1	Smg5 is required for multiple nonsense-mediated mRNA decay pathways in
2	Drosophila
3	
4	Jonathan O. Nelson ^{*1} , Dominique Förster ^{†2} , Kimberly A. Frizzell ^{*3} , Stefan
5	Luschnig [†] , and Mark M. Metzstein [*]
6	
7	Affiliations: *Department of Human Genetics, University of Utah, Salt Lake City, UT,
8	USA; [†] Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 –
9	CiM), University of Münster, Badestrasse 9, D-48149 Münster, Germany
10	Current addresses: ¹ Life Sciences Institute, University of Michigan, Ann Arbor,
11	Michigan, USA; ² Max Planck Institute of Neurobiology, Department Genes – Circuits –
12	Behavior, Am Klopferspitz 18, 82152 Martinsried, Germany; ³ ARUP Laboratories, Salt
13	Lake City, UT, USA.
14	
15	Running Title: Drosophila Smg5 mutants
16	Key Words: Nonsense-mediated mRNA decay; NMD; Drosophila; Smg5; Smg6;
17	pcm; Xrn1
18	
19	Author for correspondence:
20	Mark M. Metzstein
21	15 N 2030 E Salt Lake City, UT 84112 USA
22	Email: markm@genetics.utah.edu
23	Phone: (801)-585-9941

24

25	ABSTRACT
26	The nonsense-mediated mRNA decay (NMD) pathway is a cellular quality
27	control and post-transcriptional gene regulatory mechanism and is essential for viability
28	in most multicellular organisms. A complex of proteins has been identified to be required
29	for NMD function to occur, however the individual contribution of each of these factors
30	to the NMD process is not well understood. Central to the NMD process are two proteins
31	Upf1 (SMG-2) and Upf2 (SMG-3), which are found in all eukaryotes and are absolutely
32	required for NMD in all organisms in which it has been examined. The other known
33	NMD factors, Smg1, Smg5, Smg6, and Smg7 are more variable in their presence in
34	different orders of organisms, and are thought to have a more regulatory role. Here we
35	present the first genetic analysis of the NMD factor Smg5 in Drosophila. Surprisingly, we
36	find that unlike the other analyzed Smg genes in this organism, Smg5 is essential for
37	NMD activity. We found this is due at least in part to a role for Smg5 in the activity of
38	two separable NMD-target decay mechanisms: endonucleolytic cleavage and 5'-to-3'
39	exonucleolytic decay. Redundancy between these degradation pathways explains why
40	some Drosophila NMD genes are not required for all NMD-pathway activity. We also
41	found that while the NMD component Smg1 has only a minimal role in Drosophila NMD
42	during normal conditions, it becomes essential when NMD activity is compromised by
43	partial loss of Smg5 function. Our findings suggest that not all NMD complex
44	components are required for NMD function at all times, but instead are utilized in a
45	context dependent manner in vivo.

46

47	INTRODUCTION
48	Eukaryotic cells utilize a number of pathways to maintain error-free translation so
49	as to preserve the fidelity of protein function (Adjibade and Mazroui 2014). Nonsense-
50	mediated mRNA decay (NMD) is one such pathway, which prevents the translation of
51	potentially harmful truncated proteins by recognizing and destroying mRNAs that contain
52	erroneous premature-termination codons (PTCs) (Celik et al. 2015). In addition to this
53	cellular quality control function, NMD degrades many endogenous wild-type mRNAs as
54	a mechanism of post-transcriptional gene regulation (Peccarelli and Kebaara 2014).
55	While the phenomenon of NMD has been well characterized for several decades,
56	the mechanisms initiating target recognition and degradation are still not well understood
57	and it remains unclear if all the factors required for NMD activity have even been
58	identified. Genes required for NMD were first found by genetic screens in yeast and C.
59	elegans, which led to the identification of seven proteins required for NMD (Hodgkin et
60	al. 1989; Leeds et al. 1991; 1992; Cali et al. 1999). Three of these genes, Upf1, Upf2,
61	and Upf3, are present in every eukaryote examined, while the other four, Smg1, Smg5,
62	Smg6, and Smg7, have variable presence across species (Siwaszek et al. 2014). In the
63	absence of any one of these factors, PTC-containing mRNAs and endogenous targets are
64	not efficiently degraded and instead accumulate in the cell (Gatfield et al. 2003;
65	Rehwinkel et al. 2005). The molecular identities and biochemical characterization of the
66	individual NMD genes have revealed clues about their roles in the NMD pathway. Upf1
67	is an ATP-dependent RNA helicase, and this activity is required for NMD (Czaplinski et
68	al. 1995; Weng et al. 1996a; b). Upf3 binds mRNAs both directly and through an

69	interaction with the exon-exon junction complex (EJC) (Gehring et al. 2003). Upf2 binds
70	both Upf1 and Upf3, bridging an interaction between these two factors (He et al. 1997;
71	Lykke-Andersen et al. 2000), helping stabilize Upf1-mRNA interactions. Smg1 encodes a
72	PIKK-like kinase that can phosphorylate Upf1. Loss of Smg1 leads to reduced phospho-
73	Upf1 in all organisms examined (Page et al. 1999; Yamashita et al. 2001; Grimson et al.
74	2004). In contrast, Upf1 is hyper-phosphorylated in C. elegans smg-5, smg-6, or smg-7
75	mutants in a Smg1-dependent manner (Page et al. 1999), and RNAi inhibition of Smg5,
76	Smg6, or Smg7 in mammalian cells also results in Upf1 hyper-phosphorylation (Okada-
77	Katsuhata et al. 2012). The finding that loss of any of the Smg genes reduce the
78	efficiency of the NMD pathway even though they result in opposite effects on the Upf1
79	phosphorylation state has led to the concept that a cycle of Upf1
80	phosphorylation/dephosphorylation is a critical aspect of the NMD process (Ohnishi et al.
81	2003). The importance of Upf1 phosphorylation may be due to the 14-3-3-like domain
82	found in Smg5, Smg6, and Smg7 proteins (Fukuhara et al. 2005). This domain binds
83	phosphorylated residues, suggesting that Upf1 phosphorylation by Smg1 initiates binding
84	of these factors to an NMD complex (Ohnishi et al. 2003). Smg6 is an endonuclease that
85	cleaves targeted mRNAs near the PTC site (Gatfield and Izaurralde 2004; Huntzinger et
86	al. 2008), suggesting that Smg6 binding to Upf1 is likely required for degradation of
87	NMD targets. The functions of Smg5 and Smg7 are less clear, but a complex of Smg5
88	and Smg7 has been shown to bind a subunit of the PP2A phosphatase, suggesting Upf1
89	dephosphorylation may be mediated by these factors, likely after Smg6-mediated
90	cleavage occurs (Anders et al. 2003; Ohnishi et al. 2003). Overall, these findings have
91	led to a model in which Upf1 phosphorylation is critical for the NMD pathway, with

92 Smg1 being required to phosphorylate Upf1 to recruit Smg6 and initiate NMD target

93 cleavage, and Smg5 and Smg7 being required to dephosphorylate Upf1 to promote

- 94 complex disassembly and recycling to new target mRNAs.
- 95 However, arguing against this model, recent studies dissecting the binding of 96 Smg5, Smg6, and Smg7 to Upf1 suggest that Upf1 phosphorylation by Smg1 may not be 97 key for normal NMD activity. It has been demonstrated that Smg5, Smg6, and Smg7 can 98 bind Upf1 in the absence of Smg1, and indeed Smg6 binds Upf1 through a non-99 phosphorylated domain in the protein, indicating that Upf1 phosphorylation is not 100 required for complex assembly (Nicholson et al. 2014; Chakrabarti et al. 2014). 101 Additionally, Upf1 hyper-phosphorylation has been shown to mitigate the effects of 102 reduced Smg5, Smg6, or Smg7 function (Durand et al. 2016). These findings suggest a 103 revised model in which Smg5, Smg6, and Smg7 all contribute to the initiation of NMD 104 target degradation independent of Upf1 phosphorylation, but when NMD activity is 105 inefficient, Smg1 phosphorylates Upf1 to enhance the binding of Smg5 and Smg7, thus 106 increasing NMD efficiency (Durand et al. 2016). Supporting this model, Smg5 and Smg7 107 have been shown in mammalian cell culture to interact indirectly with both decapping 108 and deadenylation complexes (Cho et al. 2013; Loh et al. 2013), and thus may promote 109 exonucleolytic degradation of NMD targets. Indeed, both endonucleolytic and 110 exonucleolytic degradation products of endogenous NMD targets can be detected in 111 mammalian cells (Lykke-Andersen et al. 2014; Schmidt et al. 2015; Colombo et al. 2017; 112 Ottens et al. 2017). However, in part because experiments have been primarily performed 113 in divergent cell lines, using different methods of gene manipulation and mostly studying 114 transfected NMD target genes, it is unclear to what extent phosphorylation-independent

115 Upf1-binding and the recruitment of decapping and deadenylation complexes occur116 during normal NMD activity *in vivo*.

117	NMD is required for viability in most complex organisms, including plants,
118	Drosophila, zebrafish, and mice (Medghalchi et al. 2001; Yoine et al. 2006; Arciga-
119	Reyes et al. 2006; Metzstein and Krasnow 2006; Weischenfeldt et al. 2008; Kerényi et
120	al. 2008; Wittkopp et al. 2009; Li et al. 2015). Drosophila lacking Upf1 or Upf2 die
121	during early larval stages, with no animals surviving to adulthood (Metzstein and
122	Krasnow 2006; Chapin et al. 2014). However, Drosophila lacking Upf3, Smg1, or Smg6
123	can survive to adulthood (Chen et al. 2005; Metzstein and Krasnow 2006; Avery et al.
124	2011; Frizzell et al. 2012). The viability of Upf3, Smg1, and Smg6 mutants suggests that
125	these animals have sufficient NMD activity to survive to adulthood, and indeed, these
126	mutants display significant residual NMD activity. In particular, Smg1 mutants show only
127	a very small reduction in NMD activity (Chen et al. 2005; Metzstein and Krasnow 2006).
128	Smg5 is the only known Drosophila NMD gene for which loss-of-function mutations are
129	yet to be described (the Drosophila melanogaster genome does not contain a Smg7
130	orthologue (Chiu et al. 2003; Gatfield et al. 2003). Here we describe the first analysis of
131	Drosophila Smg5 mutants, and discover that Smg5 is essential for NMD activity in this
132	organism. By performing double-mutant analysis of NMD genes, we have found that
133	Smg1 becomes essential for NMD when Smg5 function is compromised, and that Smg5
134	functions in a Smg6-independent degradation pathway in vivo. Our findings are
135	consistent with the model that Smg1-mediated phosphorylation is only required under
136	conditions of abnormal NMD progression, and that Drosophila utilize multiple
137	independent mechanisms to initiate NMD target degradation.

138

138 139	MATERIALS AND METHODS
140	Fly genetics: Drosophila melanogaster stocks were raised on standard cornmeal/dextrose
141	food at 25°. The NMD mutant allele Smg1 ^{32AP} (Metzstein and Krasnow 2006; Frizzell et
142	al. 2012) is on a y w FRT^{194} chromosome and $Smg6^{292}$ (Frizzell et al. 2012) is on an
143	FRT^{82B} chromosome balanced over TM6B, $P\{Dfd-EYFP\}$ Sb ¹ ca ¹ (Le et al. 2006). All
144	Smg5 alleles are on FRT^{40A} chromosomes and balanced over CyO, $P\{Dfd-EYFP\}$ (Le et
145	<i>al.</i> 2006). Other alleles used were $Gadd45^{F17}$ (Nelson <i>et al.</i> 2016), pcm^{14} (Waldron <i>et al.</i>
146	2015), $Upf2^{25G}$ (Metzstein and Krasnow 2006), and $DHR78^3$ (Fisk and Thummel 1998). y
147	w FRT ^{19A} was used as a control chromosome for all experiments for genes located on the
148	X-chromosome (Smg1 and pcm alleles). FRT^{40A} or FRT^{82B} were respectively used as the
149	control chromosome for the experiments using Smg5 or Smg6 alleles. For viability tests,
150	animals containing mutant alleles over a balancer were mated for three days, and
151	offspring were collected for 10 days, beginning 10 days after mating was initiated. All
152	offspring were scored, and percent expected viable was determined by the ratio of
153	balancer negative animals to balancer positive animals.
154	
155	SV40 3'UTR constructs: Deletion constructs of the SV40 3'UTR were made by one or
156	two round PCR amplification with Phusion polymerase (NEB) using a
157	pUASTeGFP::SV40 3'UTR plasmid as a template (Metzstein and Krasnow 2006).
158	Amplicons were used to replace the full-length SV40 3' UTR in a pUAST-eGFP plasmid
159	modified to contain an <i>attB</i> site-specific recombination site (a gift from Jyoti Misra and
160	Carl Thummel). All constructs were verified by sequencing and sent to Genetic Services,

161 Inc (Cambridge, MA) for injection and site-specific integration into the *attP16* (2nd

162 chromosome) strain (Venken et al. 2006). Expression levels of the modified SV40

163 3'UTR constructs were measured by mating transgenic males to $y w FRT^{19A}$; e22c-GAL4,

164 UAS-nlsDsRed2::SV40 3'UTR/CyO and y w FRT^{19A} Upf2^{25G}; e22c-GAL4, UAS-

165 *nlsDsRed2::SV40 3'UTR/CyO* females. Wandering third instar larvae expressing both

166 DsRed and GFP were imaged using a Leica MZ16 fluorescence stereomicroscope.

167

168 Screens for NMD-defective alleles: The codon changes of all Smg5 alleles can be found in supplemental table 1. For the mosaic genetic screen, males with an isogenized FRT^{40A} 169 170 2^{nd} chromosome were starved for 8 hours, and then fed on sucrose containing 1% ethyl methanesulfonate overnight. Mutagenized males were then mated with FRT^{40A} ; $P\{da-$ 171 172 GAL4 w^+ P{UAS-FLP} P{UAS-eGFP::SV40 3'UTR} females (Wodarz et al. 1995), and 173 F1 wandering L3 larvae were collected in glycerol and scored for mosaic enhanced GFP 174 fluorescence using a Leica MZ 16F microscope equipped with epifluorescent 175 illumination. Mutant mosaic animals were cleaned in PBS and placed in vials with food 176 to continue development. After eclosion, candidate mutant lines were established and 177 retested to confirm an NMD defect. Candidate alleles were tested for complementation 178 with Df(2L)BSC345 (Cook et al. 2012), which deletes the Smg5 locus, and lines that 179 failed to complement this deficiency for lethality or fluorescence enhancement were 180 balanced over CyO, $P\{Dfd: eYFP w^+\}$ (Le et al. 2006). 181 The screen for embryos with enhanced reporter expression is described in Förster 182 et al. (2010). Briefly, flies carrying NMD-sensitive UAS-GFP and UAS-Verm-mRFP 183 reporters expressed in the tracheal system were mutagenized with EMS and F2 lines were

184 established. F3s embryos were examined for reporter expression in tracheal cells.

185

186	RNA isolation and quantification: For qRT-PCR analyses, we collected five to ten
187	larvae from 0-4 h after the L2-L3 molt and froze them in liquid nitrogen. We isolated
188	total RNA using TRIzol reagent (Invitrogen) and Phase-Lock tubes (5-Prime), and the
189	RNeasy mini kit (QIAGEN). We used on-column RNase-free DNase treatment
190	(QIAGEN) to reduce genomic contamination. We determined RNA concentration by
191	spectrophotometer and normalized concentration for reverse transcription. For reverse
192	transcription, we used random decamers and MMLV8 reverse transcriptase (Retroscript
193	Kit, Ambion). We performed qRT-PCR analysis using the SYBR Green qPCR Supermix
194	(Bio-Rad) and the Bio-Rad iCycler thermocycler. All experimental reactions were
195	performed using three technical replicates and a minimum of three biological replicates
196	per condition, and the expression level of all experimental assays was normalized to
197	<i>RpL32</i> mRNA expression. For all qRT-PCR analyses we also measured samples that had
198	been made without reverse transcriptase to ensure that signal was not due to
199	contamination with genomic DNA.
200	Primer sequences used were RpL32_1 (ATGCTAAGCTGTCGCACAAA), RpL32_2
201	(CGATGTTGGGGCATCAGATAC), Gadd45_5'_1
202	(CATCAACGTGCTCTCCAAGTC), Gadd45_5'_2
203	(CGTAGATGTCGTTCTCGTAGC), Gadd45_3'_1
204	(ACAGCCAGATGTCACAGAATT), and Gadd45_3'_2
205	(CCAGCAACTGGTTTCCATTAG). All Gadd45 qPCR analysis was done using the
206	Gadd45_5' primer pair, unless otherwise noted.

208	Analysis of $dHR78^3$ PTC allele stability: We collected adult $Smg5^{+/G115}$ or $Smg5^{C391/G115}$
209	males that were also heterozygous for $dHR78^3$, a PTC-containing allele that has lower
210	expression than the wild-type allele and is stabilized in $Upf2^{25G}$ mutants, and thus is
211	presumably degraded by NMD (Fisk and Thummel 1998; Nelson et al. 2016). At least
212	three biological replicates were collected for each condition. We isolated RNA and
213	generated cDNA, as described above, and used this cDNA as a template for PCR
214	amplification of the dHR78 transcript with the DRH78_F3 / DHR78_R3 primers
215	(TGGGGCTTATTCAGAGTTCG / ATTAATGCTGGCCACACTCC), which flank the
216	nonsense mutation. To compare the relative abundance of the $dHR78^3$ allele to the wild-
217	type allele, PCR products were Sanger sequenced, and the relative peak intensity for a
218	thymine ($dHR78^3$ allele) compared to a cytosine (wild-type allele) at nucleotide 1063.
219 220	Lethal phase and larval development analysis: For lethal phase and larval
221	development analysis, first-instar larvae were collected 20-24 hours after egg lay. Every
222	24 hours, animals were examined to record their developmental stage and transferred to
223	fresh food. Larval stage was determined based on physical characteristics of the mouth
224	hooks. Once animals entered pupariation, pupae were transferred to vials and scored for
225	eclosion five days later.
226	
227	Statistical Analysis: All viability assay figures represent the proportion of animals of the

Statistical Analysis: All viability assay figures represent the proportion of animals of the indicated genotypes that survive to adulthood; error bars for these figures represent the 95% confidence interval of the binomial distribution, and the Test of Equal or Given Proportions was used to determine significance difference in these proportions between genotypes. For each individual experiment, conditions were compared directly to the

232	control, so no p-value correction was applied. All other figures represent the mean value
233	of multiple replicates and display error bars representing ± 2 SEM. For tests between two
234	variable measures, a two-sided paired Student's t-test was used to determine significance
235	difference between mean value data. Those qPCR experiments that compared a condition
236	to the control, which was set to a constant of 1, were performed with a one-sided
237	Student's t-test.
238	

- 239 Data Availability: Drosophila strains are available upon request. All data is presented
- 240 within the figures.

241

242

RESULTS

243	Isolation of Smg5 mutant alleles: To identify Drosophila Smg5 mutant alleles, we used
244	two different genetic screens. First, we performed an EMS-mutagenesis screen in mosaic
245	animals expressing an NMD-sensitive GFP reporter, a method similar to one we
246	previously used to recover Smg6 alleles (Frizzell et al. 2012). This reporter expresses
247	GFP from a pUAST construct (Brand and Perrimon 1993) bearing a UAS promoter and
248	an NMD-sensitive SV40 3'UTR (Metzstein and Krasnow 2006). We generated mosaics
249	using the <i>da-GAL4</i> driver to ubiquitously express FLP-recombinase (Figure 1A).
250	Individual homozygous mutant cells with defective NMD activity show increased
251	reporter expression and GFP fluorescence (Figure 1A). The mosaic enhanced
252	fluorescence phenotype was easy to distinguish in late L3 larvae (Figure 1B), and mosaic
253	animals remain viable and fertile, so even lethal alleles can be recovered from individual
254	mutants. An added benefit of this approach is that by mutagenizing animals that have an
255	<i>FRT</i> site located near the centromere on the left arm of the second chromosome (FRT^{40A}),
256	we could specifically isolate mutations only on this chromosome arm. Since Smg5 is
257	located on the left arm of the second chromosome, mutations identified from the screen
258	would likely include Smg5 alleles. Using this approach, we screened 12,554 larvae and
259	identified three mutants with mosaic enhancement of GFP fluorescence (Figure 1C). We
260	found each of these three mutants were homozygous lethal. We crossed each allele to a
261	deficiency that deletes Smg5 and found that all three failed to complement for lethality,
262	suggesting that they had mutations in Smg5.

263	Our second screen was of animals expressing a GFP::SV40 3'UTR reporter in the
264	embryonic tracheal system (Förster et al. 2010). This screen identified four mutants that
265	showed increased fluorescence (Figure 1D, Supplemental Figure 1). All four of these
266	alleles failed to complement a Smg5 deficiency using increased fluorescence signal as an
267	assay (data not shown), indicating they contained mutations in Smg5. As expected for
268	mutations disrupting NMD-pathway function (Metzstein and Krasnow 2006), the
269	increase in fluorescence was independent of the fluorescent reporter examined, with both
270	GFP and mRFP showing similar increases in expression in a homozygous mutant
271	background (Supplemental Figure 1F).
272	Finally, sequencing of the Smg5 locus in the seven candidate lines revealed they
273	all contained mutations in Smg5, including nonsense mutations (G115, A1, EI1, and
274	MI1), an altered splice acceptor site (C391), and missense mutations in highly conserved
275	alpha-helices of the Smg5 14-3-3-like domain (Q454 and Q376) (Fukuhara et al. 2005)
276	(Figure 1D; Supplemental Table 1).
277	
278	Smg5 is an essential NMD factor in Drosophila: Drosophila lacking any functional
279	NMD activity, such as Upf1 and Upf2 null mutants, fail to develop to adulthood, dying
280	primarily during early larval stages (Chapin et al. 2014). We found that the Smg5
281	nonsense alleles A1, E11, M11, and G115, and splice acceptor site allele C391 all failed to
282	survive to adulthood when over a deficiency that deletes $Smg5$, or as $Smg5^{C391/G115}$ trans-
283	heterozygotes (Figure 2A). The lethality of these alleles combined with their molecular
284	aberrations suggested that they are complete loss-of-function mutations. We found that
285	$Smg5^{C391/G115}$ mutants have developmental delays, with $Smg5$ mutants spending almost

286	twice as long in larval stages as control animals (Supplemental Figure 2A), and most
287	Smg5 ^{C391/G115} mutants die during pupariation (Supplemental Figure 2B). This
288	developmental delay and lethal phase is similar to, but somewhat weaker than, the
289	developmental defects of null Upf1 and Upf2 mutants (Chapin et al. 2014). Conversely,
290	the missense alleles $Q454$ and $Q376$ were viable over the deficiency and each other
291	(Figure 2A), suggesting that these are likely hypomorphic alleles.
292	Lethal mutations in Drosophila NMD genes generally have severe defects in
293	NMD function, as measured by increased expression of endogenous NMD targets
294	(Metzstein and Krasnow 2006; Avery et al. 2011; Frizzell et al. 2012). To test if lethal
295	Smg5 mutant alleles also have strong defects in NMD activity, we used qRT-PCR to
296	measure the expression of the endogenous NMD target Gadd45 (Chapin et al. 2014;
297	Nelson et al. 2016). Since Gadd45 is directly targeted by NMD, the amount of Gadd45
298	mRNA in mutants serves as a measure of the decrease in NMD activity. We measured
299	Gadd45 mRNA levels in early third instar larvae and found that Smg5 ^{C391/G115} mutants
300	had a large increase in Gadd45 mRNA expression. In contrast, viable Smg5 ^{Q454/G115}
301	mutants showed a much smaller increase in Gadd45 levels (Figure 2B). Increased
302	Gadd45 expression is a major factor contributing to the death of Upf1 and Upf2 mutants,
303	and loss of Gadd45 can suppress Upf1 and Upf2 mutant lethality (Nelson et al. 2016).
304	We found that loss of <i>Gadd45</i> also suppresses the lethality of $Smg5^{C391/G115}$ mutants
305	(Figure 2A), indicating that these animals are dying due to a similar loss of NMD
306	function as Upf1 or Upf2 mutants. These results strongly suggest that Smg5 mutant
307	lethality is specifically due to a loss of NMD activity, and not due to loss of any NMD-
308	independent Smg5 function.

309

310	Smg5 null mutants lack most, if not all, detectable NMD activity: To directly test if
311	Drosophila Smg5 mutants have any residual NMD activity, we measured the relative
312	stability of PTC-containing mRNAs in Smg5 mutants. We found that Smg5 ^{C391/G115}
313	mutants fully stabilized the expression of the PTC-containing $dHR78^3$ mRNA relative to
314	the expression of wild-type dHR78 mRNA (Figure 2C), indicating NMD-mediated
315	degradation of PTC-containing mRNA is absent. Since Smg6-mediated cleavage is a
316	known mechanism for degradation of NMD targets in Drosophila, we tested if Smg5
317	mutants still retain this endonuclease activity. NMD-target cleavage can be observed
318	through measuring the relative abundance of NMD-target mRNA fragments 5' to the stop
319	codon in relation to fragments 3' to the stop codon (Figure 2D) in animals lacking the
320	only cytoplasmic 5'-to-3' exonuclease Xrn1, which is encoded by the gene pacman (pcm)
321	(Till et al. 1998). Null pcm mutants have no 5'-to-3' exonuclease activity (Waldron et al.
322	2015), and thus mRNAs cleaved by Smg6 near the stop codon show increased abundance
323	of the 3' cleavage fragment compared to the 5' fragment (Nelson et al. 2016). We found
324	this bias to be lost in the absence of Smg6 (Figure 2E), confirming that it is caused by
325	Smg6 endonuclease activity. Interestingly, we found that the preferential stabilization of
326	the 3' fragment is also lost in double mutants of the null alleles of <i>pcm</i> and <i>Smg5</i> (Figure
327	2E), revealing that Smg5 is required for Smg6 endonuclease activity. These combined
328	results indicate that Drosophila Smg5 mutants lack any NMD activity.
329	As an additional gauge of NMD activity in Smg5 mutants, we directly measured
330	fluorescence levels of NMD-sensitive reporters in homozygous mutant embryos (Figure
331	3) . We found that homozygous $Smg5^{C391}$ embryos exhibited ~5-fold increase in

332	fluorescent signal compared to $Smg5^+$ embryos, comparable to the increase in GFP
333	mRNA levels observed in the strongest previously measured NMD mutant, $Upf2^{25G}$
334	(Metzstein and Krasnow 2006). As expected, embryos homozygous for the hypomorphic
335	allele $Smg5^{Q454}$ showed a smaller increase in fluorescent signal, while the trans-
336	heterozygous combination $Smg5^{C391/Q454}$ showed an intermediate signal, close to the
337	$Smg5^{Q454}$ signal. To provide a direct comparison of the $Smg5$ mutant fluorescence to
338	other reporters, we generated a series of deletion constructs of the NMD-sensitive SV40
339	3'UTR and tested each construct for expression level and ability to be enhanced by loss of
340	NMD activity (Supplemental Figure 4). We found that, in general, the shorter the
341	deletion construct the higher the absolute expression level and the less this expression
342	was enhanced by loss of NMD, though for a given length of construct, the exact location
343	of the deletion determined the degree of enhancement. These results are consistent with a
344	model in which 3'UTR length is a major determinant of NMD sensitivity (Boehm et al.
345	2014), though there is likely a contribution of specific sequence elements in modulating
346	sensitivity. Most importantly, we found the construct with greatest enhancement in
347	expression increased fluorescence levels 5-fold compared to the full-length SV40 3'UTR,
348	almost exactly the same as the increase observed in the Smg5 null mutant background
349	(Figure 3). Hence, we conclude that loss of <i>Smg5</i> phenocopies loss of NMD sensitivity,
350	suggesting Smg5 is required for all NMD activity in embryos.
351	

Smg5 mutant lethality is not *Smg1*-dependent: The phosphorylation of Upf1 by Smg1
has been proposed to be a critical step in the NMD process, at least in part by recruiting
Smg6 to the NMD complex to initiate target degradation (Hug *et al.* 2016).

355 Dephosphorylation of Upf1 is thought to be mediated by Smg5, which interacts with the 356 PP2A phosphatase; this activity may be required for complex disassembly after target 357 degradation has been initiated (Ohnishi et al. 2003). This model thus proposes that the 358 necessity of Smg5 for NMD activity requires Upf1 phosphorylation by Smg1, and thus it 359 would be expected that *Smg1* mutants, which are fully viable and have robust NMD 360 activity (Chen et al. 2005; Metzstein and Krasnow 2006; Frizzell et al. 2012), should 361 suppress Smg5 mutant lethality. In contrast to this prediction, we found that Smg1; Smg5 362 double mutants were in fact no more viable than Smg5 mutants (Figure 4A), and Smg1 363 mutants had no effect on the developmental delay or lethal stage of Smg5 mutants (Supplemental Figure 2A, B). These findings suggest that a failure to dephosphorylate 364 365 Upfl is not responsible for Smg5 mutant lethality; however, the lethality of Smg1; Smg5 366 double mutants may also be explained by unknown factors that phosphorylate Upf1 in the 367 absence of Smg1. 368 If failure to dephosphorylate Upf1 causes lethality in both Smg5 mutants and Smg1; 369 Smg5 double mutants, we would expect loss of Smg1 to have no effect on the viability of 370 hypomorphic Smg5 mutants, since these alleles are viable (Figure 2A), and so should 371 have sufficient Upf1-dephosphorylation. Surprisingly, we found that double mutants for a 372 Smg1 null allele and a hypomorphic Smg5 allele show significant lethality, even though 373 each mutation on its own is viable (Figure 4A). This result reveals that Smg5 mutant 374 lethality is not due to failure to dephosphorylate Upf1, but instead is consistent with an 375 alternative proposed model that Upf1 phosphorylation by Smg1 is not required for NMD 376 under normal conditions, but serves to enhance Smg6 and Smg5 efficiency upon stress 377 conditions to reinforce NMD activity (Durand *et al.* 2016). In agreement with this model,

378 we found that the relative increase in *Gadd45* expression upon loss of *Smg1* is greater in 379 this *Smg5* hypomorphic background than in animals with functioning *Smg5* (Figure 4B), 380 indicating that Smg1 has a greater contribution to NMD activity when Smg5 functions 381 inefficiently. Importantly, loss of *Smg1* has no greater impact on *Gadd45* expression in 382 Smg5 null mutants than in animals with functional Smg5 (Figure 4B), indicating that the 383 compensatory Smg1 activity in Smg5 hypomorphs is the enhancement of Smg5 function, 384 rather than an increase in Smg5-independent decay activity. Together, these findings 385 indicate that the requirement of Smg5 for NMD activity is independent of Smg1, but that 386 Smg1 can enhance Smg5 activity when NMD function is compromised. 387 388 **Smg1 is not required for Smg6 activity:** Smg6 has been shown to bind Upf1 at residues 389 phosphorylated by Smg1 (Fukuhara et al. 2005; Okada-Katsuhata et al. 2012), leading to 390 the model that Smg1 is required for Smg6 complex entry and cleavage of NMD targets. 391 However, Drosophila Smg6 mutants have much stronger NMD defects than Smg1 392 mutants (Frizzell et al. 2012), and Smg6 has recently been shown to be capable of 393 binding non-phosphorylated Upf1 (Nicholson et al. 2014; Chakrabarti et al. 2014). These 394 data suggest an alternative model in which Smg6 can cleave NMD targets even in the 395 absence of Smg1 kinase activity. In support of this latter model, we found using our 3' 396 fragment stabilization assay that *Gadd45* mRNA is cleaved in the absence of *Smg1* just as 397 efficiently as in animals with wild-type Smg1 (Figure 5A). We also found the same 398 relative increase in *Gadd45* mRNA levels upon loss of *Smg6* in animals with or without 399 functional Smg1 (Figure 5B). Consistent with this finding, double mutants between null 400 Smg1 and Smg6 alleles do not have reduced viability or enhanced developmental delay

401	compared to Smge	5 single mutants	(Figure 5C;	Supplemental I	Figure 2C)	. Together,

- 402 these data suggest that Smg1 does not contribute to NMD-independent Smg6 function,
- 403 and that Smg1is not required for normal Smg6 activity *in vivo*.
- 404

405 Smg5 is required for 5'-to-3' Xrn1-mediated exonucleolytic degradation of NMD

406 targets: The stronger defects observed in *Smg5* mutants than *Smg6* mutants indicate that

407 more than just Smg6 activity is disrupted in *Smg5* mutants. Smg5 has been shown in

408 mammalian cell culture to interact indirectly with decapping and deadenylation

409 complexes (Cho *et al.* 2013; Loh *et al.* 2013), however if either of these interactions

410 occur during *in vivo* NMD targeting is unclear. Decapping of NMD targets is expected to

411 lead to Xrn1-mediated 5'-to-3' exonucleolytic degradation. While inhibition of decapping

412 factors or Xrn1 in Drosophila cells was found to have no effect on the levels of a PTC-

413 containing reporter detected by northern blot (Gatfield and Izaurralde 2004), we have

414 identified an increase in *Gadd45* expression in null *Xrn1* mutants by qRT-PCR *in vivo*

415 (Figure 5D) (Nelson *et al.* 2016). Although this increase could be due to NMD-

416 independent Xrn1 activity, we found that there is no difference in *Gadd45* expression

417 upon loss of Xrn1 activity in a Smg5 mutant background (Figure 5D), indicating that

418 Xrn1-mediated degradation of *Gadd45* mRNA requires Smg5 activity. Importantly,

419 Gadd45 expression was measured using the qRT-PCR primer pair 5' to the Gadd45 stop

420 codon (Figure 2D), implying that Xrn1 can only degrade these mRNAs after decapping.

421 These findings suggest that Smg5 may be involved in promoting the decapping of NMD

422 targets.

423

444

445

424	DISCUSSION
425	The degradation of both specific normal and many kinds of erroneous mRNAs by the
426	NMD pathway is a crucial gene regulatory mechanism and arose in the ancestors to all
427	eukaryotes. While many factors required for NMD have been biochemically
428	characterized, the individual contribution of each factor to the recognition and
429	degradation of NMD targets is not fully understood, especially in vivo in complex
430	organisms. Through our genetic analysis of Smg5 in Drosophila and by examination of
431	NMD-gene double mutants, we have found that NMD utilizes multiple mechanisms to
432	promote target degradation in vivo. One of our main findings is that Smg5 null mutants
433	have as severe defects as either Upf1 and Upf2 null mutants, indicating that Smg5 is a
434	critical factor for promoting NMD-target recognition and/or decay. In support of this
435	interpretation, we found that Smg5 is required for both Smg6-mediated endonucleolytic
436	cleavage of NMD targets and a separate, Smg6-independent, decay process that at least
437	partially requires Xrn1 5'-to-3' exonuclease activity. Our findings are surprising, given
438	that Smg5 has primarily been thought to promote NMD complex recycling, but with only
439	a secondary requirement to stimulate decay activity (Ohnishi et al. 2003). Instead, we
440	propose that Smg5 is a critical NMD factor necessary for at least two, independent NMD
441	degradation mechanisms.
442	In contrast to Smg5 having a critical role in target degradation, our data is less
443	supportive for a Smg5 function in NMD complex recycling. The phosphorylation of Upf1

20

at multiple residues by Smg1 (Yamashita et al. 2001; Grimson et al. 2004) is thought to

be required to initiate, or at least stimulate, NMD-mediated degradation (Anders et al.

446 2003; Ohnishi et al. 2003). Subsequent Smg5-mediated recruitment of the PP2A 447 phosphatase to the NMD complex is thought to lead to Upf1 dephosphorylation to 448 promote complex disassembly and recycling (Anders et al. 2003; Ohnishi et al. 2003). 449 While Smg1, and thus Upf1 phosphorylation, does not seem to play a major role in NMD 450 in Drosophila (Chen et al. 2005; Metzstein and Krasnow 2006), failure to 451 dephosphorylate Upfl could still be the cause of the strong NMD defect in Drosophila 452 Smg5 mutants. This model predicts that since Smg5 mutant lethality is due to lack of 453 Upf1 dephosphorylation, the loss of *Smg1* should be epistatic to the loss of *Smg5*, since 454 Upf1 dephosphorylation would no longer be required in *Smg1* mutant animals. However, 455 we found just the opposite: *Smg1* mutations do not suppress *Smg5* mutations at all, and 456 Smg1 mutants actually enhance the defect of Smg5 hypomorphic alleles. These data are 457 instead consistent with a more recently proposed model in which Upf1 phosphorylation is 458 only required when the NMD process is "stalled" or otherwise becomes impaired 459 (Durand *et al.* 2016), such as occurs in hypomorphic *Smg5* mutants. Based on our 460 findings, we propose that NMD functions under two states: non-phosphorylated Upf1, 461 which requires Smg5 to stimulate both Smg6-mediated and Smg6-independent decay, 462 and phosphorylated Upf1, which enhances an interaction of Smg6 with Upf1 and 463 stimulates Smg6-mediated decay independently of Smg5. For most substrates under 464 normal conditions the former mechanism predominates, with the later only occurring 465 when the first process does not efficiently occur. Additionally, some specific substrates 466 may require Smg1-stimulated NMD by default. For instance, while loss of Smg1 leads to 467 barely detectable stabilization of a PTC-containing substrate (Chen et al. 2005; Metzstein 468 and Krasnow 2006), there is a significant (>2-fold) increase in endogenous substrates,

469 such as Gadd45, and reporters using the NMD-sensitive SV40 3'UTR (Metzstein and 470 Krasnow 2006; Frizzell et al. 2012). The difference in targeting between these alternative 471 substrates is not yet known, but there is indication of differential pathway usage also in 472 mammalian cells (Chan et al. 2007; Ottens et al. 2017). 473 The stronger NMD defects observed in *Smg5* null mutants compared to *Smg6* null 474 mutants suggest that Smg5 is required for a Smg6-independent decay activity. While the 475 mechanism of this decay remains unclear, there is *in vitro* evidence that Smg5 can 476 interact with the Dcp decapping complex (Cho et al. 2009; 2013; Loh et al. 2013), 477 recruiting the complex to the NMD target and eventually leading to exonucleolytic decay 478 initiated at the 5' end of the message. Additionally, global analysis of NMD-decay 479 intermediates suggests that the degradation of NMD substrates mainly occurs through 480 Smg6-mediated endonucleolytic cleavage, but that substrates bypassing this decay 481 process may go through an alternative decapping-mediated process (Lykke-Andersen et 482 al. 2014). However, whether this alternative process is actually used *in vivo*, and whether 483 it depends on Smg5 has not been genetically examined. By examining decay in Xrn1 484 Smg5 double mutants we have not obtained such evidence. Xrn1 is expected to have a 485 role in both Smg6-mediated endonucleolytic decay and 5' decapping decay, but with 486 measurably different effects. In Smg6-mediated decay, Xrn1 is expected to be required 487 for the degradation of the RNA fragment 3' to the cleavage site, and we and others have 488 demonstrated such a requirement *in vivo* and in cell culture. However, in decapping-489 dependent decay, Xrn1 is expected to be required for the degradation of the entire 490 mRNA, including sequence 5' to the cleavage site. Here, we have shown that degradation 491 of an NMD substrate 5' to the predicted Smg6-cleavage site is in at least in part

492	dependent on both Smg5 and Xrn1, indicating an in vivo role for Smg5-mediated
493	decapping in NMD substrate degradation. The incomplete loss of NMD activity in Smg6
494	mutants suggests that Smg6-indepdendent decay is sufficient to maintain most NMD
495	activity. It is also possible that the preference for which decay mechanism degrades NMD
496	targets may be different between individual NMD targets. Furthermore, the choice
497	between decay mechanisms may differ in tissue-specific or developmental contexts. It
498	will be important to parse the relative contribution of each decay pathway to the
499	degradation of NMD targets to understand the mechanism underlying the bias in decay.
500	Here we performed the first double mutant analysis of multiple NMD factors,
501	providing genetic evidence of the relative contribution of individual NMD genes. We
502	also characterized the first Drosophila Smg5 mutants, identifying that Smg5 is critical for
503	NMD function and viability, similar to Upfl and Upf2, and providing the first genetic
504	evidence for an essential role of Smg5 function in a model system. Our findings suggest
505	that NMD utilizes multiple branched decay mechanisms to destroy its targets. All of these
506	pathways depend on Smg5, indicating that Smg5 plays more fundamental roles in NMD
507	than has previously been appreciated. More closely characterizing the molecular
508	mechanisms of Smg5 function in NMD may reveal novel key features of NMD activity
509	that have thus far escaped detection.

510511 Acknowledgements

513	We thank x for critical comments on the manuscript. We are very grateful to
514	Sarah Newbury for providing fly stocks prior to publication. Fly stocks were obtained
515	from the Bloomington Drosophila Stock Center. KAF was supported by University of
516	Utah Developmental Biology Training Grant 5T32-HD07491. Work in SL's laboratory
517	was supported by the Swiss National Science Foundation (SNF_31003A_141093/1), the
518	University of Zurich, the "Cells-in-Motion" Cluster of Excellence (EXC 1003-CiM), the
519	Deutsche Forschungsgemeinschaft (DFG_LU 1398/2-1), and the University of Münster.
520	Work in MMM's laboratory was supported by National Institutes of Health (NIH) grant
521	1R01GM084011 and a March of Dimes Award 5-FY07-664.

522

523	Figure 1. Mosaic screen for novel NMD-defective mutations on the 2 nd chromosome
524	identifies Smg5 alleles. (A) Scheme to generate mosaics and detect mutants with
525	defective NMD. The GAL4 transcription factor is ubiquitously expressed under a
526	daughterless (da) promoter and activates transcription of FLP recombinase and the
527	NMD-sensitive eGFP::SV40 3'UTR fluorescent reporter, both under UAS control. The
528	reporter mRNA is usually degraded by NMD, and thus cells lacking NMD activity due to
529	a homozygous mutation in a gene required for NMD activity show increased green
530	fluorescence. (B) Example of mosaic GFP-reporter fluorescence phenotype detected in
531	our screen. Late L3 larvae expressing the NMD sensitive <i>eGFP::SV40 3'UTR</i> fluorescent
532	reporter in animals with a wild-type FRT^{40A} chromosome (left) or an FRT^{40A} Smg5 ^{G115}
533	chromosome (right). Individual homozygous mutant cells with increased GFP
534	fluorescence in the Smg5 mutant animal are indicated by white arrows. Overall increased
535	fluorescence is due to other out of focus mutant cells. Dorsal view; anterior at top. (C)
536	Scheme for recovering mutations identified in the screen. The total number of candidate
537	mutants scored in each generation is shown on the left side of each row. Genotypes on
538	the left in the F1 and F2 generations are the offspring from the previous mating. (\mathbf{D})
539	Molecular identity of isolated Smg5 mutations. Four alleles (A1, EI1, MI1, and G115) are
540	nonsense mutations. C391 is a mutation in a splice acceptor site. Q454 and Q376 are
541	missense mutations. The codon changes of all Smg5 alleles are listed in Supplemental
542	Table 1.

543

544	Figure 2. Smg5 is required for viability and NMD activity in Drosophila. (A) Adult
545	viability of Smg5 mutant alleles trans-heterozygous to either a deficiency removing the
546	Smg5 locus (Df) or other Smg5 mutant alleles. Error bars represent 95% confidence
547	interval of the binomial distribution. p-value listed compared to $Smg5^+$ / Df condition or
548	between indicated conditions determined by the test of equal or given proportions. n =
549	total number of animals scored. (B) Expression of the endogenous NMD target Gadd45,
550	as measured by qRT-PCR. Error bars represent 2 SEM. p-value listed for each condition
551	compared to controls or between indicated conditions, determined by two-sided Student's
552	t-test. $n \ge 3$ for all conditions. (C) Relative abundance of PTC-containing $dHR78^3$ allele
553	(Fisk and Thummel 1998) mRNA compared to wild-type dHR78 allele mRNA in animals
554	heterozygous for $dHR78^3$ in each indicated genotype. Error bars represent 2 SEM. p-
555	value listed for each condition compared to + / $Smg5^{G115}$, determined by two-sided
556	Student's t-test. $n = 3$ for all conditions. (D) Diagram of the endogenous NMD target
557	Gadd45 transcript and 5' and 3' qRT-PCR primer pairs. Open boxes indicate UTRs; grey
558	boxes indicate coding regions. 5' primer pair is located 5' to the stop codon and the 3'
559	primer pair is 3' to the stop codon. (E) Gadd45 expression measured with the 3' primer
560	pair relative to the 5' primer pair. The 3' region is preferentially stabilized in pcm^{14}
561	mutants. This preferential stabilization is lost when either Smg6 or Smg5 are lost. Error
562	bars represent 2 SEM. p-value listed for each condition compared to the pcm^+ condition
563	or between indicated conditions, determined by two-sided Student's t-test. $n \geq 3$ for all
564	conditions.
565	

565

565 Figure 3. Loss of Smg5 enhances NMD-sensitive reporter expression in embryos. (A-

- 566 E) embryos of indicated genotypes carrying GFP reporter transgene with full-length
- 567 NMD-sensitive SV40 3'UTR (pUAST-GFP) or NMD-insensitive SV40 3'UTR deletion
- 568 construct (pUAST-GFP- Δ 3'UTR). (F) Scan of GFP intensity averaged across three areas
- of embryo (shown in inset) in animals of the indicated genotype. FL, full-length SV40
- 570 3'UTR; Δ, SV40 3'UTR deletion construct; n, number of embryos scored.
- 571

571 Figure 4. Smg5 mutant lethality is not dependent on Smg1. (A) Adult viability of

- 572 Smg1 and Smg5 hypomorph single and double mutants. Error bars represent 95%
- 573 confidence interval of the binomial distribution. p-value listed for each condition
- 574 compared to $Smg1^{32AP}$ or between indicated conditions determined by the test of equal or
- 575 given proportions. n = total number of animals scored. (B) Relative expression of the
- endogenous NMD target *Gadd45* in $Smg1^{32AP}$ mutants compared to $Smg1^+$ controls in
- 577 $Smg5^+$ and mutant backgrounds as measured by qRT-PCR. Error bars represent 2 SEM.
- 578 p-value listed for each condition compared to $Smg5^+$ determined by two-sided Student's
- 579 t-test. $n \ge 3$ for all conditions.

5	Q	Λ
J	0	υ

581 Figure 5. *Smg1* is not required for Smg6 activity and *Smg5* is required for

582	exonucleolytic NMD activity. (A) Gadd45 3' expression relative to 5' expression in
583	indicated genotypes, measured by qRT-PCR. The 3' region is preferentially stabilized in
584	pcm^{14} mutants with or without functional Smg1. Error bars represent 2 SEM. p-value
585	listed for each condition compared to pcm^+ or between indicated conditions determined
586	by two-sided Student's t-test. $n \ge 3$ for all conditions. (B) Relative expression of the
587	endogenous NMD target Gadd45 measured by qRT-PCR using the 5' primer pair in
588	$Smg6^{292/Df}$ mutants compared to $Smg6^+$ controls in either $Smg1^+$ or $Smg1^{32AP}$ mutant
589	backgrounds. Error bars represent 2 SEM. p-value between conditions determined by
590	two-sided Student's t-test. $n \ge 3$ for all conditions. (C) Adult viability of $Smg1^{32AP}$ and
591	$Smg6^{292/Df}$ null mutants, and $Smg1^{32AP}$; $Smg6^{292/Df}$ double mutants. Error bars represent
592	95% confidence interval of the binomial distribution. p-value listed between indicated
593	conditions determined by the test of equal or given proportions. n displays total number
594	of animals scored. (D) Relative expression of the endogenous NMD target $Gadd45$ in
595	<i>pcm</i> mutants as measured by qRT-PCR. Expression is normalized to the pcm^+ condition
596	in either a $Smg5^+$ or $Smg5^{C391/G115}$ condition. Error bars represent 2 SEM. p-value listed
597	between indicated conditions determined by two-sided Student's t-test. $n \ge 3$ for all
598	conditions.

- 600 Supplemental Figure 1. Smg5 mutant alleles have enhanced fluorescence of NMD-
- 601 sensitive reporters in first instar larval trachea. (A-E) NMD sensitive *eGFP::SV40*
- 602 *3'UTR* fluorescent reporter is expressed in larval trachea by the *btl-GAL4* driver in
- 603 control (A) and Smg5 mutant animals (B-E). (F) UAS-GFP:SV40 3'UTR and UAS-Verm-
- 604 *mRFP:3'UTR* coexpressed in the embryonic tracheal system both show fluorescence
- enhancement (top row of embryos), compared to controls (bottom row of embryos).

606

607	Supplemental Figure 2.	Lethal phase and	developmental	l delays of single and	d double
-----	------------------------	------------------	---------------	------------------------	----------

- 608 mutants for NMD genes. (A) Average number of days spent during larval stages of
- animals that entered pupariation in each indicated genotype. Error bars represent 2 SEM.
- 610 (B) Percentage of animals that die during larval development, pupal development, or
- adulthood in indicated genotypes. Error represents 95% confidence interval of the
- 612 binomial distribution. * indicates adjusted p-value < 0.05 compared to lethality of control
- 613 condition at that stage.

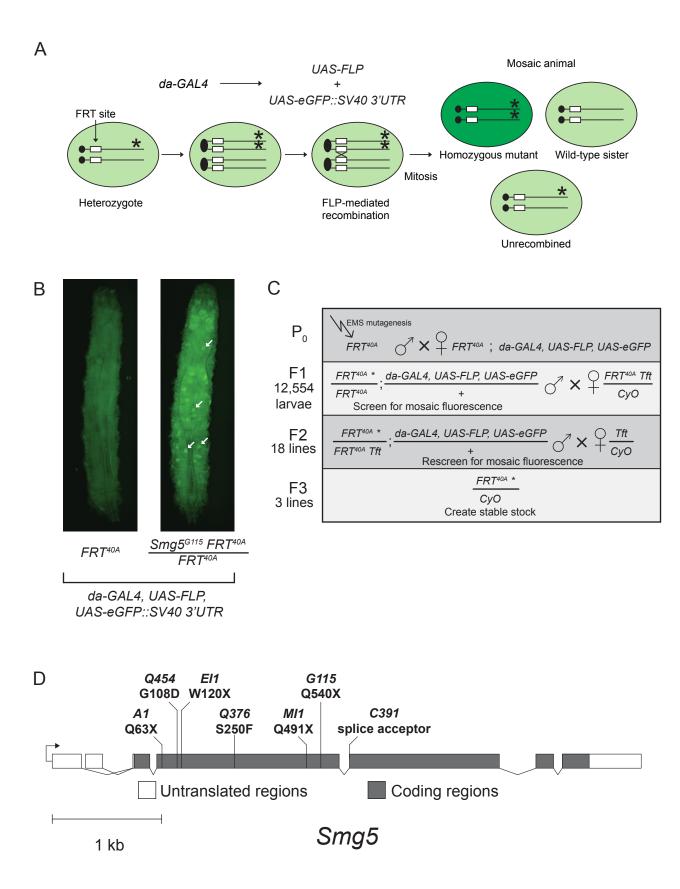
614 Supplemental Figure 3. SV40 3'UTR deletion constructs tested for expression and

- 615 NMD sensitivity. The full length 3' UTR is shown in schematic and length given in base-
- 616 pairs (bp). Cyan box, SV40 3' UTR intron; blue boxes, predicted polyadenylation sites;
- 617 dashed line, internal deletions. Expression level is the GFP signal observed when
- 618 expressing the construct using an *e22c-GAL4* (epithelial) driver, normalized to the
- 619 expression observed in the full-length construct. NMD sensitivity is the ratio of
- 620 expression in an $Upf2^{25G}$ genetic background compared to a $Upf2^+$ genetic background
- 621 (the higher the value the more sensitive the construct is to loss of NMD). For the
- 622 experiments shown in Figure 3, the deletion used was the 100bp construct.

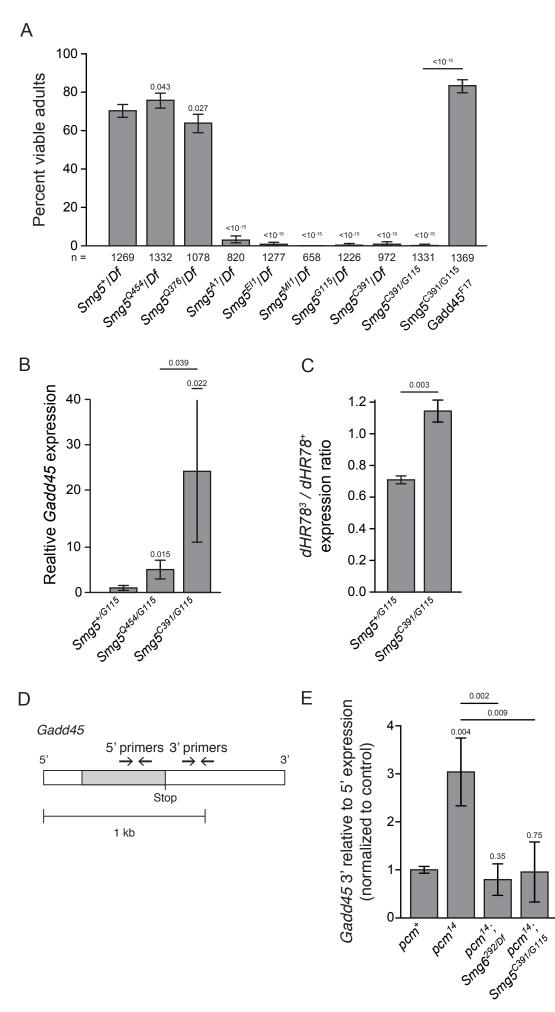
623 624	REFERENCES
625 626	Adjibade P., Mazroui R., 2014 Control of mRNA turnover: implication of cytoplasmic RNA granules. Semin. Cell Dev. Biol. 34 : 15–23.
627 628 629	Anders K. R., Grimson A., Anderson P., 2003 SMG-5, required for <i>C.elegans</i> nonsense- mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 22: 641–650.
630 631 632	Arciga-Reyes L., Wootton L., Kieffer M., Davies B., 2006 UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J. 47: 480– 489.
633 634 635	Avery P., Vicente-Crespo M., Francis D., Nashchekina O., Alonso C. R., Palacios I. M., 2011 <i>Drosophila</i> Upf1 and Upf2 loss of function inhibits cell growth and causes animal death in a Upf3-independent manner. RNA 17: 624–638.
636 637 638	Boehm V., Haberman N., Ottens F., Ule J., Gehring N. H., 2014 3' UTR length and messenger ribonucleoprotein composition determine endocleavage efficiencies at termination codons. Cell Rep 9 : 555–568.
639 640	Brand A. H., Perrimon N., 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 : 401–415.
641 642	Cali B. M., Kuchma S. L., Latham J., Anderson P., 1999 smg-7 is required for mRNA surveillance in <i>Caenorhabditis elegans</i> . Genetics 151 : 605–616.
643 644	Celik A., Kervestin S., Jacobson A., 2015 NMD: At the crossroads between translation termination and ribosome recycling. Biochimie 114 : 2–9.
645 646 647	Chakrabarti S., Bonneau F., Schüssler S., Eppinger E., Conti E., 2014 Phospho- dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Res. 42 : 9447–9460.
648 649 650	Chan W.K., Huang L., Gudikote J. P., Chang Y.F., Imam J. S., MacLean J. A., Wilkinson M. F., 2007 An alternative branch of the nonsense-mediated decay pathway. EMBO J. 26 : 1820–1830.
651 652 653	Chapin A., Hu H., Rynearson S. G., Hollien J., Yandell M., Metzstein M. M., 2014 In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila. G3 (Bethesda) 4: 485–496.
654 655 656	Chen Z., Smith K. R., Batterham P., Robin C., 2005 <i>Smg1</i> nonsense mutations do not abolish nonsense-mediated mRNA decay in <i>Drosophila melanogaster</i> . Genetics 171 : 403–406.
657	Chiu S.Y., Serin G., Ohara O., Maquat L. E., 2003 Characterization of human Smg5/7a: a

658 659	protein with similarities to <i>Caenorhabditis elegans</i> SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9 : 77–87.		
660 661 662	Cho H., Han S., Choe J., Park S. G., Choi S. S., Kim Y. K., 2013 SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay. Nucleic Acids Res. 41 : 1319–1328.		
663 664 665	Cho H., Kim K. M., Kim Y. K., 2009 Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Molecular Cell 33 : 75–86.		
666 667 668 669	Colombo M., Karousis E. D., Bourquin J., Bruggmann R., Mühlemann O., 2017 Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. RNA 23: 189–201.		
670 671 672 673	 Kaufman T. C., Cook K. R., 2012 The generation of chromosomal deletions to provide extensive coverage and subdivision of the <i>Drosophila melanogaster</i> genome 		
674 675 676	Czaplinski K., Weng Y., Hagan K. W., Peltz S. W., 1995 Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA 1: 610–623.		
677 678 679	Durand S., Franks T. M., Lykke-Andersen J., 2016 Hyperphosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated mRNA decay. Nature Communications 7: 1–12.		
680 681	Fisk G. J., Thummel C. S., 1998 The DHR78 nuclear receptor is required for ecdysteroid signaling during the onset of <i>Drosophila metamorphosis</i> . Cell 93 : 543–555.		
682 683	Förster D., Armbruster K., Luschnig S., 2010 Sec24-dependent secretion drives cell- autonomous expansion of tracheal tubes in <i>Drosophila</i> . Curr. Biol. 20 : 62–68.		
684 685 686	Frizzell K. A., Rynearson S. G., Metzstein M. M., 2012 Drosophila mutants show NMD pathway activity is reduced, but not eliminated, in the absence of Smg6. RNA 18: 1475–1486.		
687 688 689	Fukuhara N., Ebert J., Unterholzner L., Lindner D., Izaurralde E., Conti E., 2005 SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Molecular Cell 17: 537–547.		
690 691	Gatfield D., Izaurralde E., 2004 Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in <i>Drosophila</i> . Nature 429 : 575–578.		
692 693	Gatfield D., Unterholzner L., Ciccarelli F. D., Bork P., Izaurralde E., 2003 Nonsense- mediated mRNA decay in <i>Drosophila</i> : at the intersection of the yeast and		

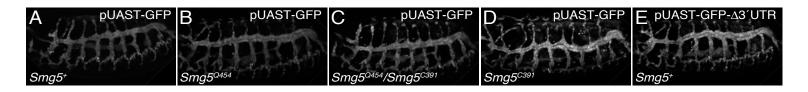
- mammalian pathways. EMBO J. **22**: 3960–3970.
- 695 Gehring N. H., Neu-Yilik G., Schell T., Hentze M. W., 2003 Y14 and hUpf3b form an
 696 NMD-activating complex. Molecular Cell 11: 939–949.
- 697 Grimson A., O'Connor S., Newman C. L., Anderson P., 2004 SMG-1 is a
 698 phosphatidylinositol kinase-related protein kinase required for nonsense-mediated
 699 mRNA Decay in *Caenorhabditis elegans*. Mol. Cell. Biol. 24: 7483–7490.
- He F., Brown A. H., Jacobson A., 1997 Upf1p, Nmd2p, and Upf3p are interacting
 components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol.
 17: 1580.
- Hodgkin J., Papp A., Pulak R., Ambros V., Anderson P., 1989 A new kind of
 informational suppression in the nematode *Caenorhabditis elegans*. Genetics 123:
 301–313.
- Hug N., Longman D., Cáceres J. F., 2016 Mechanism and regulation of the nonsense mediated decay pathway. Nucleic Acids Res.
- Huntzinger E., Kashima I., Fauser M., Saulière J., Izaurralde E., 2008 SMG6 is the
 catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan.
 RNA 14: 2609–2617.
- Kerényi Z., Mérai Z., Hiripi L., Benkovics A., Gyula P., Lacomme C., Barta E., Nagy F.,
 Silhavy D., 2008 Inter-kingdom conservation of mechanism of nonsense-mediated
 mRNA decay. EMBO J. 27: 1585–1595.
- Le T., Liang Z., Patel H., Yu M. H., Sivasubramaniam G., Slovitt M., Tanentzapf G.,
 Mohanty N., Paul S. M., Wu V. M., Beitel G. J., 2006 A new family of *Drosophila*balancer chromosomes with a w- dfd-GMR yellow fluorescent protein marker.
 Genetics 174: 2255–2257.
- Leeds P., Peltz S. W., Jacobson A., Culbertson M. R., 1991 The product of the yeast
 UPF1 gene is required for rapid turnover of mRNAs containing a premature
 translational termination codon. Genes & Development 5: 2303–2314.
- Leeds P., Wood J. M., Lee B. S., Culbertson M. R., 1992 Gene products that promote
 mRNA turnover in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 12: 2165–2177.
- Li T., Shi Y., Wang P., Guachalla L. M., Sun B., Joerss T., Chen Y.-S., Groth M.,
 Krueger A., Platzer M., Yang Y.-G., Rudolph K. L., Wang Z.-Q., 2015 Smg6/Est1
 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay.
 EMBO J. 34: 1630–1647.
- Loh B., Jonas S., Izaurralde E., 2013 The SMG5-SMG7 heterodimer directly recruits the
 CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via
 interaction with POP2. Genes & Development 27: 2125–2138.

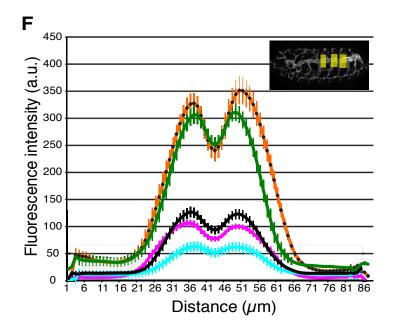

Lykke-Andersen J., Shu M. D., Steitz J. A., 2000 Human Upf proteins target an mRNA

- 731 for nonsense-mediated decay when bound downstream of a termination codon. Cell 732 **103**: 1121–1131. 733 Lykke-Andersen S., Chen Y., Ardal B. R., Lilje B., Waage J., Sandelin A., Jensen T. H., 734 2014 Human nonsense-mediated RNA decay initiates widely by endonucleolysis and 735 targets snoRNA host genes. Genes & Development 28: 2498–2517. 736 Medghalchi S. M., Frischmeyer P. A., Mendell J. T., Kelly A. G., Lawler A. M., Dietz H. 737 C., 2001 Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for 738 mammalian embryonic viability. Hum. Mol. Genet. 10: 99-105. 739 Metzstein M. M., Krasnow M. A., 2006 Functions of the nonsense-mediated mRNA decav pathway in Drosophila development. PLoS Genet. 2: e180. 740 741 Nelson J. O., Moore K. A., Chapin A., Hollien J., Metzstein M. M., 2016 Degradation of 742 *Gadd45* mRNA by nonsense-mediated decay is essential for viability. Elife **5**: 624. 743 Nicholson P., Josi C., Kurosawa H., Yamashita A., Mühlemann O., 2014 A novel 744 phosphorylation-independent interaction between SMG6 and UPF1 is essential for 745 human NMD. Nucleic Acids Research 45:9217-9235. 746 Ohnishi T., Yamashita A., Kashima I., Schell T., Anders K. R., Grimson A., Hachiya T., 747 Hentze M. W., Anderson P., Ohno S., 2003 Phosphorylation of hUPF1 induces 748 formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. 749 Molecular Cell 12: 1187–1200. 750 Okada-Katsuhata Y., Yamashita A., Kutsuzawa K., Izumi N., Hirahara F., Ohno S., 2012 751 N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 40: 1251-1266. 752 753 Ottens F., Boehm V., Sibley C. R., Ule J., Gehring N. H., 2017 Transcript-specific 754 characteristics determine the contribution of endo- and exonucleolytic decay 755 pathways during the degradation of nonsense-mediated decay substrates. RNA 23: 756 1224-1236.
- Page M. F., Carr B., Anders K. R., Grimson A., Anderson P., 1999 SMG-2 is a
 phosphorylated protein required for mRNA surveillance in *Caenorhabditis elegans*and related to Upf1p of yeast. Mol. Cell. Biol. 19: 5943–5951.
- Peccarelli M., Kebaara B. W., 2014 Regulation of natural mRNAs by the nonsense mediated mRNA decay pathway. Eukaryotic Cell 13: 1126–1135.
- Rehwinkel J., Letunic I., Raes J., Bork P., Izaurralde E., 2005 Nonsense-mediated mRNA
 decay factors act in concert to regulate common mRNA targets. RNA 11: 1530–
 1544.
- 765 Schmidt S. A., Foley P. L., Jeong D. H., Rymarquis L. A., Doyle F., Tenenbaum S. A.,

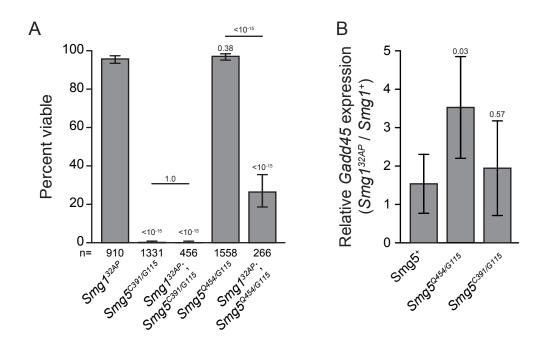

- 767 preferred RNA cleavage motif by global analysis of endogenous NMD targets in
- human cells. Nucleic Acids Res. **43**: 309–323.
- Siwaszek A., Ukleja M., Dziembowski A., 2014 Proteins involved in the degradation of
 cytoplasmic mRNA in the major eukaryotic model systems. RNA Biology 11: 1122–
 1136.
- Till D. D., Linz B., Seago J. E., Elgar S. J., Marujo P. E., de L Elias, M., Arraiano, C. M.,
 McClellan, J. A., McCarthy, J. E. G., Newbury, S. F., 1998 Identification and
 developmental expression of a 5'-3' exoribonuclease from *Drosophila melanogaster*.
 Mechanisms of Development **79**: 51–55.
- Venken K. J. T., He Y., Hoskins R. A., Bellen H. J., 2006 P[acman]: a BAC transgenic
 platform for targeted insertion of large DNA fragments in *D. melanogaster*. Science **314**: 1747–1751.
- Waldron J. A., Jones C. I., Towler B. P., Pashler A. L., Grima D. P., Hebbes S.,
 Crossman S. H., Zabolotskaya M. V., Newbury S. F., 2015 Xrn1/Pacman affects
 apoptosis and regulates expression of hid and reaper. Biology Open 4: 649–660.
- Weischenfeldt J., Damgaard I., Bryder D., Theilgaard-Mönch K., Thoren L. A., Nielsen
 F. C., Jacobsen S. E. W., Nerlov C., Porse B. T., 2008 NMD is essential for
 hematopoietic stem and progenitor cells and for eliminating by-products of
 programmed DNA rearrangements. Genes & Development 22: 1381–1396.
- Weng Y., Czaplinski K., Peltz S. W., 1996a Identification and characterization of
 mutations in the UPF1 gene that affect nonsense suppression and the formation of the
 Upf protein complex but not mRNA turnover. Mol. Cell. Biol. 16: 5491–5506.
- Weng Y., Czaplinski K., Peltz S. W., 1996b Genetic and biochemical characterization of
 mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol.
 16: 5477–5490.
- Wittkopp N., Huntzinger E., Weiler C., Saulière J., Schmidt S., Sonawane M., Izaurralde
 E., 2009 Nonsense-mediated mRNA decay effectors are essential for zebrafish
 embryonic development and survival. Mol. Cell. Biol. 29: 3517–3528.
- Wodarz A., Hinz U., Engelbert M., Knust E., 1995 Expression of crumbs confers apical
 character on plasma membrane domains of ectodermal epithelia of *Drosophila*. Cell
 82: 67–76.
- Yamashita A., Ohnishi T., Kashima I., Taya Y., Ohno S., 2001 Human SMG-1, a novel
 phosphatidylinositol 3-kinase-related protein kinase, associates with components of
 the mRNA surveillance complex and is involved in the regulation of nonsensemediated mRNA decay. Genes & Development 15: 2215–2228.
- 802 Yoine M., Nishii T., Nakamura K., 2006 Arabidopsis UPF1 RNA helicase for nonsense-

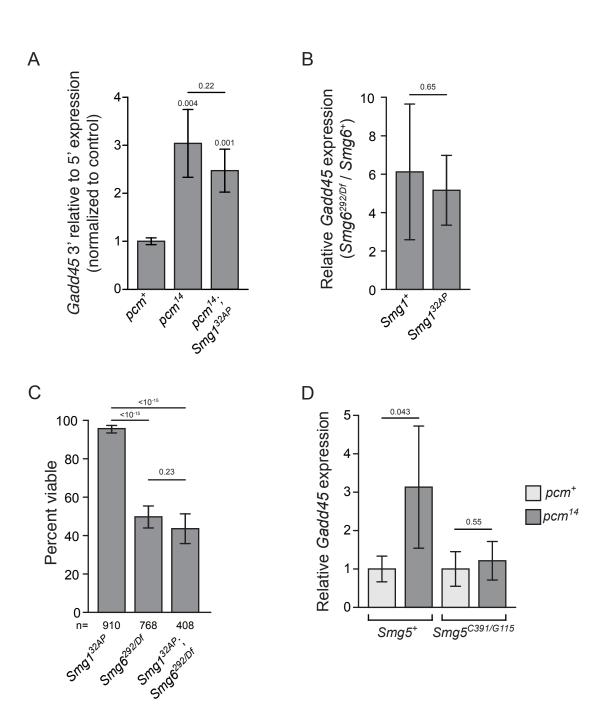
- 803 mediated mRNA decay is involved in seed size control and is essential for growth.
- 804 Plant Cell Physiol. **47**: 572–580.

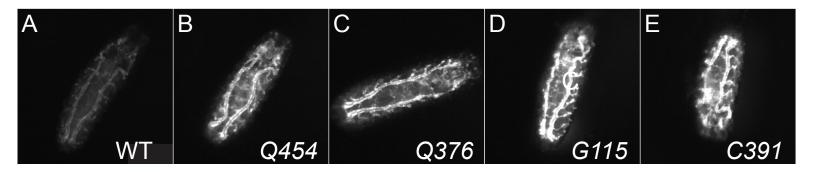

Figure 1

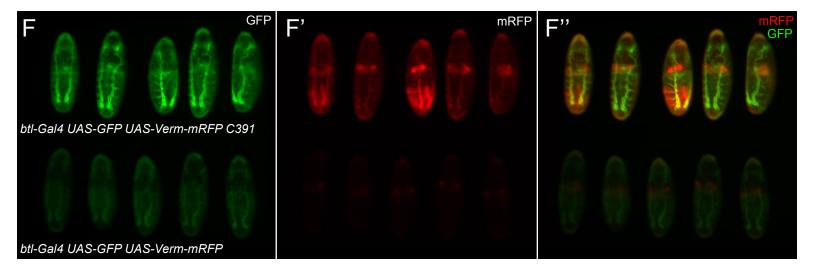


bioRxiv preprint doi: https://doi.org/10.1101/219725; this version posted November 14, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

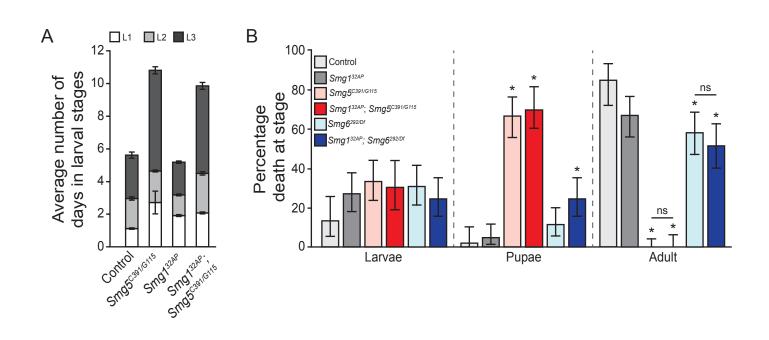


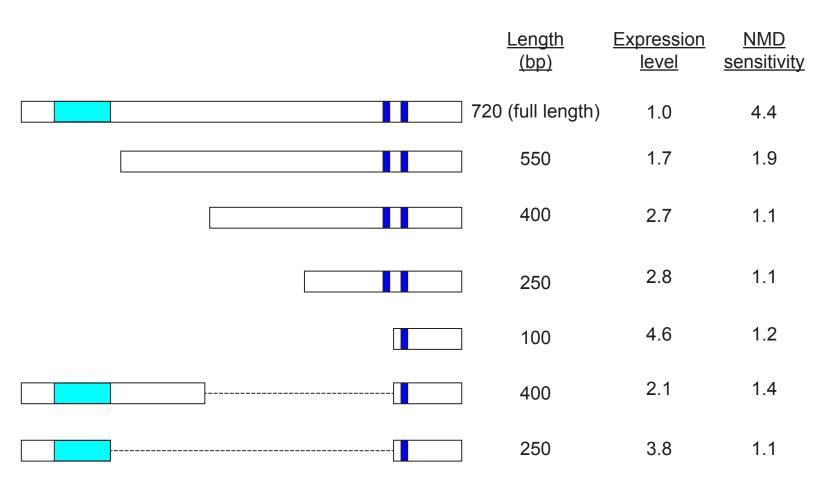

0.75





_	Smg5 genotype Smg5 ⁺	<u>SV40 3' UTR</u> FL	<u>n</u> 16
	Smg5 ^{C391}	FL	14
-	Smg5 ^{Q454}	FL	9
•	Smg5 ^{C391/Q454}	FL	22
-	Smg5⁺	Δ	13





Supplemental Figure 2

bioRxiv preprint doi: https://doi.org/10.1101/219725; this version posted November 14, 2017. The copyright holder for this preprint (which was Supplementational bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

