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The eco-evolutionary dynamics of species are fundamentally linked to the energetic constraints
of its constituent individuals. Of particular importance is the interplay between reproduction and
the dynamics of starvation and recovery. To elucidate this interplay, we introduce a nutritional
state-structured model that incorporates two classes of consumer: nutritionally replete, reproduc-
ing consumers, and undernourished, non-reproducing consumers. We obtain strong constraints on
starvation and recovery rates by deriving allometric scaling relationships and find that population
dynamics are typically driven to a steady state. Moreover, these rates fall within a ‘refuge’ in pa-
rameter space, where the probability of population extinction is minimized. We also show that our
model provides a natural framework to predict maximum mammalian body size by determining the
relative stability of an otherwise homogeneous population to a competing population with altered
percent body fat. This framework provides a principled mechanism for a selective driver of Cope’s
rule.

The behavioral ecology of all organisms is influenced by
their energetic states, which directly impacts how they in-
vest reserves in uncertain environments. Such behaviors
are generally manifested as tradeoffs between investing
in somatic maintenance and growth, or allocating energy
towards reproduction [1–3]. The timing of these behav-
iors responds to selective pressure, as the choice of the
investment impacts future fitness [4–6]. The influence of
resource limitation on an organism’s ability to maintain
its nutritional stores may lead to repeated delays or shifts
in reproduction over the course of an organism’s life.

The balance between (a) somatic growth and mainte-
nance, and (b) reproduction depends on resource avail-
ability [7]. For example, reindeer invest less in calves
born after harsh winters (when the mother’s energetic
state is depleted) than in calves born after moderate win-
ters [8]. Many bird species invest differently in broods
during periods of resource scarcity [9, 10], sometimes de-
laying or even foregoing reproduction for a breeding sea-
son [1, 11, 12]. Even freshwater and marine zooplankton
have been observed to avoid reproduction under nutri-
tional stress [13], and those that do reproduce have lower
survival rates [2]. Organisms may also separate main-
tenance and growth from reproduction over space and
time: many salmonids, birds, and some mammals return
to migratory breeding grounds to reproduce after one
or multiple seasons in resource-rich environments where
they accumulate reserves [14–16].

Physiology also plays an important role in regulat-
ing reproductive expenditures during periods of resource
limitation. Many mammals (47 species in 10 families)
exhibit delayed implantation, whereby females postpone
fetal development until nutritional reserves can be ac-
cumulated [17, 18]. Many other species (including hu-
mans) suffer irregular menstrual cycling and higher abor-
tion rates during periods of nutritional stress [19, 20].
In the extreme case of unicellular organisms, nutrition
directly controls growth to a reproductive state [3, 21].
The existence of so many independently evolved mecha-
nisms across such a diverse suite of organisms highlights

the near-universality of the fundamental tradeoff between
somatic and reproductive investment.

Including individual energetic dynamics [22] in a
population-level framework [22, 23] is challenging [24].
A common simplifying approach is the classic Lotka-
Volterra (LV) model, which assumes that consumer pop-
ulation growth rate depends linearly on resource den-
sity [25]. Here, we introduce an alternative approach—
the Nutritional State-structured Model (NSM)—that ac-
counts for resource limitation via explicit starvation. In
contrast to the LV model, the NSM incorporates two con-
sumer states: hungry and full, with only the former sus-
ceptible to mortality and only the latter possessing suf-
ficient energetic reserves to reproduce. Additionally, we
incorporate allometrically derived constraints on the time
scales for reproduction [3], starvation, and recovery. Our
model makes several basic predictions: (i) the dynamics
are typically driven to a refuge far from cyclic behav-
ior and extinction risk, (ii) the steady-state conditions of
the NSM accurately predict the measured biomass den-
sities for mammals described by Damuth’s law [26–29],
(iii) there is an allometrically constrained upper-bound
for mammalian body size, and (iv) the NSM provides a
selective mechanism for the evolution of larger body size,
known as Cope’s rule [30–33].
Nutritional state-structured model (NSM).

We begin by defining the nutritional state-structured
population model, where the consumer population is par-
titioned into two states: (a) an energetically replete (full)
state F , where the consumer reproduces at a constant
rate λ and does not die from starvation, and (b) an ener-
getically deficient (hungry) state H, where the consumer
does not reproduce but dies by starvation at rate µ. The
dynamics of the underlying resource R are governed by
logistic growth with an intrinsic growth rate α and a car-
rying capacity C. The rate at which consumers transi-
tion between states and consume resources is dependent
on their number, the abundance of resources, the effi-
ciency of converting resources into metabolism, and how
that metabolism is partitioned between maintenance and
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Figure 1: The transcritical (TC; dashed line) and Hopf bi-
furcation (solid line) as a function of the starvation rate σ and
recovery rate ρ for a 100g consumer. These bifurcation con-
ditions separate parameter space into unphysical (left of the
TC), cyclic, and steady state dynamic regimes. The colors
show the steady state densities for the energetically replete
consumers F ∗.

growth purposes. We provide a physiologically and en-
ergetically mechanistic model for each of these dynam-
ics and constants (see the Supplementary Information
(SI)), and show that the system produces a simple non-
dimensional form which we describe below.

Consumers transition from the full state F to the hun-
gry state H at a rate σ—the starvation rate—and also in
proportion to the absence of resources (1−R) (the max-
imum resource density has been non dimensionalized to
1; see SI). Conversely, consumers recover from state H to
state F at rate ξρ and in proportion to R, where ξ rep-
resents a ratio between maximal resource consumption
and the carrying capacity of the resource. The resources
that are eaten by hungry consumers (at rate ρR+ δ) ac-
count for their somatic growth (ρR) and maintenance (δ).
Full consumers eat resources at a constant rate β that ac-
counts for maximal maintenance and somatic growth (see
the SI for mechanistic derivations of these rates from re-
source energetics). The NSM represents an ecologically
motivated fundamental extension of the idealized starv-
ing random walk model of foraging, which focuses on
resource depletion, to include reproduction and resource
replenishment [34–36], and is a more general formulation
than previous models that incorporate starvation [37].

In the mean-field approximation, in which the con-
sumers and resources are perfectly mixed, their densities
are governed by the rate equations

Ḟ = λF + ξρRH − σ (1−R)F,

Ḣ = σ (1−R)F − ξρRH − µH,
Ṙ = α (1−R)R− (ρR+ δ)H − βF.

(1)

This system of nondimensional equations follows from

a set of first-principle relationships for resource consump-
tion and growth (see the SI for a full derivation and the
dimensional form). Notice that the total consumer den-
sity F + H evolves according to Ḟ + Ḣ = λF − µH.
This resembles the equation of motion for the predator
density in the LV model [38], except that the resource
density does not appear in the growth term. The rate of
reproduction is independent of resource density because
the full consumer partitions a constant amount of energy
towards reproduction, whereas a hungry consumer par-
titions no energy towards reproduction. Similarly, the
consumer maintenance terms (δH and βF ) are also in-
dependent of resource density because they represent a
minimal energetic requirement for consumers in the H
and F state, respectively.

Steady states of the NSM. From the single inter-
nal fixed point (Eq. (2), see Methods), an obvious con-
straint on the NSM is that the reproduction rate λ must
be less than the starvation rate σ, so that the consumer
and resource densities are positive. The condition σ = λ
represents a transcritical (TC) bifurcation [39] that de-
marcates a physical from an unphysical (negative steady-
state densities) regime. The biological implication of the
constraint λ < σ has a simple interpretation—the rate at
which a macroscopic organism loses mass due to lack of
resources is generally much faster than the rate of repro-
duction. As we will discuss below, this inequality is also
a natural consequence of allometric constraints [3] for or-
ganisms within empirically observed body size ranges.

In the physical regime of λ < σ, the fixed point (2)
may either be a stable node or a limit cycle (Fig. 1). In
continuous-time systems, a limit cycle arises when a pair
of complex conjugate eigenvalues crosses the imaginary
axis to attain positive real parts [40]. This Hopf bifur-
cation is defined by Det(S) = 0, with S the Sylvester
matrix, which is composed of the coefficients of the char-
acteristic polynomial of the Jacobian matrix [41]. As
the system parameters are tuned to be within the stable
regime, but close to the Hopf bifurcation, the amplitude
of the transient cycles becomes large. Given that eco-
logical systems are constantly being perturbed [42], the
onset of transient cycles, even though they decay with
time in the mean-field description, can increase extinc-
tion risk [43–45].

When the starvation rate σ � λ, a substantial
fraction of the consumers are driven to the hungry non-
reproducing state. Because reproduction is inhibited,
there is a low steady-state consumer density and a high
steady-state resource density. However, if σ/λ→ 1 from
above, the population is overloaded with energetically-
replete (reproducing) individuals, thereby promoting
transient oscillations between the consumer and resource
densities (Fig. 1). If the starvation rate is low enough
that the Hopf bifurcation is crossed, these oscillations
become stable. This threshold occurs at higher values
of the starvation rate as the recovery rate ρ increases,
such that the range of parameter space giving rise to
cyclic dynamics also increases with higher recovery rates.
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Figure 2: The growth trajectory over absolute time of an in-
dividual organism as a function of body mass. Initial growth
follows the black trajectory to an energetically replete repro-
ductive adult mass of m = ελM (see Methods). Starvation
follows the red trajectory to m = εσελM . Recovery follows
the green curve to the replete adult mass, where this trajec-
tory differs from the original growth because only fat is being
regrown which requires a longer time to reach ελM . Alter-
natively, death from starvation follows the blue trajectory to
m = εµελM .

Results
The allometry of extinction risk. While there are

no a priori constraints on the parameters in the NSM,
we expect that each species should be restricted to a dis-
tinct portion of the parameter space. We use allometric
scaling relations to constrain the covariation of rates in a
principled and biologically meaningful manner (see Meth-
ods). Allometric scaling relations highlight common con-
straints and average trends across large ranges in body
size and species diversity. Many of these relations can be
derived from a small set of assumptions. In the Methods
we describe our framework to determine the covariation
of timescales and rates across a range of body sizes for
each of the key parameters of our model (cf. Ref. [46]).

Nearly all of the rates described in the NSM are de-
termined by consumer metabolism, which can be used
to describe a variety of organismal features [47]. We de-
rive, from first principles, the relationships for the rates
of reproduction, starvation, recovery, and mortality as a
function of an organism’s body size and metabolic rate
(see Methods). Because we aim to explore the starvation-
recovery dynamics as a function of an organism’s body
massM , we parameterize these rates in terms of the per-
cent gain and loss of the asymptotic (maximum) body
mass, εM , where different values of ε define different
states of the consumer (Fig. 2; see Methods for deriva-
tions of allometrically constrained rate equations). Al-
though the rate equations (1) are general and can in prin-
ciple be used to explore the starvation recovery dynamics
for most organisms, here we focus on allometric relation-
ships for terrestrial-bound lower-trophic level endotherms
(see the SI for values), specifically herbivorous mammals,

Figure 3: Probability of extinction for a consumer with (a)
M = 102g and (b) M = 106g as a function of the starvation
rate σ and recovery rate ρ, where the initial density is given
as (XF ∗, XH∗, R∗), where X is a random uniform variable
in [0, 2]. Note the change in scale in panel b. Extinction is
defined as the population trajectory falling below 0.2× the
allometrically constrained steady state. The white points de-
note the allometrically constrained starvation and recovery
rate.

which range from a minimum of M ≈ 1g (the Etruscan
shrew Suncus etruscus) to a maximum of M ≈ 107g
(the early Oligocene Indricotheriinae and the Miocene
Deinotheriinae). Investigating other classes of organisms
would simply involve altering the metabolic exponents
and scalings associated with ε. Moreover, we empha-
size that our allometric equations (see Methods) describe
mean relationships, and do not account for the (some-
times considerable) variance associated with individual
species. We note that including additional allometrically-
scaled mortality terms to both F and H does not change
the form of our model nor impact our quantitative find-
ings (see SI for the derivation).

As the allometric derivations of the NSM rate laws
reveal (see Methods), starvation and recovery rates are
not independent parameters, and the biologically rele-
vant portion of the phase space shown in Fig. 1 is con-
strained via covarying parameters. Given the parameters
of terrestrial endotherms, we find that the starvation rate
σ and the recovery rate ρ are constrained to lie within
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a small region of potential values for the known range
of body sizes M . Indeed, starvation and recovery rates
across all values of M fall squarely in the steady-state
region at some distance from the Hopf bifurcation. This
suggests that cyclic population dynamics should be rare,
particularly in resource-limited environments.

Higher rates of starvation result in a larger flux of the
population to the hungry state. In this state, reproduc-
tion is absent, thus increasing the likelihood of extinc-
tion. From the perspective of population survival, it is
the rate of starvation relative to the rate of recovery that
determines the long-term dynamics of the various species
(Fig. 1). We therefore examine the competing effects of
cyclic dynamics vs. changes in steady-state density on ex-
tinction risk, both as functions of σ and ρ. To this end, we
computed the probability of extinction, where we define
extinction as a population trajectory falling below one
fifth of the allometrically constrained steady state at any
time between t = 108 and t = 1010. This procedure was
repeated for 50 replicates of the continuous-time system
shown in Eq. 1 for organisms with mass ranging from 102

to 106 grams. In each replicate the initial densities were
chosen to be (XF ∗, XH∗, R∗), with X a random vari-
able uniformly distributed in [0, 2]. By allowing the rate
of starvation to vary, we assessed extinction risk across
a range of values for σ and ρ between ca. 10−8 to 10−3.
Higher rates of extinction correspond to both large σ if
ρ is small, and large ρ if σ is small. In the former case,
increased extinction risk arises because of the decrease
in the steady-state consumer population density (Figs.
1b, 3). In the latter case, the increased extinction risk
results from higher-amplitude transient cycles as the sys-
tem nears the Hopf bifurcation (Fig. 3). This interplay
creates an ‘extinction refuge’, such that for a constrained
range of σ and ρ, extinction probabilities are minimized.

We find that the allometrically constrained values of
σ and ρ, each representing different trajectories along
the ontogenetic curve (Fig. 2), fall squarely within the
extinction refuge across a range of M (Fig. 3a,b, white
points). These values are close enough to the Hopf bi-
furcation to avoid low steady-state densities, yet distant
enough to avoid large-amplitude transient cycles. Allo-
metric values of σ and ρ fall within this relatively small
window, which supports the possibility that a selective
mechanism has constrained the physiological conditions
driving starvation and recovery rates within populations.
Such a mechanism would select for organism physiology
that generates appropriate σ and ρ values that minimize
extinction risk. This selection could occur via the tuning
of body fat percentages, metabolic rates, and/or biomass
maintenance efficiencies. We also find that as body size
increases, the size of the low extinction-risk parameter
space shrinks (Fig. 3b), suggesting that the population
dynamics for larger organisms are more sensitive to
variability in physiological rates. This finding is in
accordance with, and may serve as contributing support
for, observations of increased extinction risk among
larger mammals [48].

Figure 4: Consumer steady states F ∗ (green) and H∗ (or-
ange) as a function of body mass along with the data from
Damuth [26]. Inset: Resource steady state R∗ as a function
of consumer body mass.

Damuth’s Law and body size limits. The NSM
correctly predicts that smaller species have larger steady-
state population densities (Fig. 4). Similar predictions
have been made for carnivore populations using alterna-
tive consumer-resource models [49]. Moreover, we show
that the NSM provides independent theoretical support
for Damuth’s Law [26–29]. Damuth’s law shows that
species abundances, N∗, follow N∗ = 0.01M−0.78 (g
m−2). Figure 4 shows that both F ∗ and H∗ scale as
M−η, with η ≈ 3/4, over a wide range of organismal
sizes and that F ∗ + H∗ closely matches the best fit
to Damuth’s data. Remarkably, this result illustrates
that the steady state values of the NSM combined with
the derived timescales naturally give rise to Damuth’s
law. While the previous metabolic studies supporting
Damuth’s law provided arguments for the value of the
exponent [27], these studies are only able to infer the nor-
malization constant (0.01 g1.78 m−2 in the above equa-
tion) from the data (see SI for a discussion of the energy
equivalence hypothesis related to these metabolic argu-
ments). Our model predicts not only the exponent but
also the normalization constant by explicitly including
the resource dynamics and the parameters that deter-
mine growth and consumption. It should be noted that
density relationships of individual clades follow a more
shallow scaling relationship than predicted by Damuth’s
law [29]. In the context of our model, this finding sug-
gests that future work may be able to anticipate these
shifts by accounting for differences in the physiological
parameters associated with each clade.

With respect to predicted steady state densities, the
total metabolic rate of F and H becomes infinite at a fi-
nite mass, and occurs at the same scale where the steady
state resources vanish (Fig. 4). This asymptotic behavior
is governed by body sizes at which εµ and ελ (see Fig. 2)
equal zero, causing the timescales (Eqn. 4) to become
infinite and the rates µ and λ to equal zero. The µ = 0
asymptote occurs first when f0M

γ−1 + u0M
ζ−1 = 1,
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and corresponds to (F ∗, H∗, R∗) = (0, 0, 0). This point
predicts an upper bound on mammalian body size at
Mmax = 6.54 × 107 (g). Moreover, Mmax, which is en-
tirely determined by the population-level consequences
of energetic constraints, is within an order of magnitude
of the maximum body size observed in the North Amer-
ican mammalian fossil record [30], as well as the mass
predicted from an evolutionary model of body size evo-
lution [31]. We emphasize that the asymptotic behavior
and predicted upper bound depend only on the scaling
of body composition and are independent of the resource
parameters. The prediction of an asymptotic limit on
mammalian size parallels work on microbial life where
an upper and lower bound on bacterial size, and an up-
per bound on single cell eukaryotic size, is predicted from
similar growth and energetic scaling relationships [3, 50].
It has also been shown that models that incorporate the
allometry of hunting and resting combined with foraging
time predicts a maximum carnivore size between 7× 105

and 1.1× 106 (g) [51, 52]. Similarly, the maximum body
size within a particular lineage has been shown to scale
with the metabolic normalization constant [53]. This
complementary approach is based on the balance between
growth and mortality, and suggests that future connec-
tions between the scaling of fat and muscle mass should
systematically be connected with B0 when comparing lin-
eages.

A mechanism for Cope’s rule Metabolite trans-
port constraints are widely thought to place strict bound-
aries on biological scaling [47, 54, 55] and thereby lead to
specific predictions on the minimum possible body size
for organisms [56]. Above this bound, a number of en-
ergetic and evolutionary mechanisms have been explored
to assess the costs and benefits associated with larger
body masses, particularly for mammals. One impor-
tant such example is the fasting endurance hypothesis,
which contends that larger body size, with consequent
lower metabolic rates and increased ability to maintain
more endogenous energetic reserves, may buffer organ-
isms against environmental fluctuations in resource avail-
ability [57]. Over evolutionary time, terrestrial mam-
malian lineages show a significant trend towards larger
body size—Cope’s rule [30–33]. It is thought that within-
lineage drivers generate selection towards an optimal up-
per bound of roughly 107 (g) [30], a value that is likely
limited by higher extinction risk for large taxa over longer
timescales [31]. These trends are thought to be driven
by a combination of climate change and niche availabil-
ity [33]; however the underpinning energetic costs and
benefits of larger body sizes, and how they influence
dynamics over ecological timescales, have not been ex-
plored.

The NSM predicts that the steady state resource den-
sity R∗ decreases with increasing body size of the con-
sumer population (Fig. 4, inset), and classic resource
competition theory predicts that the species surviving
on the lowest resource abundance will outcompete others
[58–60]. Thus, the combined NSM steady-state dynam-
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Figure 5: Competitive outcomes for a resident species with
body mass M vs. a closely related competing species with
modified body mass M ′ = M(1 + χ). The blue region de-
notes proportions of modified mass χ resulting in exclusion
of the resident species. The red region denotes values of χ
that result in a mass that is below the starvation threshold
and are thus infeasible. Arrows point to the predicted opti-
mal mass from our model Mopt = 1.748 × 107, which may
serve as an evolutionary attractor for body mass. The black
wedge points to the largest body mass known for terrestrial
mammals (Deinotherium spp.) at 1.74× 107 (g) [32].

ics and allometric timescales (see Eq. (4)) predict that
larger mammals have an intrinsic competitive advantage
given a common resource.

However, the above resource relationships do not offer
a mechanism for how body size is selected. We directly
assess competitive outcome between two closely related
species: a resident species of mass M , and a competing
species (denoted by ′) where individuals have a different
proportion of body fat such that M ′ = M(1 + χ). For
χ < 0, the competing individuals have fewer metabolic
reserves than the resident species and vice versa for
χ > 0. For the allowable values of χ (see SI), the mass
of the competitor M ′ should exceed the minimal amount
of body fat, 1 + χ > εσ, and the adjusted time to re-
produce must be positive, which, given Eq. 4, implies
that 1 − ε1−ηλ (1 + χ)

1−η
> 0. These conditions imply

that χ ∈ (−f0Mγ−1, 1/ελ − 1) where the upper bound
approximately equals 0.05 and the lower bound is mass-
dependent. The modified mass of the competitor leads
to altered rates of starvation σ(M ′), recovery ρ(M ′), and
the maintenance of both starving δ(M ′) and full con-
sumers β(M ′) (see the SI for derivations of competitor
rates). Importantly, εσ, which determines the point along
the growth curve that defines the body composition of
starved foragers, is assumed to remain unchanged for the
competing population (see SI).

To assess the susceptibility of the resident species
to competitive exclusion, we determine which consumer
pushes the steady-state resource density R∗ to lower val-
ues for a given value of χ, with the expectation that a
population capable of surviving on lower resource den-
sities has a competitive advantage [58]. We find that
for M ≤ 1.748 × 107 (g), having additional body fat
(χ > 0) results in a lower steady state resource density
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(R′∗ < R∗), such that the competitor has an intrinsic
advantage over the resident species (Fig. 5). However,
for M > 1.748× 107 (g), leaner individuals (χ < 0) have
lower resource steady state densities.

The observed switch in susceptibility as a function of
χ at Mopt = 1.748× 107 (g) thus serves as an attractor,
such that the NSM predicts organismal mass to increase if
M < Mopt and decrease ifM > Mopt. This value is close
to but smaller than the asymptotic upper bound for ter-
restrial mammal body size predicted by the NSM, and is
remarkably close to independent estimates of the largest
land mammals, the early Oligocene Indricotherium at
≈ 1.5 × 107 (g) and the late Miocene Deinotherium at
≈ 1.74 × 107 (g) [32]. Additionally, our calculation of
Mopt as a function of mass-dependent physiological rates
is similar to theoretical estimates of maximum body size
[31], and provides independent theoretical support for the
observation of a ‘maximum body size attractor’ explored
by Alroy [30].

An optimal size for mammals at intermediate body
mass was predicted by Brown et al. based on reproduc-
tive maximization and the transition between hungry
and full individuals [54]. By coupling the NSM to
resource dynamics as well as introducing an explicit
treatment of storage, we show that species with larger
body masses have an inherent competitive advantage
for size classes up to Mopt = 1.748 × 107 based on
resource competition. Moreover, the mass distributions
in Ref. [54] show that intermediate mammal sizes have
the greatest species diversity, in contrast to our efforts,
which consider total biomass and predict a much larger
Mopt. Compellingly, recent work shows that many com-
munities can be dominated by the biomass of the large
[61]. While the state of the environment as well as the
competitive landscape will determine whether specific
body sizes are selected for or against [33], we propose
that the dynamics of starvation and recovery described
in the NSM provide a general selective mechanism for the
evolution of larger body size among terrestrial mammals.

Discussion

The energetics associated with somatic maintenance,
growth, and reproduction are important elements that in-
fluence the dynamics of all populations [11]. The NSM in-
corporates the dynamics of starvation and recovery that
are expected to occur in resource-limited environments.
We found that incorporating allometrically-determined
rates into the NSM predicts that: (i) extinction risk is
minimized, (ii) the derived steady-states quantitatively
reproduce Damuth’s law, and (iii) the selective mecha-
nism for the evolution of larger body sizes agrees with
Cope’s rule. The NSM offers a means by which the dy-
namic consequences of energetic constraints can be as-
sessed using macroscale interactions between and among
species.

Methods

Analytical solution to the NSM Equation (1) has
three fixed points: two trivial fixed points at (F ∗, H∗, R∗) =
(0, 0, 0) and (0, 0, 1), and one non-trivial, internal fixed point
at

F ∗ = (σ − λ)
αλµ2(µ+ ξρ)

A(λρB + µσ(βµ+ λ(δ + ρ)))
,

H∗ = (σ − λ)
αλ2µ(µ+ ξρ)

A(λρB + µσ(βµ+ λ(δ + ρ)))
,

R∗ = (σ − λ)
µ

A
.

(2)

where A = (λξρ + µσ) and B = (βµξ + δλξ − λµ). The
stability of this fixed point is determined by the Jacobian
matrix J, with Jij = ∂Ẋi/∂Xj , when evaluated at the internal
fixed point, and X is the vector (F,H,R). The parameters in
Eq. (1) are such that the real part of the largest eigenvalue
of J is negative, so that the system is stable with respect to
small perturbations from the fixed point. Because this fixed
point is unique, it is the global attractor for all population
trajectories for any initial condition where the resource and
consumer densities are both nonzero.
Metabolic scaling relationships The scaling relation

between an organism’s metabolic rate B and its body mass
M at reproductive maturity is known to scale as B = B0M

η,
where the scaling exponent η is typically close to 2/3 or 3/4 for
metazoans (e.g., Ref. [47, 62]), and has taxonomic shifts for
unicellular species between η ≈ 1 in eukaryotes and η ≈ 1.76
in bacteria [3, 63].

Several efforts have shown how a partitioning of B between
growth and maintenance purposes can be used to derive a
general equation for both the growth trajectories and growth
rates of organisms ranging from bacteria to metazoans [3, 64–
68]. This relation is derived from the simple balance condition
B0m

η = Emṁ + Bmm, [3, 64–68] where Em is the energy
needed to synthesize a unit of mass, Bm is the metabolic rate
to support an existing unit of mass, and m is the mass of the
organism at any point in its development. This balance has
the general solution [3, 69](

m (t)

M

)1−η

= 1−
[
1−
(m0

M

)1−η]
e−a(1−η)t/M

1−η
, (3)

where, for η < 1, M = (B0/Bm)1/(1−η) is the asymptotic
mass, a = B0/Em, and m0 is mass at birth, itself varying
allometrically (see the SI). We now use this solution to define
the timescale for reproduction and recovery from starvation
(Fig. 2; see [65] for a detailed presentation of these timescales).
The time that an organism takes to reach a particular mass
εM is given by the timescale

τ (ε) = ln

[
1− (m0/M)1−η

1− ε1−η

]
M1−η

a (1− η)
, (4)

where we define values of ε below to describe a variety of
timescales, along with the rates related to τ . For example,
the rate of reproduction is given by the timescale to go from
the birth mass to the adult mass. The time to reproduce
is given by Equation 4 as tλ = τ (ελ), where ελ is the frac-
tion of the asymptotic mass where an organism is reproduc-
tively mature and should be close to one (typically ελ ≈ 0.95
[64]). Our reproductive rate, λ, is a specific rate, or the num-
ber of offspring produced per time per individual, defined as
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Ḟ = λF . In isolation this functional form gives the population
growth F (t) = F0e

λt which can be related to the reproduc-
tive timescale by assuming that when t = tλ it is also the
case that F = νF0, where ν − 1 is the number of offspring
produced per reproductive cycle. Following this relationship
the growth rate is given by λ = ln (ν) /tλ, which is the stan-
dard relationship (e.g., [68]) and will scales as λ ∝ Mη−1 for
M � m0 for any constant value of ελ [3, 64–67].

The rate of recovery ρ = 1/tρ requires that an organism ac-
crues sufficient tissue to transition from the hungry to the full
state. Since only certain tissues can be digested for energy (for
example the brain cannot be degraded to fuel metabolism),
we define the rates for starvation, death, and recovery by the
timescales required to reach, or return from, specific fractions
of the replete-state mass (see the SI, Table I, for parameteri-
zations). We define mσ = εσM , where εσ < 1 is the fraction
of replete-state mass where reproduction ceases. This fraction
will deviate from a constant if tissue composition systemat-
ically scales with adult mass. For example, making use of
the observation that body fat in mammals scales with overall
body size according to Mfat = f0M

γ and assuming that once
this mass is fully digested the organism starves, this would
imply that εσ = 1 − f0Mγ/M . It follows that the recovery
timescale, tρ, is the time to go from mass m = εσελM to
m = ελM (Fig. 2). Using Eqs. (3) and (4) this timescale is
given by simply considering the growth curve starting from a
mass of m′0 = εσελM , in which case

tρ = ln

[
1− (εσελ)1−η

1− ε1−ηλ

]
M1−η

a′ (1− η)
(5)

where a′ = B0/E
′
m accounts for possible deviations in the

biosynthetic energetics during recovery (see the SI). It should
be noted that more complicated ontogenetic models explicitly
handle storage [67], whereas this feature is implicitly covered

by the body fat scaling in our framework.
To determine the starvation rate, σ, we are interested in

the time required for an organism to go from a mature adult
that reproduces at rate λ, to a reduced-mass hungry state
where reproduction is impossible. For starving individuals
we assume that an organism must meet its maintenance re-
quirements by using the digestion of existing mass as the sole
energy source. This assumption implies the metabolic bal-
ance ṁE′m = −Bmm or ṁ = −a′m/M1−η where E′m is the
amount of energy stored in a unit of existing body mass, which
differs from Em, the energy required to synthesis a unit of
biomass [67]. Given the replete mass, M , of an organism, the
above energy balance prescribes the mass trajectory of a non-
consuming organism: m (t) = Me−a

′t/M1−η
. The timescale

for starvation is given by the time it takes m(t) to reach εσM ,
which gives

tσ = −M
1−η

a′
ln (εσ) . (6)

The starvation rate is then σ = 1/tσ, which scales with
replete-state mass as 1/M1−η ln (1− f0Mγ/M). An impor-
tant feature is that σ does not have a simple scaling depen-
dence on λ, which is important for the dynamics that we later
discuss.

The time to death should follow a similar relation, but de-
fined by a lower fraction of replete-state mass, mµ = εµM
where εµ < εσ. Suppose, for example, that an organism dies
once it has digested all fat and muscle tissues, and that mus-
cle tissue scales with body mass according toMmusc = u0M

ζ .
This gives εµ = 1 −

(
f0M

γ + u0M
ζ
)
/M . Muscle mass has

been shown to be roughly proportional to body mass [70] in
mammals and thus εµ is merely εσ minus a constant. The
time to go from starvation to death is the total time to reach
εµM minus the time to starve, or tµ = −M1−η ln (εµ) /a′−tσ,
and µ = 1/tµ.
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Supporting Information for “The dynamics of
starvation and recovery”

Mechanisms of Starvation and Recovery To un-
derstand the dynamics of starvation, recovery, repro-
duction, and resource competition, our framework par-
titions consumers into two classes: (a) a full class that
is able to reproduce and, (b) a hungry class that expe-
riences mortality at a given rate and is unable to repro-
duce. For the dynamics of growth, reproduction, and re-
source consumption, past efforts have combined the over-
all metabolic rate, as dictated by body size, with a growth
rate that is dependent on resource abundance and, in
turn, dictates resource consumption (see Refs. [1, 2] for
a brief review of this perspective). This approach has
been used to understand a range of phenomena including
a derivation of ontogenetic growth curves from a parti-
tioning of metabolism into maintenance and biosynthesis
(e.g. [1, 3–5]) and predictions for the steady-state re-
source abundance in communities of cells [2]. Here we
leverage these mechanisms, combined with several addi-
tional concepts, to define our Nutritional State Model
(NSM).

We consider the following generalized set of explicit
dynamics for starvation, recovery, reproduction, and re-
source growth and consumption

Ḟd = λmaxFd + ρmaxRdHd/k − σ
(

1− Rd
C

)
Fd,

Ḣd = σ

(
1− Rd

C

)
Fd − ρmaxRdHd/k − µHd,

Ṙd = αRd

(
1− Rd

C

)
−[(

ρmaxRd
YHk

+ PH

)
Hd +

(
λmax

YF
+ PF

)
Fd

]
.

(7)

where each term has a mechanistic meaning that we de-
tail below (we will denote the dimensional equations with
the subscript d before introducing the non-dimensional
form that is presented in the main text). In the above
equations Y represents the yield coefficient (e.g., Refs.
[6, 7]) which is the quantity of resources required to
build a unit of organism (gram of mammal produced per
gram of resource consumed) and P is the specific main-
tenance rate of resource consumption (g resource · s−1 ·
g organism−1). If we pick Fd and Hd to have units of (g
organisms · m−2), then all of the terms of Ṙd, such as
ρ(Rd)
Y Hd, have units of (g resource · m−2 · s−1) which are

the units of net primary productivity (NPP), a natural
choice for Ṙd. This choice also gives Rd as (g · m−2)
which is also a natural unit and is simply the biomass
density. In these units α (s−1) is the specific growth
rate of Rd, C is the carrying capacity, or maximum den-
sity, of Rd in a particular environment, and k is the half-
saturation constant (half the density of resources that
would lead to maximum growth).

We can formally non-dimensionalize this system by the

rescaling of F = fFd, H = fHd, R = qRd, t = std, in
which case our system of equations becomes

Ḟ =
1

s

[
λmaxF + ρmax

R

qk
H − σ

(
1− R

qC

)
F

]
,

Ḣ =
1

s

[
σ

(
1− R

qC

)
F − ρmax

R

qk
H − µH

]
,

Ṙ =

1

s

[
αR

(
1− R

qC

)
− q

f

[(
ρmaxR

YHkq
+ PH

)
H +

(
λmax

YF
+ PF

)
F

]]
.

(8)

If we make the natural choice of s = 1, q = 1/C, and
f = 1/YHk, then we are left with

Ḟ = λF + ξρRH − σ (1−R)F,

Ḣ = σ (1−R)F − ξρRH − µH,
Ṙ = αR (1−R)− (ρR+ δ)H − βF

(9)

where we have dropped the subscripts on λmax and
ρmax for simplicity, and ξ ≡ C/k, δ ≡ YHkPH/C, and
β ≡ YHk

(
λmax
YF

+ PF

)
/C. The above equations rep-

resent the system of equations presented in the main text.

Parameter Values and Estimates All of the pa-
rameter values employed in our model have either been
directly measured in previous studies or can be estimated
from combining several previous studies. Below we out-
line previous measurements and simple estimates of the
parameters.

Metabolic rate has been generally reported to follow
an exponent close to η = 0.75 (e.g., Refs. [3, 4] and the
supplement for Ref. [5]). We make this assumption in
the current paper, although alternate exponents, which
are known to vary between roughly 0.25 and 1.5 for single
species [4], could be easily incorporated into our frame-
work, and this variation is effectively handled by the 20%
variations that we consider around mean trends. The
exponent not only defines several scalings in our frame-
work, but also the value of the metabolic normalization
constant, B0, given a set of data. For mammals the
metabolic normalization constant has been reported to
vary between 0.018 (W g−0.75) and 0.047 (W g−0.75; Refs.
[3, 5], where the former value represents basal metabolic
rate and the latter represents the field metabolic rate.
We employ the field metabolic rate for our NSM model
which is appropriate for active mammals (Table 1).

An important feature of our framework is the start-
ing size, m0, of a mammal which adjusts the overall
timescales for reproduction. This starting size is known
to follow an allometric relationship with adult mass of the
formm0 = n0M

υ where estimates for the exponent range
between 0.71 and 0.94 (see Ref. [8] for a review). We use
m0 = 0.097M0.92 [9] which encompasses the widest range
of body sizes [8].

The energy to synthesize a unit of biomass, Em, has
been reported to vary between 1800 to 9500 (J g−1) (e.g.
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Refs. [3–5]) in mammals with a mean value across many
taxonomic groups of 5, 774 (J g−1) [4]. The unit energy
available during starvation, E′, could range between 7000
(J g−1), the return of the total energy stored during on-
togeny [5] to a biochemical upper bound of E′ = 36, 000
(J g−1) for the energetics of palmitate [5, 10]. For our
calculations we use the measured value for bulk tissues
of 7000 which assumes that the energy stored during on-
togeny is returned during starvation [5].

For the scaling of body composition it has been shown
that fat mass follows Mfat = f0M

γ , with measured rela-
tionships following 0.018M1.25 [11], 0.02M1.19 [12], and
0.026M1.14 [13]. We use the values from [12] which falls
in the middle of this range. Similarly, the muscle mass
follows Mmusc = u0M

ζ with u0 = 0.383 and ζ = 1.00
[13].

Typically the value of ξ = C/k should roughly be 2.
The value of ρ, λ, σ, and µ are all simple rates (note that
we have not rescaled time in our non-dimensionalization)
as defined in the maintext. Given that our model con-
siders transitions over entire stages of ontogeny or nutri-
tional states, the value of Y must represent yields inte-
grated over entire life stages. Given an energy density of
Ed = 18200 (J g−1) for grass [14] the maintenance value
is given by PF = B0M

3/4/MEd, and the yield for a full
organism will be given by YF = MEd/Bλ (g individual
· g grass −1), where Bλ is the lifetime energy use for
reaching maturity given by

Bλ =

∫ tλ

0

B0m (t)
η
dt. (10)

Similarly, the maintenance resource consumption rate for
hungry individuals is PH = B0(εσM)3/4/(εσM)Ed, and
the yield for hungry individuals (representing the cost on
resources to return to the full state) is given by YH =
MEd/Bρ where

Bρ =

∫ tλ

τ(εσελ)

B0m (t)
η
dt. (11)

Taken together, these relationships allow us to calculate
ρ, δ, and β.

Finally, the value of α can be roughly estimated by the
NPP divided by the corresponding biomass densities.
From the data in Ref. [15] we estimate the value of α to
range between 2.81× 10−10 (s−1) and 2.19× 10−8 (s−1)
globally. It should be noted that the value of α sets the
overall scale of the F ∗ and H∗ steady states along with
Btot for each type. As such, we use α as our fit parameter
to match these steady states with the data from Damuth
[16]. We find that the best fit is α = 9.45 × 10−9 (s−1)
which compares well with the calculated range above.
However, two points are important to note here: first,
our framework predicts the overall scaling of F ∗ and
H∗ independently of α and this correctly matches data,
and second, both the asymptotic behavior and slope of
F ∗ and H∗ are independent of α, such that our predic-
tion of the maximum mammal size does not depend on α.

Table S1: Parameter values for mammals

Definition Parameter Value References
Asymptotic adult mass M (g)
Initial mass of an organism m0 (g)
Metabolic rate scaling expo-
nent

η 3/4 (e.g. [3–
5])

Metabolic Normalization
Constant

B0 0.047 (W g−0.75) [5]

Initial mass scaling exponent υ 0.92 [8, 9]
Initial mass scaling normal-
ization constant

n0 0.097 (g1−υ) [8, 9]

Fat mass scaling exponent γ 1.19 [12]
Fat scaling normalization
constant

f0 0.02 (g1−η) [12]

Muscle mass scaling expo-
nent

ζ 1.00 [13]

Muscle scaling normalization
constantv

u0 0.38 (g1−ζ) [13]

Energy to synthesis a unit of
mass

Em 5774 (J gram−1) [3–5]

Energy to synthesis a unit of
mass during recovery

E′m 7000 (J gram−1) [5, 10]

Specific resource growth rate α 9.45×10−9 (s−1) see text
Fraction of asymptotic mass
representing full state

ελ 0.95 [3]

Fraction of asymptotic mass
representing starving state

εσ 1− f0Mγ−1 see text

Fraction of asymptotic mass
representing death

εµ 1− f0M
γ+u0M

ζ

M
see text

Carrying capacity (maximum
density) of resources

C (g m−2)

Half Saturation Constant k (g m−2)
Normalized carrying capacity ξ C/k ≈ 2

Reproductive fecundity ν 2 []

Rate equations for invaders with modified body
massWe allow an invading subset of the resident popula-
tion with massM to have an altered massM ′ = M(1+χ)
where χ varies between χmin < 0 and χmax > 0, where
χ < 0 denotes a leaner invader and χ > 0 denotes an
invader with additional reserves of body fat. Impor-
tantly, we assume that the invading and resident in-
dividuals have the same proportion of non-fat tissues.
For the allowable values of χ the adjusted mass should
exceed the amount of body fat, 1 + χ > εσ, and the
adjusted time to reproduce must be positive, which
given our solution for τ(ε) (see main text), implies that
1−ε1−ηλ (1 + χ)

1−η
> 0. Together these conditions imply

that χ ∈ (−f0Mγ−1, 1/ελ − 1) where the upper bound
approximately equals 0.05.

Although the starved state of invading organisms re-
mains unchanged, the rate of starvation from the mod-
ified full state to the starved state, the rate of recovery
from the starved state to the modified full state, and the
maintenance rates of both, will be different, such that
σ′ = σ(M ′), ρ′ = ρ(M ′), β′ = β(M ′), δ′ = δ(M ′). Rates
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of starvation and recovery for the invading population are
easily derived by adjusting the starting or ending state
before and after starvation and recovery, leading to the
following timescales:

tσ′ = −M
1−η

a′
ln

(
εσ

χ+ 1

)
, (12)

tρ′ = ln

(
1− (ελεσ)1/4

1− (ελ(χ+ 1))1/4

)
M1−η

a′ (1− η)
.

The maintenance rates for the invading population re-
quire more careful consideration. First, we must recalcu-
late the yields Y , as they must now be integrated over
life stages that have also been slightly modified by the
addition or subtraction of body fat reserves. Given an
energy density of Ed = 18200 (J g−1) for grass [14] the
maintenance value of the invading population is given by
PF = B0(1 + χ)M3/4/(1 + χ)MEd, and the yield for a
full organism will be given by YF = (1 + χ)MEd/B

′
λ (g

individual · g grass −1) where B′λ is the lifetime energy
use for the invading population reaching maturity given
by

B′λ =

∫ tλ′

0

B0m (t)
η
dt. (13)

where

tλ′ =
M1−η

a(1− η)
ln

(
1− (m0/M)1−η

1− (ελ(1 + χ))1−η

)
. (14)

Note that we do not use this timescale to determine the
reproductive rate of the invading consumer—which is as-
sumed to remain the same as the resident population—
but only to calulate the lifetime energy use. Similarly,
the maintenance for hungry individuals P ′H = B0(εσ(1 +

χ)M)3/4/(εσ(1 + χ)M)Ed and the yield for hungry indi-
viduals (representing the cost on resources to return to
the full state) is given by Y ′H = (1 + χ)MEd/B

′
ρ where

B′ρ =

∫ tλ′

τ(εσελ)

B0m (t)
η
dt. (15)

Finally, we can calculate the maintenance of the invaders
as

δ′ = P ′HY
′
H/ξ (16)

β′ =

(
λmax

Y ′F
+ P ′F

)
Y ′H/ξ.

To determine whether or not the invader or resident
population has an advantage, we compute R∗(M) and
R∗(M ′ = M(1 +χ)) for values of χ ∈ (−f0Mγ−1, 1/ελ−
1), and the invading population is assumed to have an
advantage over the resident population if R∗(M ′) <
R∗(M).
Sensitivity to additional death terms
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R
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�s
L

Figure S1: The rates of reproduction λ (blue), starvation-
based mortality µ (red), and survivorship-based death d̄
(black) as a function of adult mass.

It should be noted that our set of dynamics (Equations
7 and 9) could include a constant death term of the form
−dFF and −dHH to represent death not directly linked
to starvation. Adding terms of this form to our model
would simply adjust the effective value of λ and µ, and we
could rewrite Equation 9 with λ′ = λ−d and µ′ = µ−d.
These substitutions would not alter the functional form
of our model nor the steady-states and qualitative results,
however the quantitative values could shift based on the
size of d relative to λ and µ.

Survivorship has a well-known functional form which
changes systematically with size (e.g. [17]). Typically
survivorship is defined using the Gompertz curve

F = F0e
(c0/c1)(1−ec1t) (17)

where the parameters have the following allometric de-
pendencies on adult mass c0 = a0M

b0 and c1 = a1M
b1 ,

with a0 = 1.88 × 10−8 (s g−b0), b0 = −0.56, a1 =
1.45 × 10−7 (s g−b1), and b1 = −0.27 (see [17] for a re-
view).

We are interested in the specific death rate of the form
Ḟ = −dF , and using the derivative of Equation 17 we
find that d = c0e

c1t. Our model considers the aver-
age rates over a population and lifecycle and the average
death rate is given by

d̄ =
1

texp

∫ texp

0

c0e
c1tdt (18)

=
c0 (ec1texp − 1)

c1texp
(19)

where texp is the expected lifespan following the allometry
of texp = a2M

b2 with a2 = 4.04 × 106 (s g−b2) and b2 =
0.30 [17, 18]. Given the allometries above we have that

d̄ =
a0

(
ea1a2M

b1+b2 − 1
)
M b0−b1−b2

a1a2
(20)

which scales roughly likeM b0 because b1 and b2 are close
in value but opposite in sign. In Figure SS1 we compare
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the value of d̄ to the reproductive, λ, and starvation-
based mortality, µ, rates. The values of d̄ are orders
of magnitude smaller than these rates for all mammalian
masses, and thus, adding this non-starvation based death
rate to our model does not shift our results within nu-
merical confidence.

Figure S2: Total energetic use Btot of consumer populations
at the steady state as a function of body mass (F ∗ is shown in
green and H∗ in orange). The data are from Damuth [21] and
have been converted to total population metabolism using the
allometric relationships for metabolic rate (e.g. Refs. [3–5]).

NSM and the energy equivalence hypothesis

The energy equivalence hypothesis is based on the ob-
servation that if one assumes that the total metabolism
of an ecosystem Btot is equally partitioned between
all species (Bi, the total metabolism of one species,
is a constant), then the abundances should follow
N (M)B (M) = Bi implying that N (M) ∝M−η, where
η is the metabolic scaling exponent [19, 20]. As η ≈ 3/4
this hypothesis is consistent with Damuth’s law [19].
However, the actual equivalence of energy usage of di-
verse species has not been measured at the population
level for a variety of whole populations. Figure SS2 re-
casts the results of the NSM in terms of this hypothesis
and shows that F ∗B is nearly constant over the same
range of mammalian sizes up to the asymptotic behavior
for the largest terrestrial mammals.

Application of NSM limits to aquatic mammals
A theoretical upper bound on mammalian body size is
given by εσ = 0, where mammals are entirely composed
of metabolic reserves, and this occurs at M = 8.3 × 108

(g), or 120 times the mass of a male African elephant. We
note this particular limit as it may have future relevance
to considerations of the ultimate constraints on aquatic
mammals.
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