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ABSTRACT 

It is now well established that somatic mutations in protein-coding regions can generate 

‘neoantigens’, and that these can be recognized by the immune system and contribute to 

clearance of developing cancers. However, there is currently no model that can 

quantitatively predict the neoantigenic effect of any given somatic mutation. Here, we 

examined signatures of immune selection pressure on the distribution of somatic 

mutations. We quantified the extent to which somatic mutations are significantly depleted 

in peptides that are predicted to be displayed by major histocompatibility complex 

(MHC) class I proteins. We characterized the dependence of this depletion on expression 

level. We then examined whether immune selection pressure on somatic mutations 

changes depending on whether the patient had either one or two MHC-encoding alleles 

that can display the peptide. Our results indicate that MHC-encoding alleles are, in 

general, incompletely dominant, i.e., that having two copies of the display-enabling allele 

is more effective in displaying that peptide than having just one copy. More generally, a 

quantitative understanding of counter-selection of identifiable subclasses of neoantigenic 

somatic variation could guide immunotherapy or aid in developing personalized cancer 

vaccines. 

INTRODUCTION 

In every human cell, proteins are constantly being degraded into component peptides, and 

a subset of this pool of peptides are displayed on MHC class I receptor proteins (encoded 

by human leukocyte antigen or HLA genes). As somatic mutations arise, some cause 

differences in MHC-displayed peptides, producing antigens that can be differentially 

recognized by T cells and lead the specific destruction of tumor cells by the immune 
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system 1.  In addition to the production and display of ‘non-self’ peptides that can arise 

directly from mutation, genetic and epigenetic alterations can cause tumor cells to 

express many proteins more highly 2. Together, these changes mean that cancer cells 

have an altered repertoire of proteins and therefore of tumor antigens. 

Tumor antigens can be classified into two categories: tumor-associated self-antigens 

(which may be displayed by other normal cell types even if not displayed by the normal 

cell type from which the tumor was derived) and antigens derived from tumor-specific 

mutant proteins. The latter class of tumor-specific ‘neo-antigenic’ mutations are ideal 

targets for cancer immunotherapy, due to the fact that neo-antigens are less likely to be 

present in healthy cells/tissues and can potentially be recognized by the mature T-cell 

repertoire 3. Also, it has been reported that neo-antigens are likely to be more 

immunogenic, presumably due to the T-cell maturation process in which T-cells capable 

of high-avidity recognition of self-antigens are eliminated 4. Immuno-therapy approaches 

exploiting neo-antigenicity, however, have been hampered by the fact that every tumor 

possesses a unique set of mutations that must first be identified 5. Moreover, individual 

patients can differ dramatically in their immune systems, based on HLA type and other 

allelic variation in immune genes, as well their unique repertoire of mature immune cells. 

Thus, personalized immuno-therapy could positively benefit the patient during cancer 

treatment 6, 7, 8. After recognition, the process of tumor cell killing by T-cells may release 

more tumor neo-antigens in a potentially therapeutic virtuous cycle. 

In principle, any coding mutations has the potential to generate mutant peptides that can 

be presented by MHC class I molecules and subsequently recognized by cytotoxic T 

cells. However, to bring this personalized treatment approach to tumor patients, a crucial 
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challenge is determining the MHC-binding potential of non-self peptides that arise from 

somatic tumor mutations, and determining which among them are most likely to be 

potent neo-antigens in patients in different cancers with different HLA alleles that encode 

different MHC class I receptors. 

To improve our understanding of neo-antigenicity in cancer, we conducted several 

analyses of somatic mutations and the ability of corresponding mutant peptides to be 

displayed by MHC class I receptors across different cancer types. More specifically, we 

quantified the impact of predicted antigenicity on the spectrum of tumor missense 

somatic mutations. We expected to find that somatic mutations would be less frequent in 

MHC-displayed peptides, presumably because of counter-selection of cells bearing these 

mutations by the immune system. Other groups have identified predicted-displayed 

mutations based on patient HLA-A genotypes 9, without quantifying the extent of 

depletion of these mutations. Other work reported that predicted-MHC-displayed 

mutations were depleted in colorectal and clear cell renal cancer 10. However, this 

phenomenon was not explored in detail, e.g., considering patient genotypes at all HLA 

loci or considering expression levels of the displayed peptide. 

The project consisted of three main parts. First, we quantified the extent to which somatic 

mutations are significantly depleted in peptides that are predicted to be displayed by 

MHC class I proteins (without considering patient HLA type). We characterized the 

dependence of this depletion on the inferred expression level of each peptide. Second, we 

refined each of the preceding analyses by considering individual patient HLA alleles. 

Third, we extended this analysis by relating depletion of somatic mutations to the number 

of HLA alleles predicted to display peptides bearing that mutation. Thus, we 
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quantitatively estimated the ‘neoantigenicity’ of different classes of somatic variants in 

individual patients. 

RESULTS 

Depletion of mutations within expressed predicted MHC-binding peptides 

As somatic mutations arise, we should expect that more immunogenic mutations are 

more likely to be counter-selected due to clearance of the mutant cell by the immune 

system, and therefore depleted from observed tumor genomes. To formally test this 

hypothesis and to begin to quantify the expected depletion effect, we examined somatic 

cancer mutations in human cancer samples, beginning with whole genome/exome 

sequencing studies in the PCAWG database.  

The immunogenicity of a protein-coding mutation depends in part on whether or not it 

yields a mutant peptide that is displayed by a MHC class I protein receptor. MHC class I 

binding peptides were therefore predicted using the NetMHC server 11, 12. In total, we 

examined 121,258 missense somatic mutations from 2,834 PCAWG patients for whom 

HLA type was estimated. Those mutations are distributed in more than 10,700 genes. 

Missense somatic mutations from PCAWG were separated into two groups: either falling 

within or outside of predicted MHC binding peptides. For an initial analysis, we modeled 

all MHC class I alleles for which display predictions were available as being present in 

each patient (we revisit this issue later). 

Because a mutant protein must be expressed in order to yield a displayed peptide, we also 

examined the dependence of missense variant depletion on gene expression levels. More 

specifically, we analyzed the relationship between the missense mutation density within 
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MHC binding peptides and the expression level of the corresponding protein using 

RNAseq data matched to the appropriate cancer type (see Materials and Methods). Then, 

for mutations within and outside of MHC binding peptides, we calculated the mutation 

density for five classes of peptide: those that were undetectably expressed and those in 

each of four gene expression quantiles (Materials and Methods).  

As expected, we found that mutation density and expression level are negatively 

correlated, and that the average mutation density within MHC binding peptides is lower 

than that of MHC binding peptides for expressed peptides (Figure 1; ratio of mutation 

density within MHC-displayed peptides to that outside displayed peptides = 0.94; 

Fisher’s exact test, P-value < 2.2e -16). As a control, we further compared the mutation 

density within and out of MHC binding peptides in undetectably-expressed genes. Our 

results indicated that there was no significant depletion of missense somatic mutations 

within MHC binding peptides that are not detectably expressed (Figure 1; odds ratio = 

1.01, P-value = 0.65). Although the odds ratio was near 1 for non-expressed proteins, as 

one might naively expect, we note that the sequence specificity of specific MHC class I 

receptor alleles can lead to HLA-allele-dependent amino acid (and therefore nucleotide-

level) sequence biases in the peptides displayed, which could in turn yield sequence-

dependent differences in mutation density. To account for this, we performed a correction 

by dividing the mutation density ratio of expressed proteins by that of non-expressed 

proteins.  Although in this case the corrected mutational density ratio was 0.93/1.01, 

which is still 0.93, it did make a difference for other results below.   

Thus, our analysis of PCAWG data confirmed the expected phenomenon that somatic 

mutations are depleted within expressed MHC-displayed peptides. Quantifying the MHC-
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display-dependent depletion effect in non-expressed peptides served as a crucial negative 

control for sequence biases of peptides displayed by particular HLA alleles.  

Depletion of mutations within predicted patient-displayed MHC-binding peptides 

For a mutant protein to yield a peptide that is displayed by a given allele of the MHC 

class I receptor, that allele must of course be present in the cells of that patient. Because 

the analyses above were based on a hypothetical (and unrealistic) patient who bears all 12 

of the common HLA alleles for which display predictions are available, the depletion 

effect sizes estimated above are likely to be conservatively small. Indeed, individual 

patients can differ dramatically in their immune systems, in part due to allelic variation in 

HLA genes. Therefore, we sought to characterize the mutation depletion phenomenon 

using, for each somatic variant, only peptide display predictions for the subset of HLA 

alleles carried by the patient in which that somatic variant was detected.  

Re-examining the PCAWG data, there were 12,552 genes in which at least one variant 

was predicted to be neo-antigenic, e.g., presented by the MHC class I protein of the 

patient carrying this mutated gene. For these genes, we again examined the tendency for 

depletion of mutations within MHC binding peptides relative to non-MHC binding 

peptides, now taking patient HLA type into account. Within expressed proteins, the ratio 

of mutation density within predicted-displayed MHC binding peptides to that outside 

predicted-displayed peptides was 0.82 (Fisher’s exact test, P-value < 2.2e -16). Within 

non-expressed proteins, the corresponding ratio was 0.98 (Fisher’s exact test, P-value = 

0.19), yielding a corrected mutational density ratio for expressed proteins of 0.83 

(0.82/0.98). 
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Our analysis showed that missense mutations tend to be counter-selected within MHC 

binding peptides, both in an idealized patient with unknown HLA type, and when 

accounting for HLA type in each specific patient sample. In each case, the phenomenon 

depended on expression level of the gene encoding that peptide (Figure 2). In all 

subsequent analyses, we considered only peptides expressed according to RNA-Seq 

analysis of the appropriately-matched cancer type.  

Dependence of depletion on the number of mutation-displaying alleles.  

In the above analysis, we only considered for each peptide whether or not the patient 

carried an HLA allele predicted to display that peptide, but did not consider how many 

copies of the displaying allele were present in that patient. We hypothesized that peptides 

for which two copies of the displaying HLA alleles were present would be more 

efficiently displayed. (This could be due either to increased expression of the displaying 

allele by increased gene dosage, or a decreased chance that the displaying allele would be 

silenced where the phenomenon of mono-allelic expression occurs 13). We assessed this 

hypothesis further by testing, for patient samples where ‘likely-displayed’ mutations were 

found, if the number of alleles that can display the MHC binding peptides was associated 

with the extent of mutation depletion.  

Missense variants from the 2,834 PCAWG patient samples were separated into three 

types (Figure 3). “D0,” where the patient has zero HLA class I alleles that are predicted 

to display the mutant peptide; “D1”, where only one HLA class I allele type can display 

the peptide, i.e., the patient is heterozygous at the relevant HLA locus such that the 

patient has only one HLA allele that can display the peptide; and “D2”, where two HLA 

class I alleles are predicted to display the peptide.  
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We found that for both D1 and D2 mutations, the mutation density within patient-

displayed MHC binding peptides is lower than that observed outside of MHC binding 

peptides of the same protein. For expressed MHC binding peptides of type D1, the ratio 

of mutation density within displayed peptides to that outside of displayed peptides was 

0.91 (Fisher’s exact test, P-value = 1.96e -7). This ratio for non-expressed peptides was 

0.99 (Fisher’s exact test, P-value = 0.39), yielding a corrected mutational density ratio of 

0.92 (0.91/0.99) for expressed D1 peptides. 

For expressed displayed peptides of type D2, the ratio was 0.79 (Fisher’s exact test, P-

value = 9.73e-9). The corresponding ratio in non-expressed displayed peptides D2 that can 

be displayed by two distinct HLA alleles is 1.02 (Fisher’s exact test, P-value =0.64). 

Thus, a corrected mutational density ratio 0.77 (0.79/1.02) was observed for expressed 

D2 peptides displayed by two HLA alleles. 

Thus, we find that the depletion for mutations in MHC-displayed peptides is stronger if 

the patient has more alleles predicted to display a mutant peptide. Interestingly, our 

analysis showed that the depletion effect is stronger for mutants where the patient is 

homozygous for a single HLA display-enabling allele type than when the patient has two 

distinct HLA display-enabling alleles (Figure 4). 

Validation of mutation depletion phenomena in an independent dataset 

We repeated the above analyses using the missense somatic mutations detected from 

5,213 patient samples provided by the TCGA project 14, examining the distribution 

pattern of 676,171 missense mutations detected in more than 10,800 genes.  Analysis of 

this TCGA data confirmed the tendency of depletion of mutations within MHC binding 
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peptides relative to non-MHC binding peptides, both with and without considering 

patient HLA types (Figure S1, S2). Considering only patient-displayed MHC binding 

peptides, the corrected mutational density ratio was 0.54 (with 95% confidence interval 

of 0.539 - 0.545 estimated by bootstrap resampling; Figure S3). Our analysis of the 

TCGA data confirmed that mutations displayed by two display-enabling HLA alleles 

(mutations of type “D2”) were more strongly depleted than mutations displayed by a 

single display-enabling allele (Figure S4).  

To address concerns that the depletion phenomenon stems from a bias in the spectrum or 

rate of mutation for expressed genes, we also analyzed 1,048,575 synonymous mutations 

in 5,134 samples. We did not find depletion of synonymous mutations within patient-

displayed MHC binding peptides (Figure S5).  Within expressed proteins, the ratio of 

synonymous mutation density within predicted-displayed MHC binding peptides to that 

outside predicted-displayed peptides was 1.05 (Fisher’s exact test, P-value = 0.99). 

Within non-expressed proteins, the corresponding ratio was 1.03 (Fisher’s exact test, P-

value = 0.78), yielding a corrected mutational density ratio for expressed proteins of 1.01 

(1.05/1.03). The 95% confidence interval of the corrected mutational density ratio for 

synonymous variants was 1.00 to 1.01 (based on bootstrap resampling 500 times; Figure 

S6). That we observed no depletion of synonymous mutations in patient displayed MHC 

binding peptides is consistent with the hypothesis that the depletion phenomenon arises 

from a selection that depends on expression of the mutant protein. 

We next repeated our analysis by considering different cancer types separately. Here, we 

chose the six different types for which the most samples were available: breast cancer 

(BRCA, 973 samples), thyroid cancer (THCA, 386 samples), skin cutaneous melanoma 
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(SKCM, 341 samples), prostate adenocarcinoma (PRAD, 329 samples), gastric 

adenocarcinoma (STAD, 275 samples) and uterine corpus endometrial carcinoma 

(UCEC, 240 samples (see Table S2).  Significant depletion of predicted-displayed 

mutations had (without considering patient HLA type or peptide expression) been 

previously found  for BRCA and STAD10. We also included adenomatous colorectal 

cancer (COAD, 60 samples), because Rooney et al. noted highly-significant depletion for 

this cancer type.  Considering patient HLA genotypes and proteins in the 75%-100% 

expression levels percentile range, we were able to confirm the trend of depletion of 

mutations in MHC-binding peptides for BRCA, STAD and COAD, and also THCA (not 

noted previously). Although we could not confirm depletion of mutations in UCEC, 

SKCM and PRAD at 75%-100% expression percentile, depletion was seen for all three of 

these at other expression percentiles (Figure S7).  

As a negative control, we performed the same analysis for synonymous mutation density 

within predicted-displayed MHC binding peptides relative to that outside predicted-

displayed peptides.  This ratio did not vary significantly from unity for any of the seven 

cancer types: The ratio and Fisher’s exact test P-values for each cancer were: COAD: 

0.97, 0.25; BRCA: 0.96, 0.04; THCA: 0.94, 0.26; STAD: 0.96, < 2.2e -16; UCEC: 0.99, 

0.31; SKCM: 0.95, 5.9e -5; and PRAD: 1.00, 0.52. For non-expressed genes, the 

corresponding results were COAD: 1.04, 0.67; BRCA: 1.01, 0.56; THCA: 1.03, 0.60); 

STAD: 0.98, 0.42; UCEC: 1.02, 0.63; SKCM: 0.97, 0.09; and PRAD:1.00, 0.54. Only for 

BRCA were there enough samples to separate mutations into the three categories, D0, D1 

and D2, although even for BRCA only 8-10 mutations fell into the D2 category (Figure 

S8). Although we could not find significant depletion of mutations within the patient 
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displayed MHC binding peptides within each cancer type, this result indicate that the 

counter-selection of nonsynonymous mutations might exist in even more cancer types 

once we have more samples sequenced.   

DISCUSSION 

In this study, we examined signatures of immune selection pressure on the distribution of 

somatic mutations, quantifying the extent to which somatic mutations are significantly 

depleted in peptides that are predicted to be displayed by MHC class I proteins, and 

characterizing the dependence of this depletion on expression level. We also examined 

whether immune selection pressure on somatic mutations changes depending on whether 

there are either one or two HLA alleles that can display the peptide.  

Only expressed MHC binding peptides that can be displayed by at least one patient HLA 

allele are immunogenic in terms of class I MHC display. In our analysis using the 

PCAWG dataset, we found mutation densities to be similar for mutations within or out of 

the predicted MHC binding peptides when the gene was not expressed (Figure 1). That 

proteins must be expressed to be antigenic is one explanation for the fact that many 

“likely-displayed” mutations were nevertheless observed in a tumor.  More refined 

estimates of the depletion effect in future studies might come from using expression data 

from a specific patient tumor sample. 

We note that the terms “in MHC binding peptides” and “out of MHC binding peptides” 

were applied based on whether or not peptides were predicted to be displayed by at least 

one of the 12 common HLA-A or HLA-B allele types. We expect that the phenomenon of 

depletion of somatic mutations “out of MHC binding peptides” is observed where 
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patients do not have a common displaying allele type because such peptides are more 

likely to be displayed by one of the HLA-C alleles or less common HLA-A or HLA-B 

allele types or patients with different specific HLA type combinations.  

We expect that this information will be useful in building a model that predicts the 

antigenicity of any given missense mutation detected by whole genome or whole exome 

sequencing. Although scores for observed mutations based on counter-selection of 

similar mutations may over-estimate neoantigenicity (if a somatic mutation has been 

observed, it has obviously not yet been cleared by the immune system), such scores could 

point to ‘cryptic immunogenicity’ of a somatic variant. In cases of cryptic 

immunogenicity, some therapies might enable immune clearance of cancer cells by 

‘revealing’ this immunogenicity, e.g. by de-silencing HLA loci within cancer cells, or by 

relieving tumour-derived suppression of immune cells. These results would therefore be 

potentially useful in scoring tumors with greatest potential to benefit from 

immunotherapy, or may aid in developing personalized cancer vaccines that introduce or 

stimulate immune cells to recognize specific predicted neo-antigens. 

Our results also supported the idea that having two copies of the display-enabling allele is 

more effective for peptide display than having just one copy. This could result from a 

gene-dosage effect, or via monoallelic expression (MAE).  MAE, the phenomenon that 

only one allele of a given gene is expressed, is a frequent genomic event in normal 

tissues. MAE-derived silencing of one or more HLA-encoded alleles could potentially 

cause failure to express MHC binding-peptide-encoding genes, which may, in turn, alter 

the immunogenicity of somatic mutations. A previous study showed that the genome-

wide rate of MAE was higher in tumor cells than in normal tissues, and the MAE rate 
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was increased with specific tumor grade. Oncogenes exhibited significantly higher MAE 

in high-grade compared with low-grade tumors 13, 15, 16. The role of MAE in 

immunogenicity of cancerous cells is entirely unclear. Because HLA alleles are known to 

be subject to MAE 13, it may be interesting in future studies to assess the impact of MAE 

by comparing the mutation rates between homozygous and heterozygous samples at HLA 

class I loci A and B respectively using the allele-specific expression data. One example 

of a potential therapy that might emerge from this study is that de-silencing (either global 

or targeted) could lead to the display of otherwise-cryptic neo-antigens and therefore to 

immune clearance of cancerous cells, especially when used in combination with current 

immunotherapy strategies. If we can better understand the interplay between individual 

immune systems and the likelihood that cancer cells bearing specific somatic mutations 

are cleared, we will gain insight into the therapeutic potential of MAE modulation. For 

example, if MAE can indeed limit peptide display efficiency, then therapies reducing 

MAE could potentially increase the efficiency of immune clearance of tumor cells. 

With the analysis conducted here, we can begin to quantify the efficiency of immune 

clearance of somatically mutated cells. For example, for somatic mutations in proteins 

expressed in a given cancer type, the depletion ratios we observed were as low as 0.77 

(for expressed peptides predicted to be displayed by an MHC receptor encoded by two 

copies of the same HLA allele). This result allows us to conservatively predict that cells 

bearing somatic mutations falling within DNA segments encoding such peptides are 

cleared roughly 33% of the time by the immune system at tumor stages that are earlier 

than those examined in PCAWG sequencing studies.  Because any inaccuracy in 

estimating protein expression levels or peptide display would be expected to diminish our 
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ability to detect the depletion phenomenon, this estimate of immune clearance rate is 

likely conservative. 

MATERIALS AND METHODS 

Obtaining catalogs of somatic variants in cancer samples 

This study made use of two different collections of cancer-cell-derived somatic variants. 

First, we used data from The Pan-cancer Analysis of Whole Genomes (PCAWG, May 

2016 version 1.1) project 17, 18, including 121,258 missense somatic cancer mutations in 

10,745 genes detected from 2,834 patient samples. The number of patient samples in each 

cancer type is shown in Table S1.  

Second, we examined data downloaded from The Cancer Genome Atlas (TCGA) project, 

obtaining 676,171 missense somatic cancer mutations in 18,106 genes detected from 

5,213 patient samples (Table S2). We also examined 1048,575 synonymous mutations in 

5134 samples as a control. Data were downloaded from Broad Institute TCGA Genome 

Data Analysis Center (2016-01-28). 

Mapping somatic variants to proteins 

Protein sequences were downloaded using BioMart R package 19 based on the Ensemble 

Protein IDs provided in PCAWG and TCGA datasets. Each missense mutation was 

mapped to the corresponding protein based on the position of the mutation with respect to 

a given protein (Figure 5). Also, we validated that the wild type residue given for the 

mutation was found at the corresponding position within the downloaded protein 

sequence. 

Predicting peptides bound by class I MHC Receptors  

We used the NetMHC server, version 3.4 11, 12 to predict MHC binding peptides 

associated with 12 common HLA class I alleles: HLA-A*0101, HLA-A*0201, HLA-

A*0301, HLA-A*2402, HLA-A*2601, HLA-B*0702, HLA-B*0801, HLA-B*1501, 
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HLA-B*2705, HLA-B*3901, HLA-B*4001, and HLA-B*5801. For this study, NetMHC 

scores were obtained for MHC binding peptides of length nine (Although it is possible 

for peptides with 10 or 11 residues to bind, this is less common and such cases are more 

difficult to predict). Also, only strong MHC class I binding peptides with NetMHC 

affinity score of 50 or less were selected (smaller NetMHC scores correspond to higher 

affinity).  

Calculating the depletion of mutations within MHC class I binding peptides 

For each class of proteins and variants examined, we determined the total number of 

mutations falling within and outside of predicted MHC binding peptide regions for each 

protein. To test for significant differences in proportions of counts in different groups of 

peptides, we performed Fisher’s exact test using the “stats” package in R. 

Estimating transcript expression levels 

We estimated gene expression levels for TCGA patient samples using TCGA RNAseq 

data 20. Data were downloaded from Broad Institute TCGA Genome Data Analysis 

Center (2016-01-28). The expression level of each gene for each cancer type was 

estimated using the median expression level of that gene across all TCGA samples of that 

cancer type. Genes were classified as detectably expressed (RNA-Seq by Expectation 

Maximization (RSEM) normalized expression value > 0) or not (RSEM normalized 

expression value = 0). Detectably expressed genes were grouped into four expression 

quantiles according to the RSEM normalized expression value of expression level. 
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Classifying human leukocyte antigen (HLA) types 

For PCAWG samples, the four-digit HLA type for 2834 patients was determined (S.H., 

H.N. and S.I., unpublished method) and all HLA types are shown in File S1. For TCGA 

samples, the four-digit HLA type of the 5213 TCGA patients was predicted using 

PolySolver 14.  

Data availability 

PCAWG patient HLA types are provided in file S1. TCGA missense mutation data and 

TCGA RNAseq expression data are available via the Broad Institute TCGA Genome 

Data Analysis Center (2016) as “Analysis-ready standardized TCGA data from Broad 

GDAC Firehose 2016_01_28 run Broad Institute of MIT and Harvard (Dataset. 

https://doi.org/10.7908/C11G0KM9)”. Protein sequence data are publicly available via 

Ensembl BioMart (Release 89). TCGA patient HLA types are available via Broad 

Institute’s Firehose (Authorization Domain: TCGA-dbGaP-Authorized).  
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Figures 

Figure 1. MHC-display-dependent mutation densities for genes with different 

expression levels. Blue bars are the mutation density within the predicted MHC binding 

peptides. Red bars are the mutation density out of the predicted MHC binding peptides. 

Mutations were separated into five categories based on the expression levels of their 

genes.   
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Figure 2. MHC-display-dependent mutation densities for genes with different 

expression levels, considering each patient’s HLA type. Blue bars are the mutation 

density within the predicted patient-displayed MHC binding peptides. Red bars are the 

mutation density out of the patient-displayed predicted MHC binding peptides. Mutations 

were separated into five categories based on the expression levels of their genes. 
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Figure 3. Three types of MHC binding peptides based on patient HLA allele types 
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Figure 4. MHC-display-dependent mutation densities for genes with different 

expression levels, considering the number of displaying HLA alleles. Average 

mutation density in peptides predicted to be displayed by one or two of the 12 common 

HLA-A or HLA-B allele types. A. Mutation density in peptides predicted to be displayed 

in patients by only one HLA allele. B. Mutation density in peptides predicted to be 

displayed in patients with two displaying HLA alleles. 
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Figure 5. Predicting MHC-binding peptides and calculating mutation densities. 

Mutations within the MHC binding peptides are shown in blue dots, and mutations out of 

the MHC binding peptides are shown in pink dots. Protein sequence are shown as yellow 

line. 
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Supplementary Figures 

Figure S1. MHC-display-dependent mutation densities for genes with different 

expression levels using TCGA dataset. Blue bars are the mutation density within the 

predicted MHC binding peptides. Red bars are the mutation density out of the predicted 

MHC binding peptides. Mutations were separated into five categories based on the 

expression levels of their genes. 
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Figure S2. MHC-display-dependent mutation densities for genes with different 

expression levels, considering each TCGA patient’s HLA type. Blue bars are the 

mutation density within the predicted patient-displayed MHC binding peptides. Red bars 

are the mutation density out of the patient-displayed predicted MHC binding peptides. 

Mutations were separated into five categories based on the expression levels of their 

genes. 
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Figure S3. Exploring uncertainty in corrected mutation density ratio for TCGA 
mutations in patient-displayed MHC binding peptides, using bootstrap resampling, 
for both missense variants (left panel) and synonymous variants (right panel) 
Observed values are indicated with a vertical dashed line.   
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Figure S4. MHC-display-dependent mutation densities for genes with different 

expression levels, considering the number of displaying HLA alleles. Average 

mutation density in peptides predicted to be displayed by one or two of the 12 

common HLA-A or HLA-B allele types. A. Mutation density in peptides predicted to 

be displayed in patients by only one HLA allele. B. Mutation density in peptides 

predicted to be displayed in patients with two displaying HLA alleles.  
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Figure S5. MHC-display-dependent synonymous mutation densities for genes with 

different expression levels, considering each TCGA patient’s HLA type. Blue bars 

are the synonymous mutation density within the predicted patient-displayed MHC 

binding peptides. Red bars are the synonymous mutation density out of the patient-

displayed predicted MHC binding peptides. Synonymous mutations were separated into 

five categories based on the expression levels of their genes. 
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Figure S6. MHC-display-dependent mutation densities for genes with different 

expression levels in different cancer types. Blue bars are the mutation density within 

the predicted patient-displayed MHC binding peptides. Red bars are the mutation density 

out of the patient-displayed predicted MHC binding peptides. Mutations were separated 

into five categories based on the expression levels of their genes. 
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Figure S7. In Breast Cancer, MHC-display-dependent mutation densities for genes 

with different expression levels, considering the number of displaying HLA alleles. 

Average mutation density in peptides predicted to be displayed by one or two of the 

12 common HLA-A or HLA-B allele types. A. Mutation density in peptides predicted 

to be displayed in patients by only one HLA allele. B. Mutation density in peptides 

predicted to be displayed in patients with two displaying HLA alleles.  
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Supplementary Tables 

Table S1 List of 37 Different PCAWG Cancer Types with Number of Samples and 

Mutated Genes of Each Cancer Type 

Cancer Number of Samples 
Number of Mutated 
Genes 

BLCA 23 4004 
BOCA 61 1327 
BRCA 207 10304 
BTCA 11 719 
CESC 20 956 
CLLE 100 1293 
CMDI 48 433 
COAD 46 37666 
DLBC 7 744 
EOPC 41 771 
ESAD 39 4787 
GACA 27 2000 
GBM 41 2604 
HNSC 42 4899 
KICH 49 1112 
KIRC 40 2162 
KIRP 34 1613 
LAML 37 353 
LGG 19 336 
LICA 6 505 
LIHC 52 3446 
LIRI 39 2465 
LUAD 40 7781 
LUSC 48 10980 
MALY 97 6479 
ORCA 12 879 
OV 114 6946 
PACA 140 8675 
PAEN 88 1846 
PBCA 215 2057 
PRAD 40 708 
READ 16 14882 
SARC 33 1179 
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SKCM 36 21278 
STAD 39 10152 
THCA 48 527 
UCEC 50 19460 

 

Table S2 List of 31 Different TCGA Cancer Types with Number of Samples and 

Mutated Genes of Each Cancer Type 

Cancer Number of Samples Number of Mutated Genes 
ACC 90 10805 
BLCA 124 22991 
BRCA 973 51806 
CESC 149 21538 
CHOL 35 3758 
COAD 60 7305 
COADREAD 60 7305 
DLBC 14 1186 
ESCA 181 32197 
GBM 205 9340 
HNSC 178 19679 
KIRP 158 8861 
LAML 109 815 
LIHC 170 15863 
LUAD 163 30987 
LUSC 110 24512 
PAAD 98 14334 
PCPG 184 2128 
PRAD 329 7723 
SARC 238 10308 
SKCM 341 161952 
STAD 275 75745 
TGCT 154 7598 
THCA 386 4339 
THYM 112 1553 
UCEC 240 113697 
UCS 7 7 
UVM 8 8 
UCS 57 6512 
UVM 80 1319 
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