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Abstract (250 words limit) 18 

With the advent of high-throughput sequencing (HTS), profiling immunoglobulin (IG) repertoires has 19 

become an essential part of immunological research. Advances in sequencing technology enable the 20 

IonTorrent Personal Genome Machine (PGM) to cover the full-length of IG mRNA transcripts. 21 

Nucleotide insertions and deletions (indels) are the dominant errors of the PGM sequencing platform 22 

and can critically influence IG repertoire assessments. Here, we present a PGM-tailored IG repertoire 23 

sequencing approach combining error correction through unique molecular identifier (UID) 24 

barcoding and indel detection through ImMunoGeneTics (IMGT), the most commonly used sequence 25 

alignment database for IG sequences. Using artificially falsified sequences for benchmarking, we 26 

found that IMGT efficiently detects 98% of the introduced indels through gene-segment frameshifts. 27 

Undetected indels are either located at the ends of the sequences or produce masked frameshifts 28 

with an insertion and deletion in close proximity. IMGT’s indel correction algorithm resolves up to 29 

87% of the tested insertions, but no deletions. The complementary determining regions 3 (CDR3s) 30 

are returned 100% correct for up to 3 insertions or 3 deletions through conservative culling. We 31 

further show, that our PGM-tailored unique molecular identifiers results in highly accurate HTS 32 

datasets if combined with the presented data processing. In this regard, considering sequences with 33 

at least two copies from datasets with UID families of minimum 3 reads result in correct sequences 34 

with over 99% confidence. The protocol and sample processing strategies described in this study will 35 

help to establish benchtop-scale sequencing of IG heavy chain transcripts in the field of IG repertoire 36 

research. 37 

  38 
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Introduction 39 

The diversity of the immunoglobulin (IG) repertoire is the key feature of the adaptive immune 40 

system, enabling it to theoretically combat every possible antigen encountered during an individual’s 41 

lifetime [1]. With the development of high-throughput sequencing (HTS) it became possible to 42 

analyze the IG repertoire at high depth [2–6]. Studies, almost a decade ago, established Roche’s 454 43 

sequencer as the first tool of choice for exhaustive characterization of IG repertoires due to its 44 

superior read-length [7]. More recently, Illumina’s MiSeq and HiSeq sequencers as well as the Ion 45 

Torrent Personal Genome Machine (PGM, Thermo Fisher Scientific) provided an improved 46 

sequencing technologies which can reach across the full V(D)J nucleotide sequence span [8]. The 47 

different technologies of the sequencers result each in their specific error-rates and -types [7,9–15]. 48 

Illumina’s optical sequencing produces mostly nucleotide (nt) transversions and transitions, which 49 

can be corrected by building consensus sequences [16]. The 454’s pyrosequencing chemistry and the 50 

PGMs semiconductor technique mainly introduce homopolymer repeats resulting in insertions and 51 

deletions of bases, which can be corrected by gene segment-wise reference alignment [17]. 52 

Most sequencing approaches use IG isotype specific constant (C) region primers to translate IG 53 

heavy-chain (IGH) (m)RNA into cDNA, which are subsequently amplified using a set of V-region 54 

specific primers in a multiplex PCR approach. However, this can result in skewed repertoire read-outs 55 

due to biased PCR efficacy [8,14,18]. In addition, sequencing errors can falsify somatic hypermutation 56 

profiles, VDJ germline gene assignment and clonal grouping [8,19]. Unique identifiers (UID) which tag 57 

individual RNA molecules at cDNA transcription level have been used to obtain an unbiased view on 58 

the IG repertoire [20–23]. This method also allows thorough error-correction by building consensus 59 

sequences, albeit at the cost of sequencing depth. In all cases, complex bioinformatic approaches are 60 

necessary to perform raw-read processing [24]. Subsequent alignments to germline genes to assign 61 

VDJ family genes are in general conducted using the ImMunoGeneTics (IMGT) database, which 62 

applies an error correction algorithm for insertions and deletions in the process [25,26]. 63 
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After the initial proof-of-concept studies, the use of animal models to study the IG repertoire 64 

dynamics has been largely ignored [4,6]. One major factor being the lack of a suitable IGH V-region 65 

primer set comparable to BIOMED-2, developed for the human IG repertoire [27]. Yet, animal models 66 

offer advantages over human studies, as they are not limited to peripheral blood and have a lower B 67 

cell diversity [28–31]. As IMGT provides repertoires for various species, we chose to develop a 68 

method to profile the IG repertoire of Balb/C mice, one of the most commonly used animal models.  69 

In the present study, the performance of the PGM sequencing platform together with the IMGT 70 

database for the assessment of murine IGH repertoires is evaluated. In this context, several novel 71 

aspects are examined: first, the IMGT database’s indel detection and correction algorithm is 72 

benchmarked with a set of artificially falsified sequences. Second, a 16-nucleotide single side UID 73 

(ssUID) barcoding technique tailored to the PGM sequencing chemistry is introduced together with a 74 

swift 1-day library preparation protocol. Third, the PGM’s error-rate for sequencing murine IG 75 

transcripts with our barcoding strategy and customized data processing is determined.  76 

 77 

Results 78 

Reference sequences 79 

A set of 7 monoclonal mouse hybridoma cell lines was used to investigate the distribution and 80 

influence of insertions and deletions (indels) produced by the IonTorrent PGM sequencing 81 

technology on murine IGH repertoire sequencing (Figure 1). Reference sequences were obtained 82 

from Sanger sequenced cDNA transcripts of monoclonal hybridoma RNA subsequently annotated and 83 

translated into amino acids by IMGT V-QUEST.  84 

Distribution of artificial insertions and deletions  85 

To investigate the influence of indels on IMGT processing of an IGH sequence, we generated a 86 

benchmark dataset from the reference sequences that contained artificially introduced indels at 87 
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random positions (suppl. table S1). To cover each position within a 300 nt sequence with minimum 88 

90% certainty, at least 2398 erroneous variants are required [32]. Therefore, we generated 2500 89 

artificial, randomly flawed sequences for each permutation of 0-3 insertions and/or deletions (indels, 90 

annotated as i1d0, i0d1, i1d1 … i3d3), resulting in a total of 37500 artificial sequences per original 91 

hybridoma sequence with indels ranging from 1 to 6 events. Indels were homogenously present as 92 

determined by graphical reference alignment (Fig. 2A). Uncovered positions resulted from indels 93 

within homopolymer stretches which were always assigned to the beginning of such a nucleotide 94 

repeat region (Fig. 2B). 95 

IMGT VDJ nt error detection 96 

As each sequence of the benchmark system contained indel errors, all sequences marked by IMGT as 97 

productive were falsely categorized as error free. In general, IMGT correctly recognized 97.9% (± 98 

2.9%) of the introduced indels over all datasets and categorized the sequences then either as 99 

productive with detected indels, unproductive or unknown (Fig. 2C). Interestingly, only the sets with 100 

one insertion and/or deletion (i1d0, i0d1 and i1d1) exhibited elevated numbers of unrecognized 101 

indels. For these IMGT falsely returned 8% (±1.8%) of the sequences as productive, whereas for all 102 

other datasets it was only 0.7% (± 0.4%). Such undetected indels were found at the beginning and 103 

the end of the sequence or across the whole sequence for i1d1 datasets due to indels in close 104 

proximity to each other masking the frame-shifts (Fig. 2D, Fig. 3, suppl. Fig. S1 and S2). The number 105 

of unproductive sequences increased with the number of indel events, regardless of their 106 

composition. Accordingly, the number of productive sequences with detected indels decreased. Less 107 

than 50% of sequences with more than 3 indels, were retained. Indels were homogenously 108 

distributed in the uncorrected productive sequences with detected errors until about 4/5
th

 of the 109 

sequence lengths while the opposite is true for the uncorrected unproductive sequences (Fig. 2D, 110 

Fig. 3 and suppl. Fig. S2). This section of the sequence coincides with the IMGT IGH junction which 111 

encodes for the CDR3 [33]. Accordingly, upon detecting an indel in the IGH junction, IMGT 112 

categorized the sequence as unproductive and no corrective attempts were made.  113 
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Nucleotide error correction 114 

Upon detection of an indel, IMGT tries to correct it by alignment to its closest germline. The efficacy 115 

of this process was investigated by aligning the sequences with detected indels to determine the 116 

number of correctly resolved sequences (Fig. 3, Fig. 4 and suppl. Fig. S2). A thorough error reduction 117 

was observed for up to three insertion errors in datasets without deletions, returning 87% ± 3.2% 118 

(i1d0), 72% ± 5.5% (i2d0) and 56% ± 7.0% (i3d0) of productive sequences as correct (Fig. 4). Within 119 

these sequences indels that were not corrected by the IMGT were mainly found at the beginning and 120 

end of the sequence (Fig. 3A, D, E). In the case of deletions, the IMGT correction introduced a gap for 121 

the missing nucleotide as the original nucleotide was unknown. Consequently, the number of correct 122 

sequences found in datasets with mixed insertions and deletions is very low (i1d1: 1% ± 0.3%, i2d1: 123 

2% ± 0.3%, i3d1: 2% ± 0.6%, i2d2 and i3d2 <1%). Nevertheless, in these datasets, the insertions 124 

within the sequences were always reduced (Fig 3C and suppl. Fig. S2). No correct sequence could be 125 

identified in deletion-only datasets (Fig. 4).  126 

Amino acid error correction 127 

Theoretically, translated amino acids are less influenced by sequencing errors because of the 128 

redundancy of the genetic code. Thus, most amino acid translations were returned correctly in the 129 

case of insertion-only datasets and with slightly higher numbers compared to the nucleotide datasets 130 

(mean correct amino acid sequences for i1d0: 89% ± 2.9%, i2d0: 76% ± 4.7%, i3d0: 61% ± 6.5%, Fig. 131 

4). Higher numbers of correct translations were observed in mixed indel datasets than for the 132 

corresponding nucleotide datasets (i1d1: 3% ± 0.7%, i2d1: 4% ± 0.6%, i3d1: 4% ± 0.8%, i2d2 and i3d2 133 

<1%, Fig. 4). Interestingly, some amino acid translations were found to be correct for the i0d1 134 

datasets (1% ± 0.5%, Fig. 4). Deletion-affected datasets were usually returned with the wrong amino 135 

acid sequence by the IMGT algorithm. During IMGT processing, nucleotide deletions rendered the 136 

whole codon triplet elusive and were translated as gaps in the amino acid sequence. 137 
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Remarkably, the CDR3 proved to be protected chiefly from insertions and deletions through a more 138 

conservative correction approach of the IMGT algorithm for this part of the sequence. As mentioned 139 

above, detected indels within the IGH junction, and thus the CDR3, corrupted the entire sequence as 140 

unproductive (Fig. 3 and suppl. Figure S2). Culling attempts by IMGT turned out to be largely 141 

successful (100% correct CDR3s for up to 3 insertions or 3 deletions). Even for the i3d3 indel 142 

permutation, IMGT returned 78% ± 4.3% correct CDR3s (Fig 4), by removing all those sequences 143 

where indels were detected in the CDR3 encoding nucleotides. Datasets with simultaneous insertions 144 

and deletions showed in general lower numbers of correct CDR3 sequences (range 78-97%). This 145 

resulted from sequences where indels were introduced in close proximity of each other, producing 146 

no detectable frameshift within the IGH junction (Fig 2D). While invisible for the IMGT algorithm, 147 

they were observed as variants of the correct CDR3 amino acid sequence.  148 

Taken together the above data show, that IMGT processing exhibits adequate detection of indels 149 

through frame-shifts in mouse IGH nt sequences. Consequently, frame-shift masking error 150 

compositions cannot be detected and result in amino acid changes in the translations. IMGTs indel 151 

correction proved to be reliable for single insertions. However, the impossibility to correct for 152 

deletions and larger indel permutations makes consideration of sequences categorized as 153 

“productive with detected indels” unfavorable.  154 

HTS of hybridoma ssUID libraries 155 

Next, the IMGT database and a PGM-tailored data processing pipeline developed by our group were 156 

tested using real HTS datasets derived from 7 monoclonal hybridomas (Figure 1). The HTS libraries 157 

were prepared using an IonTorrent PGM tailored single-side UID approach (suppl. Fig. S3) allowing 158 

for error correction through building consensus sequences from all reads within a UID family [34,35]. 159 

The ssUID barcodes together with the C-region primer and appropriate ‘GATC’ spacer were correctly 160 

identified at the sequencing start site of 99.12% ± 0.56% of the usable reads containing a sample 161 

specific MID (Table 1). Between 146,010 and 739,854 reads were obtained per sample, with varying 162 
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ssUID family size distributions (Fig. 5A). After raw data processing, 1,431 to 47,169 consensus 163 

sequences were retained per hybridoma (Table 1) and uploaded to IMGT HighV-QUEST.  164 

IMGT processing of HTS datasets 165 

The majority of the post-IMGT sequences were categorized as productive (75.8% ± 22.6%) and 10.9% 166 

(± 9.6%) were categorized as productive with detected indels (Table 2). The remaining sequences 167 

were either categorized as unproductive or unknown/else. To investigate the undetected or 168 

uncorrected errors within the two productive categories, sequences were aligned to their 169 

corresponding references. For Hybridoma 3, which had the poorest UID distribution (Figure 5A), only 170 

26.8% of the sequences were classified as productive and 68.8% unproductive (Table 2). This 171 

hybridoma was therefore excluded from further analysis. 172 

In the group of productive sequences with detected errors, IMGT’s indel correction algorithm 173 

improved the number of correct sequences by 54.1% to on average 55.3% (± 32.0%, Fig. 5B). As 174 

expected, IMGT corrected most sequences that contained single insertions efficiently, reducing these 175 

errors from average 25.2 (± 24.3%) to 0.48% (± 0.72%, p-value = 0.0027, two-tailed t-test in 176 

Graphpad Prism, using Holm-Sidak’s method [36] to account for multiple testing with alpha = 5%, 177 

Figure 5B). Single deletions were found at somewhat higher rates than single insertions (29.9% ± 178 

24.3%) of the sequences. They increased slightly after IMGT error correction (31.6% ± 24.1%), as 179 

insertions of higher indel permutations were corrected, leaving only deletions in the sequences. 180 

Accordingly, these higher permutations were found in 33.8% (± 23.8%) of the sequences before 181 

error-correction and reduced to 8.8% (± 6.3%) afterwards. While the detection of indel errors in the 182 

sequences by IMGT was efficient, the remaining errors after correction still affected 44.7% ± 32.2% of 183 

the sequences. As described for the benchmarking sequences above, makes further consideration of 184 

sequences marked as “productive with detected indels” inadvisable.  185 

Sequences marked as productive without detected indels are not modified by IMGT but can 186 

nonetheless contain indel and nucleotide substitution errors. IMGT does not detect ambiguous 187 

nucleotides as errors but marks them as silent mutations. On average 2.2% (± 1.6%) of the consensus 188 
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sequences in the productive dataset without detected indels contained ambiguous nucleotides 189 

(Table 3), which were discarded from the datasets. Most of the remaining sequences were indeed 190 

error-free (98.8% ± 0.5%, Fig. 5C). The other 1.2% contained on average 0.2% (± 0.1%) i1d1 indels in 191 

close proximity to each other, masking frameshifts. Some sequences showed single insertions (0.1% 192 

±0.2%) and deletions (0.15% ± 0.13%), either at the beginning or the end, without detectable 193 

frameshift. The remaining false sequences contained nucleotide substitutions, with the majority 194 

being transversions (0.5% ± 0.3%) and very few transitions (< 0.1%). As described by Shugay and 195 

coworkers, such substitutions originate from dominating polymerase errors occurring early during 196 

the amplification [34]. As polymerase errors are occurring at relatively random positions, it is 197 

stochastically unlikely, that the same errors are found repeatedly within a dataset and can thus be 198 

accounted for by considering only consensus sequences that appear more than once in the final 199 

dataset [34,35]. Following this approach, the data was reassessed, excluding singleton consensus 200 

sequences. This reduced the number of total sequences in the datasets by 0.8% (± 0.4%). The 201 

number of transversions was reduced significantly by 0.3% to 0.16% (± 0.19%, p-value = 0.008, two--202 

tailed t-test in Graphpad Prism, using Holm-Sidak’s method to account for multiple testing with alpha 203 

= 5%, data not shown). Consequently, the number of error-free sequences improved significantly by 204 

0.7% to 99.5% (± 0.3%, p-value < 0.0001, two-tailed t-test, using Holm-Sidak’s method to account for 205 

multiple testing with alpha = 5%).  206 

The number of reads per UID, referred to as UID family size, is crucial to obtain reliable consensus 207 

sequences [35]. Increasing the minimum number of required reads per UID family improved the 208 

amount of correct sequences, reaching 100% for all hybridomas, except Hybridoma 5, albeit with 209 

different UID family sizes (Figure 5D). However, with increasing minimum UID family sizes, the 210 

number of sequences decreased exponentially. Consequently, at the point of reaching 100% correct 211 

sequences, on average only 7.9% (± 7.1%, excl. Hybridoma 5) of the sequences remained (Figure 5D). 212 

According to our data, keeping a minimum UID family size of 3 provided adequate accuracy and 213 

throughput when using an IonTorrent PGM. 214 
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As expected, the number of correct amino acid sequences was higher (99.3% ± 0.3%) than the 215 

amount of correct nucleotide sequences (Figure 5C). An average of 0.6% (± 0.4%) of the sequences 216 

was subject to amino acid changes. Excluding singleton amino acid sequences increased the number 217 

of correct amino acid sequences to 99.7% (± 0.2%), but this increase was not statistically significant. 218 

CDR3 amino acid sequences were returned almost entirely correct (99.85% ± 0.11%, Figure 31C), 219 

increasing to 99.91% (± 0.08%) when singleton full-length amino acid sequences were excluded.  220 

  221 
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Discussion 222 

Investigation of IG repertoires by HTS is challenging both with respect to the library preparation as 223 

well as sequencing error assessment and data processing. Using artificially falsified sequences, we 224 

show here that the IMGT indel detection algorithm is efficient while the IMGT indel correction 225 

algorithm only corrects single insertions sufficiently. We confirm the utility of the IonTorrent PGM to 226 

assess murine IGH repertoires with high confidence, using a dedicated library preparation protocol 227 

with a PGM-tailored 16 nt single side unique identifier (ssUID) barcoding technique. Our data show, 228 

that appropriate data processing reduced the error rate of PGM-sequenced IGH repertoires to less 229 

than 0.5% false nucleotide and amino acid sequences, and to less than 0.01% false CDR3 sequences 230 

per dataset.  231 

Sequencing of IGH repertoires requires a thorough assessment and correction of platform inherent 232 

sequencing errors [7,9,12–15]. Using the IMGT database for reference alignment, the indel errors of 233 

the utilized Ion Torrent PGM sequencing platform can theoretically be detected through the resulting 234 

codon frame-shifts [17]. The VDJ structure of the IGH sequence facilitates indel detection by frame-235 

shift, since gene segments can be aligned separately. In our study, the IMGT algorithm successfully 236 

detects 97.9% of all indels, regardless of their composition, only single insertions or deletions at the 237 

beginning or the end of the sequences (7.9% and 7.5%, respectively), or i1d1 compositions in close 238 

proximity to each other could not be identified (8.5%). IMGT tries to correct detected insertions 239 

subsequently by removing the false nucleotide(s) according to the predicted germline sequence. In 240 

the artificially falsified datasets of our study insertion-only errors were corrected by the IMGT 241 

algorithm with 87% (i1d0), 72% (i2d0) and 56% (i3d0) efficiency. Deletions, on the other hand, are 242 

more difficult to recover since the missing nucleotide cannot necessarily be inferred from the 243 

germline sequence with sufficient confidence. Consequently, artificially introduced deletions were 244 

not corrected by IMGT. Also, for sequences with mixed insertions and deletions only the nucleotide 245 

insertions were corrected by IMGT leaving the sequence erroneous. Taken together, these data 246 

indicate that detection of indels by IMGT is highly efficient and sequences categorized as 247 
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“productive” without detected errors are almost entirely indel-free. The low efficiency of the indel 248 

correction algorithm makes it inadvisable to take productive sequences with detected indels into 249 

account for any downstream analysis. These correspond to about 10% of the final HTS consensus 250 

sequences in our study.  251 

HTS library preparation using multiple primers during template amplification can significantly bias 252 

the repertoire composition [14,19]. This bias is essentially removed by UID barcoding but the 253 

approach reduces sequencing depth at the same time [35,37–39]. In our study, the raw sequencing 254 

depth does not influence the relative number of correct sequences while the average UID family size 255 

proved to be crucial. For instance, Hybridoma 3, although having only the 3rd lowest amount of raw-256 

reads, lacked eligible UID family sizes (> 2 sequences per UID). For this Hybridoma 3, less than 0.5% 257 

of the consensus sequences were built from UID families with more than 2 members, resulting in the 258 

poorest error correction rate during sample processing. Consequently, IMGT returned only 26.6% of 259 

the consensus sequences as productive. We therefore conclude from our data, that for applying a 260 

UID family-wise consensus building approach, samples with less than 0.5% eligible consensus reads 261 

after pre-IMGT processing do not have enough coverage to achieve sufficient confidence and depth 262 

for the post-IMGT sequences and should be discarded from further analysis. 263 

For grouping reads by UID families, it is essential to identify the UID tags correctly [35,39]. The PGM 264 

sequencing chemistry is unidirectional, starting with the sequencing adapter A. Comparable 265 

protocols for the Illumina sequencing platforms usually consist of UID tags at the beginning and the 266 

end of the amplicon sequence [40]. We chose to introduce the 16 random nucleotides of the UID tag 267 

at the sequencing start site as the PGM semiconductor technology is significantly less accurate 268 

towards the end of the sequence [41]. We included a 4-nucleotide spacer as junction into the UID tag 269 

resulting in the N8-GATC-N8 ssUID layout of this study. Like this we address that the PGM indel rate 270 

increases in homopolymer stretches with their length [42], in particular when homopolymers are 271 

longer than 8nt [43]. While breaking potential homopolymer patterns within the UID, this design also 272 
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reduces the number of mistakes during primer synthesis and allows to generate sets of primers with 273 

individual spacers that could be used to tag different experiments. 274 

Nucleotide substitution errors are the most difficult to account for in HTS IG repertoire approaches 275 

and can critically falsify somatic hypermutation profiles [16,24]. They can originate from mixed 276 

events of adjacent insertions and deletions, which cannot be detected by the IMGT algorithm or are 277 

introduced as mistakes by the sequencing platform. UID barcoded RNA transcripts allow to address 278 

this problem [8,34,35,40]. B cells contain up to several thousands of identical IG RNA molecules that 279 

are each individually tagged by a UID [40,44]. Therefore, a HTS run provides a snapshot of the 280 

relative abundance of RNA transcripts [16]. Comparable to procedures used for identification of 281 

single nucleotide polymorphisms (SNP), single occurrences of nucleotide substitutions can be ruled 282 

out as artifacts and only transcripts above a certain copy threshold should be retained [44]. Our data 283 

show, that considering sequences with at least 2 copies in the final dataset improves the proportion 284 

of correct sequences by 0.7% to 99.5%. In this regard, as our sampling material are monoclonal 285 

hybridomas, all derived sequences (between 1,431 and 47,169) represent identical RNA molecules, 286 

making it stochastically more likely, that the same indel error appears several times. Thus, it is 287 

expectable, that the positive influence of excluding singletons would be even higher in bulk B cell 288 

derived datasets, where less sequences are derived from identical RNA molecule.  289 

In conclusion, we have demonstrated that using our ssUID library preparation in combination with 290 

the IMGT database, the PGM sequencing platform can be efficiently used to assess murine IGH 291 

repertoires. Considering only consensus sequences with at least two copies improved the sequence 292 

quality considerably. Taken together, this approach allowed to obtain highly reliable IGH sequences, 293 

with more than 99% confidence in general and 99.9% confidence for the correct CDR3 sequences. 294 

The protocol and sample processing strategies described in this study will help to establish the 295 

benchtop-scale Ion Torrent sequencing technology of animal models in the field of immunoglobulin 296 

repertoire research. 297 
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Materials and Methods 298 

RNA extraction 299 

RNA was extracted with Trizol LS/chloroform (Thermo Fisher Scientific, Waltham, USA) method from 300 

seven monoclonal hybridoma cell lines (produced in house) with 10
6
 cells each. DNA was digested 301 

using the DNAfree kit (Thermo Fisher Scientific), RNA was further purified using Agencourt® 302 

RNAclean XP beads (Analis, Suarlée, BE) and quantified on a NanoDrop® Spectrophotometer 303 

(ND1000, Isogen Life Science, De Meern, NL). RNA was either directly used for library preparation or 304 

stored at -80°C.  305 

Reference sequences 306 

Hybridoma cDNA transcripts were obtained using mouse constant region IgG primer (suppl. table S2) 307 

in a Superscript III (Thermo Fisher Scientific) reverse transcription following the manufacturer’s 308 

instructions for templates with high GC content. Transcripts were Sanger-sequenced (3100 Avant, 309 

Thermo Fisher Scientific) using constant region IgG and V-region primers (suppl. table S2). Forward 310 

and reverse sequences were aligned and submitted to IMGT V-QUEST (http://www.imgt.org, [45]) to 311 

verify the nucleotide sequence and to translate into amino acids. These sequences were 312 

subsequently used as reference sequences in alignments and artificial error insertion experiments. 313 

Datasets with artificial insertions and deletions 314 

Artificial datasets were generated using the Biopieces indel_seq package (http://www.biopieces.org). 315 

For each of the original 7 hybridoma sequences, 2500 error-containing sequences were generated by 316 

combining 0-3 insertions and 0-3 deletions, obtaining a total of 37500 artificial sequences per 317 

hybridoma. For every set, indel-type and -position were determined by alignment to the original 318 

sequence to ensure homogenous error distributions. All artificial datasets were uploaded to IMGT 319 

HighV-QUEST and sorted by annotation: IMGT annotates correct sequences as productive. Sequences 320 

with a detected indel (frameshift, stop codon) are marked as “productive (see comment)” if the error 321 
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can be corrected (referred to as “productive with detected errors”). Sequences with uncorrectable 322 

errors are classified as “unproductive”. If no fitting germline can be found sequences are marked as 323 

“unknown” or “no result” (referred to as “unknown/else”). The remaining indels on nucleotide level 324 

and amino acid changes were determined using the SeqAn library [46] in a custom-made C++ 325 

reference alignment program. For datasets with one insertion and one deletion (i1d1) the positions 326 

of the indels were determined by position-wise mismatch detection using a custom made Biopython 327 

[47] script. Upon detection, the nucleotide positions were returned and the process repeated with 328 

reverse complement sequences.  329 

Library preparation and HTS 330 

Approximately 100ng (as determined by Nanodrop®) of total RNA per hybridoma was used for library 331 

preparation. We adapted the UID labeling method developed by Vollmers et al [40] to our PGM 332 

sequencing system (suppl. Fig. S3). RNA was reverse transcribed using Superscript III reverse 333 

transcriptase, according to the manufacturer’s instructions, using multiplex identifiers (MID) and UID 334 

tagged mouse constant region (IGHγ) primers elongated by partial PGM sequencing adapter pA 335 

(suppl. Table S2). The MID tag allowed multiplexing of several samples on one sequencing chip. The 336 

UID tag consists of two times 8 random nucleotides separated by a “GATC” spacer (N8-GATC-N8). 337 

With this UID tag each RNA molecule targeted by the primer is uniquely labeled (see [34,40] for 338 

detailed theoretical descriptions). The RT reaction mixtures were split into two equal second strand 339 

synthesis reactions using Phusion® High-Fidelity DNA polymerase (NEB, Massachusetts, USA) with a 340 

mouse IGH V-region primer mix (suppl. Table S2). The reaction conditions were as follows: 98°C 341 

2min, 50°C 2min, 72°C 10 min in a single cycle reaction. Both reaction aliquots were combined and 342 

purified twice using Agencourt® AMPure® XP beads (Analis) in a 1:1 (v/v) ratio to remove primer 343 

traces. Libraries were subsequently amplified with a Q5® Hot Start High-Fidelity DNA polymerase 344 

(NEB) using the full-length Ion Torrent PGM sequencing adapters A and P1 as primers (suppl. Table 345 

S2) with the following conditions: 98°C for 1min, 20 cycles of 98°C for 10s, 65°C for 20s, 72°C for 30 346 

seconds. Final elongation was done at 72°C for 2 min. Amplified libraries were purified twice using 347 
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equal volumes of AMPure® XP beads. Quality of the libraries as well as size of the amplicon and 348 

concentrations were determined using Agilent 2100 Bioanalyzer (Agilent Technologies, Diegem, BE) 349 

with the High Sensitivity DNA Kit (Agilent Technologies). 10 libraries were pooled equimolar on an Ion 350 

316TM Chip (Thermo Fisher Scientific) and sequenced on a PGM sequencer, with all quality trimming 351 

options disabled on the Torrent SuiteTM v4.0.2 352 

Data processing pipeline for the HTS datasets 353 

Untrimmed raw reads were demultiplexed by their MIDs, retaining only sequences containing the full 354 

UID primer sequence for further analysis, with no mismatches allowed. The UID sequence was 355 

extracted and categorized in relation to the starting position of the detected primer including the 356 

GATC spacer and stored in the sequence identifier. After clipping the MID, UID and constant region 357 

primer, the trimmed reads were quality controlled (80% of the bases Phred-like quality score above 358 

20) and grouped into UID families. Using pagan-msa [48], a consensus sequence was generated for 359 

each UID-family containing more than 2 members. Afterwards, reverse primers were identified with 360 

up to 2 mismatches and clipped. Subsequently, sequences were collapsed to unique reads, storing 361 

counts in the read identifier, and uploaded to IMGT for error detection, correction, annotation and 362 

translation into amino acids. Post-IMGT datasets were separated into four categories (“productive”, 363 

“productive with detected errors”, “unproductive” and “unknown/else”) and processed separately. 364 

Data processing was performed using custom-made Python scripts (Python v2.7) employed in a 365 

parallelizing bash wrapper script using gnu-parallel [49] and the Biopieces framework 366 

(http://www.biopieces.org/). 367 

Graphs and statistics 368 

All graphs and statistical analyses were performed using R base packages or GraphPad Prism 6. 369 

Average numbers are reported as mean ± standard deviation (SD) unless specified otherwise.  370 
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Figure legends 371 

Figure 1: Study design. RNA was extracted from 7 monoclonal hybridoma cell lines and reverse 372 

transcribed into cDNA. cDNA sequences were determined by Sanger sequencing and submitted to 373 

IMGT to determine reference sequences. Reference sequences were artificially falsified using the 374 

indel_seq program, introducing up to 3 insertions and 3 deletions. 2500 artificial sequences were 375 

generated for each permutation and hybridoma and processed by IMGT. Post-IMGT sequences were 376 

aligned to the references to determine error detection and correction. RNA was also used to 377 

generate high-throughput sequencing (HTS) libraries in a three-step library preparation protocol. 378 

Single side unique identifiers (ssUID) were introduced during reverse transcription to tag each RNA 379 

molecule individually (see also suppl. Fig. S3). Libraries were sequenced on an Ion Torrent PGM 380 

sequencer with all quality trimming options disabled in the Torrent Suite software. Untrimmed raw 381 

sequences were processed with a custom-made bioinformatics pipeline generating consensus 382 

sequences per UID family. Collapsed consensus sequences were submitted to IMGT and post-IMGT 383 

sequences aligned to the reference sequences to determine error detection and correction.  384 

Figure 2. Indels in the artificial dataset. (A) Insertion and deletion events displayed as determined by 385 

graphical alignments of the reference sequence to the i1d0 and i0d1 dataset of hybridoma 1. Grey 386 

bars represent the actual detected indel and the black line presents the moving average over 4 387 

neighbors. The dotted lines vertical present the segment that is magnified in (B) to visualize the 388 

problem of determining the position of indels in homopolymer repeats. (C) Indel detection rates by 389 

IMGT processing shown as bar chart with error bars indicating the SD over all 7 datasets (D) 390 

Visualization of indel proximity. The distances between the first and second indel before correction in 391 

the i1d1 dataset of hybridoma 1 are shown as scatterplot. Dotted lines indicate the position of the 392 

IMGT junction. Productive sequences with detected indels are shown in light grey, unproductive 393 

sequences are shown in dark grey. Sequences without detected errors are shown in black. The 394 

remaining i1d1 indel proximity graphs are shown in the supplementar Figure S1. 395 
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Figure 3. Artificial indel set alignments. Indel positions are shown before and after IMGT error 396 

correction for artificially falsified Hybridoma 1 sequences separated by productivity. (A) The indels 397 

for the i1d0 dataset are shown per nucleotide position as line plot (smoothened over 4 neighbors). 398 

The grey area marks the IGH VDJ junction. (B-E) like (A) but with different permutations. The 399 

remaining permutations are displayed in the supplementary Figure S2. 400 

Figure 4. Correction of artificially introduced indels by IMGT. The fraction of correct sequences for 401 

each artificial benchmark permutation of indels are shown as bar charts of nucleotide (nt), amino 402 

acid (aa) and CDR3 amino acid sequences. Error bars indicate SD over all 7 datasets. 403 

Figure 5. HTS data on monoclonal hybridomas. (A) UID family size distributions per sample. The 404 

number of UID families (log transformed) is plotted by the number of reads assigned to a ssUID per 405 

hybridoma. The amount of UID families containing a minimum of 3 reads are indicated as percentage 406 

value. (B) Indel distributions on productive sequences with detected errors. The amount of indel-free 407 

(i0d0), single insertions (i1d0), single deletions (i0d1), one single insertion and deletion (i1d1) and 408 

higher permutations are shown as fraction of productive reads with detected indels before (circles) 409 

and after (squares) IMGT error correction. Statistical differences are indicated with **** p < 0.0001, 410 

* p < 0.05, multiple two tailed t-test with Holm-Sidak’s method to account for multiple testing. (C) 411 

The number of error-free sequences in the productive dataset without detected indels are shown as 412 

scatterplot with mean and ± SD. Data are shown for all nucleotide sequences (nt), amino acid 413 

sequences (aa) and CDR3s for all sequences and data without singleton sequences. CDR3 singleton 414 

exclusion was performed on the basis of full-length amino acid sequences. P values are indicated *** 415 

p < 0.001, * < 0.05, One-way ANOVA with Sidak’s post-hoc test. All other differences were not 416 

statistically significant. (D) Influence of UID family size on the number of correct sequences. The 417 

number of correct sequences are shown as black line per minimum UID family size (left y-axis). The 418 

number of consensus sequences are shown as dotted line per minimum family size (right y-axis). The 419 

UID family size at which all sequences are correct is indicated by a grey vertical line for Hybridoma 420 

1,2,4,6 and 7, the dataset of Hybridoma 5 does not reach 100% correct sequences. 421 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2017. ; https://doi.org/10.1101/219568doi: bioRxiv preprint 

https://doi.org/10.1101/219568
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Figure S1: Indel positions for mixed i1d1 datasets of hybridomas 2-7. The distances between the 422 

first and second indel before correction in the i1d1 dataset of hybridomas 2-7 are shown as 423 

scatterplots. Dotted lines indicate positions of IMGT junctions. Productive sequences with detected 424 

indels are shown in grey, unproductive sequences are shown in dark grey. Sequences without 425 

detected errors are shown in black.  426 

Figure S2: Additional artificial indel set alignments. Indel positions are shown before and after IMGT 427 

error correction for artificially falsified Hybridoma 1 sequences separated by productivity. The indels 428 

for the datasets i1d2, i1d3, i2d1, i2d2, i2d3, i3d1, i3d2, i3d3, i0d2, i0d2 are shown per nucleotide 429 

position as line plot (smoothened over 4 neighbors). The grey area marks the IGH VDJ junction.  430 

Figure S3. 3-step PGM ssUID sequencing library preparation. (A) In a first step, purified mRNA is 431 

used in a Superscript III reverse transcription. The Primer for the reverse transcription is specific for 432 

the murine IG C region and elongated by an MID for sample multiplexing as well as a UID consisting 433 

of 2x 8 random nucleotides (N8) separated by a 4-nucleotide spacer (‘GATC’). The primer ends with 434 

the partial PGM sequencing adapter pA. (B) In the second step, a mix of 26 IG VH region targeting 435 

primers (elongated by the partial PGM sequencing adapter pP1) is used in a single cycle PCR reaction 436 

to avoid amplification. The product of this reaction is purified twice with Agencourt® AMPureXP 437 

beads to remove the VH primers from the reaction mixture. (C) In the final step, the purified reaction 438 

mixture is amplified using the full-length P1 and A adapters as primers in a 20 cycle PCR reaction. The 439 

product is as well purified twice to obtain the ssUID-tagged sequencing library. 440 

 441 
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Tables 450 

Table 1 HTS datasets pre-IMGT 451 

Set CDR3 Chip reads with 

MID 

reads with primer 

& UID 

consensus 

sequences 

HYB1 SRWDYRYVYYPLDY A 207,753 206,929 4,159 

HYB2 ARTYYGSYGFDY A 147,634 146,010 7,760 

HYB3 ARQWLILWLGFAY A 222,929 222,100 1,431 

HYB4 ARWDYRYVYYPLDY A 882,242 877,823 16,643 

HYB5 TRGYYRYDGGFY B 747,827 733,258 7,319 

HYB6 APKGLAY B 743,465 739,854 47,169 

HYB7 ASRTTATGY B 204,348 201,619 5,426 

 452 

Table 2 HTS datasets post-IMGT 453 

Set 
prod. 

seq. 
% 

prod. w. 

det. indel 
% unprod % 

unknown

/ else 
% 

HYB1 3,328 79.6% 622 14.9% 127 3.0% 102 2.4% 

HYB2 4,866 62.7% 2,449 31.6% 250 3.2% 195 2.5% 

HYB3 381 26.6% 62 4.3% 984 68.8% 4 0.3% 

HYB4 13,515 81.2% 2,215 13.3% 329 2.0% 584 3.5% 

HYB5 6,697 91.5% 281 3.8% 51 0.7% 290 4.0% 

HYB6 43,767 92.8% 3,009 6.4% 287 0.6% 106 0.2% 

HYB7 5,216 96.1% 111 2.0% 15 0.3% 84 1.5% 

Mean 11,110 75.8% 1,250 10.9% 292 11.2% 195 2.1% 

SD 13,842 22.6% 1,165 9.6% 303 23.5% 180 1.4% 

 454 

Table 3 Ambiguous nt in HTS datasets  455 

 HYB1 HYB2 HYB4 HYB5 HYB6 HYB7 Mean SD 

Amb nt 26 135 97 90 2289 148 464 817 

% 0.8 2.6 0.7 1.3 5.2 2.8 2.2 1.6 

 456 

Abbreviations 457 

CDR3 – complementary determining region 3 458 
HTS – high-throughput sequencing 459 
IG – immunoglobulin 460 
IGH – immunoglobulin heavy chain 461 
IMGT – ImMunoGeneTics 462 
indel – insertions and deletions of nucleotides 463 
MID – multiplex identifier 464 
nt – nucleotide 465 
PGM – (Ion Torrent) Personal Genome Machine 466 
UID – Unique (molecular) identifier 467 
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ssUID – single side unique molecular identifier 468 
 469 
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