 35 
plane, and the arbor length in each grid were summed covering the whole z direction. The distribution 36 
pattern in coronal plane (i.e. xy plane) was represented in heatmap. Length density profile along the 37 
cortical depth direction (i.e. y-axis) were plotted to quantify the laminar distribution pattern by 38 
integrating fiber length along x direction from heat-map. Similarly, length density profiles along x-axis 39 
(middle-lateral) and z-axis (anterior-posterior) were plotted to quantify the horizontal distribution 40 
patterns (Supplementary Fig. 7 b-f). To make easy comparison, we normalized profile by dividing the 41 
fiber total length of the cell (length ratio). Layer boundaries were also plotted in the length density 42 
figures (dashed lines). Their positions in the y-axis was the average coordinates of all the contouring 43 
points covering the neuron arbor extent in x direction (Supplementary Fig. 11). 44 
 45 
  46 
Normalized Length density distribution on a standard cortex template 47 
For comparative analysis among AACs from different brain areas and samples, we normalized the 48 
laminar distribution of AAC axonal and dendritic arbors to a standard cortex template (y-axis only). In 49 
the neocortex, only SSC has L4 compared with mPFC and MC, and the L6-WM (white matter) border 50 
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in mPFC is usually not discernable in the coronal plane. And the thickness of the same layer in different 1 
cortical areas and even subareas can be different. To address these issues, we performed normalization 2 
based on the thickness of each layer, rather than using the distance from pia to WM. The number of 3 
laminar arbitrary units (AUs) been used for subdividing each layer was decided based on the average 4 
thickness of each layer from all cells (L1: 100.04 μm, L2/3: 180.52 μm, L5: 215.33 μm, n=53). Here we 5 
kept the dividing size to be around 15 μm to match with the unnormalized length density analysis. Thus, 6 
the numbers of laminar AUs for dividing L1, L2/3 and L5 are 7 AUs, 12 AUs and 14 AUs respectively. 7 
According to these parameters, as shown in Supplementary Fig. 11, axon arbors were subdivided with 8 
different intervals for L1, L2/3 and L5. For the arbors above L1 and below L5 (L6), we used the 9 
dividing intervals of L1 and L5 respectively. Since the axons of most AACs did not innervate L4 10 
(except one L4 AAC), we removed L4 length density data for all the AACs in SSC. Based on this 11 
method, we could get normalized length density distribution curves of dendrites and axons for each cell 12 
from all the three cortical areas. 13 
  14 
8. Cluster analysis 15 
Based on normalized distribution of neural arbor length density along the y-axis (cortical depth), 53 16 
AACs were hierarchically clustered using a weighted KL divergence (KLDw, symmetrized(Don H. 17 
Johnson, 2001)) as the distance metric and the furthest distance as the linkage rule. A weight 18 
coefficient λ was defined as the ratio of average axon length to total axon and dendrite length across all 19 
neurons. The KLDw matrix was calculated by multiplying the axon distribution by the length based 20 
weight λ and the dendrite distribution by (1 - λ).  That is KLDw = λKLDaxon + (1 - λ)KLDdendrite. Based 21 
on the clustering dendrogram of KL divergence, 53 AACs can be grouped to different clusters. 22 
Corresponding silhouette analysis was done based on the cutoff linkages used in the clustering. 23 
 24 
9. Clique analysis 25 
To robustly classify the AACs we did a comparative clustering study across five different metrics, to 26 
find neuronal groups that clustered together irrespective of metric utilized.   27 
 28 
Three of the metrics were derived from topological considerations described in (Li et al 2017)(Li et al., 29 
2017b). This methodology starts by defining a “descriptor function”, which is a scalar valued function 30 
defined on the axons and dendrites of each neuron. The procedure then computes a topological signature 31 
known as the persistence diagram for each neuron based on the descriptor function. Finally, the distance 32 
between two neurons is defined by computing a suitable metric between the persistence diagrams. The 33 
persistence diagrams are by definition invariant to rigid translations and rotations, and may have further 34 
invariances. Three of the metrics were defined by using three different descriptor functions, in each case 35 
defined as a suitable distance from the soma to the point on the neuron. The three distance functions 36 
used were Euclidean distance, Geodesic distance along the neuron, and distance along the normal to the 37 
cortical sheet (we denote this the “y-axis” for brevity).  38 
 39 
In addition, we used a metric defined by taking KL distance between the histograms created by 40 
projecting the neuronal processes onto the y-axis (“length density”), and finally a community-standard 41 
metric, the L-measure(Scorcioni et al., 2008), used on neuromorpho.org.  42 
 43 
How related are these metrics? To answer this question, we performed hierarchical clustering using each 44 
of the metrics, fixing the total number of clusters to be K. In general the different metrics produced 45 
different sets of clusters. We compared the sets of clusters across two metrics, using the Adjusted Rand 46 
Index (ARI), and the Similarity Index(Bohland et al., 2009) (SI) defined in Bohland et al 47 
(http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007200) to compare 48 
different parcellations of brain atlases. In each case, these indices lie between 0 and 1, with 1 49 
corresponding to perfect correspondence between two sets of clusters. We found (Fig 6f) that both 50 
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indices were generally closer to 0 than to 1, indicating that these metrics measured independent 1 
geometrical/topological characteristics of the neurons. Thus, if neurons were grouped together by all 2 
five metrics, we would gain confidence that they were robustly classified into these clusters.   3 
  4 
To perform this robust classification we used the following method: (i) first, we carried out hierarchical 5 
clustering using each of the metrics, with a fixed number K of clusters, (ii) We then defined an 6 
undirected graph G with each node corresponding to a neuron. The edge between two neurons is either 1 7 
or 0 based on whether the neurons clustered together or not as described below. (iii) We then looked for 8 
disjoint cliques (in a clique, each node is connected to every other node in the clique; intuitively, a 9 
clique constitutes a set of very similar neurons). These disjoint cliques were our robust clusters.   10 
 11 
Let the number of metrics be M (=5 in our case). We introduced a parameter N that controlled the edge 12 
weights of the graph G as follows: If two neurons belonged to at the same cluster for at least N of the M 13 
metrics, then we gave that edge a weight 1, otherwise we gave it a weight 0. Thus, the graph G was a 14 
function of two parameters K,N. We then looked for maximal cliques in G(K,N). For N<M, 15 
the maximal cliques in G were not in general disjoint, however for N=M the cliques can be shown to be 16 
disjoint. Consider the relation between two neurons given by an edge in G(K,M). This relation is 17 
transitive: if two pairs of neurons (N1,N2) and (N2,N3) are connected, then (N1,N2) must belong to the 18 
same cluster across all metrics, as well as neurons (N2,N3). It follows that (N1,N3) must also belong to 19 
the same cluster (of which N2 is a member). This transitivity guarantees the disjointedness of the 20 
maximal cliques: If two cliques share a vertex, then the two cliques must be identical. Thus, we 21 
considered only G(K,M) and found the disjoint maximal cliques. In our case M=5. We selected K 22 
by examining the average silhouette scores of the clusters versus K (http://scikit-23 
learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-24 
cluster-plot-kmeans-silhouette-analysis-py ). Finally, performing clique analysis 25 
on G(K=4,N=M=5), we found 3 cliques with size greater than 2 (with sizes 4,6 and 8 respectively; Fig 26 
6g). These cliques were the output of our robust clustering analysis, and exemplars from each clique 27 
are showin in Fig.6g.   28 
 29 
10. Immunostaining 30 
Adult animals (P45-P60) were perfused with 4% PFA in PBS. The brains were removed and post-fixed 31 
overnight in the same fixative. Coronal brain slices were sectioned at 75 um thickness via vibratome. 32 
Sections were blocked with 10% normal goat serum in 0.5% Triton in PBS for an hour and then 33 
incubated overnight with primary antibodies diluted in blocking solution at room temperature. Primary 34 
antibodies used were: rabbit polyclonal RFP (1:1000, Rockland) for labeling AACs, mouse monoclonal 35 
Ankyrin-G ( 1:500, Neuromab) to label pyramidal axon initial segments (AIS), and rat monoclonal 36 
muscarinic Acetylcholine receptor m2 (m2AChR) (1:500, Millipore Sigma) to discriminate L3/5 and 37 
L5/6 boundaries in mPFC. Sections were subsequently washed and incubated with the appropriate 38 
fluorescently-conjugated secondary antibodies diluted in the same buffer for 3 hours at room 39 
temperature. Secondary antibodies used were: Alexa Fluor 488 goat anti-rat (1:500, Invitrogen), Alexa 40 
Fluor 594 goat anti-rabbit (1:500, Invitrogen), and Alexa Fluor 647 goat anti-mouse IgG2a (1:500, 41 
Invitrogen). 42 
 43 
11. Code availability 44 
All custom codes used in this study are available from the corresponding author upon reasonable request. 45 
 46 
12. Data availability 47 
The data that support the findings of this study are available from the corresponding author upon 48 
reasonable request. 49 
 50 
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