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Abstract: 
 
Theoretical models of action control assume that abstract task-set settings regulate lower-level 

stimulus/response representations.  However, we know little about the degree to which task-set 

representations can actually explain variability in performance, or about the dynamic interplay 

between task-set and lower-level representations.  Addressing such questions requires time-

resolved information about the strength of the different representations on a trial-by-trial basis.  

Using a cued task-switching paradigm, we show that information about both task sets and 

lower-level stimulus/response features can be extracted through decoding analyses from the 

scalp electrophysiological signal (EEG) with high temporal resolution.  The representational 

strength of the different goal-relevant aspects--indexed through decoding accuracy--proceeds 

from superficial task cues, to stimulus locations, to features/responses.  Importantly, these 

lower-level representations are accompanied by task-set representations that are prominent 

throughout almost the entire processing cascade.  Moreover, trial-by-trial information about 

representational strength allows a detailed analysis of when and to what degree (a) different 

representations predict performance and (b) are related to each other.  Indeed, the strength of 

abstract task sets emerges as a remarkably strong and consistent predictor of both within-

individual and across-individual variability in performance.  Also, task-set strength is related to 

target representation strength at an early period and to the strength of feature/response 

representations at a later period, consistent with the notion that task-sets coordinate successive, 

lower-level representations in a concurrent manner.  These results demonstrate a powerful 

approach towards uncovering the different stages of information processing and their relative 

importance for performance.      
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EEG Decoding Reveals the Temporal Dynamics and Functional Relevance 
of Goal-Relevant Representations 

 
The efficiency of information processing differs both moment to moment, and from one 

individual to the next.  Such variability could reflect the quality of low-level, stimulus or response 

representations.  Alternatively, it may arise from the strength of abstract, task-set 

representations that instantiate or control lower-level processes (1-3).  For example, in the 

experimental paradigm we used in the current work (see Figure 1a), participants were informed 

on each trial through auditory cues, which of two tasks to perform (4, 5).  For the color task, they 

attended to the color singleton within the array of objects and responded via button press 

whether the exact color was orange or purple.  Similarly, for the orientation task, participants 

attended the orientation singleton and responded whether the line tilted to the left or to the right.  

In this situation, successful performance requires lower-level representations of the task cue, of 

the target location, and of the task-relevant feature/response.  However, it may also require 

abstract task-set representations that differentiate between the color task context and the 

orientation task context and that ensure an adequate configuration of lower-level 

representations.   

Even though the existence of higher-level, control representations is a common 

assumption in models of cognitive control (3, 6-8) there are many open questions about the 

degree to which abstract task sets regulate performance at all, and how such regulation is 

achieved (4, 5, 9, 10).  For example, as an alternative to the view that abstract, rule-like 

representations are necessary to modulate lower-level processes, some authors have pointed 

out that when unambiguous, environmental stimuli (i.e., cues) distinguish between competing 

response options, superficial cue representations could be sufficient to constrain lower-level 

processes (4).  It is also currently not clear when exactly higher-level control occurs (see Figure 

1b).  Cue or task-set representations might be necessary to set up and preconfigure lower-level 

representations (11, 12).  Alternatively, task sets may also become relevant only as competition 
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between lower-level representations arises, in order to mold these representations in a goal-

appropriate manner (3) (i.e., see the Parallel Activation account in Figure 1b).  Addressing these 

and related issues requires methods that directly probe the status of goal-relevant 

representations with high temporal resolution.  In particular, it would be important to examine 

not only when a specific representation is active, but to what degree it actually impacts 

performance.  

Existing approaches, such as chronometric analyses of response-time (RT) patterns 

(13), the analysis of averaged evoked EEG (14), or fMRI BOLD signals (15) are of limited value 

for capturing temporal dynamics, or trial-to-trial variability, in the strength of different task-related 

representations.  Moreover, it is of particular theoretical importance to characterize the dynamic 

behavior of abstract task-set representations. Yet, because such representations are not tied to 

specific stimuli or responses, they are difficult to pin down with the existing methods.  

Recent work has suggested that a surprising amount of information about currently 

active representations can be extracted from EEG signals (16-19).  Therefore, we applied a 

bottom-up, multivariate decoding approach to EEG data from the task-switching paradigm 

presented in Figure 1a.  We extracted from the EEG signal information about each of the five, 

potentially relevant aspects (superficial cues, target and distractor locations, target 

feature/response, and task set).  The decoding accuracy for each aspect provided high-

resolution information about the temporal dynamics and the relative importance of both lower-

level, stimulus/response, and higher-level task-set representations.   

Results 

Representational Dynamics 

Figure 1c shows that decoding accuracy unfolds consistent with standard expectations 

about the flow of information--from cue encoding, to task-set activation, to relevant and 

irrelevant stimulus locations, and finally to response codes.  Remarkably, task-level information 

is decodable with high accuracy throughout almost the entire duration of the trial.   
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As mentioned, one prominent model suggests that the cognitive system does not 

actually rely on abstract task settings, but––at least when available-–uses superficial cue 

representations to resolve ambiguity between competing, stimulus/response representations (4, 

9). However, we find that cue decoding accuracy (i.e., discriminating between the two cues for 

each task) peaks during the pre-stimulus phase, but declines sharply once the stimulus is 

presented.  This result is consistent with the view that cue representations are used to activate 

task set representations (5, 20), and are less involved with actually regulating task-specific 

processes.  

But how exactly are tasks instantiated? It task-set representations are critical for 

“preconfiguring” lower-level processes, stimulus representations would need to wait until the 

task-set is firmly established (11, 12).  Alternatively, task sets may be activated in parallel to 

low-level stimulus/response selection processes, biasing these in a goal-relevant direction (3).  

As shown in Figure 1c, there is limited task decoding during the prestimulus phase, but a 

substantial increase emerges once stimulus/response information becomes decodable. Thus, 

while the presence of prestimulus task-set information indicates some role for preconfiguration, 

the overall pattern suggests that––consistent with the parallel-activation idea––task-set 

representations become particularly critical once competition between conflicting 

stimulus/response representations needs to be resolved (see Figure 1b).  

An important question to address is to what degree task-set decoding accuracy actually 

reflects abstract representations, rather than task differences in lower-level stimulus or 

response-selection processes.  In fact, as reported in Figures S2 and S3, there are substantial 

task-dependent differences in lower-level features, which are probably tied to the differential 

saliency of color versus orientation stimuli.  In principal, such lower-level differences could 

account for the task-decoding results.  However, when we probed to what degree task-set 

decoding generalizes across target locations and features/responses (see SM), we found 

reliable, though somewhat reduced generalization of task-set representations (insert in Figure 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2017. ; https://doi.org/10.1101/219741doi: bioRxiv preprint 

https://doi.org/10.1101/219741
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

1c).  These results confirm that at least a substantial part of the decodable task-related 

information is indeed of a relatively abstract nature.   

Determining the Relevance of Representations 

Going beyond average activation trajectories, the trial-by-trial decoding approach allows 

us to determine at what point in the trial, which of the represented aspects drive performance.  

To this end, we entered trial-by-trial classifier confidence associated with each of the five task 

aspects as simultaneous predictors of trial-by-trial RT variability within subjects, using mixed 

regression models for each timepoint (see SI for details).  The coefficients shown in Figure 2a 

represent the unique predictive power associated with each aspect, as a function of time in the 

trial.  Consistent with the view that task sets, and not superficial cue representations, control 

lower-level representations, we find that cue-related activity is largely irrelevant for performance, 

a result that also holds up when cue decoding accuracy is entered as the sole predictor.  In 

contrast, task-set information becomes highly predictive of RTs during the post-stimulus phase, 

suggesting that fluctuations in the quality of task-set representations are a major source of trial-

to-trial variability in performance.  Further, the fact that the task-sets begin to predict RTs only 

once also the (independent) predictive power of stimulus and response information emerges, is 

consistent with the parallel-activation account (see also Figure S4).   

Again, we need to ask to what degree the predictive power of task sets is associated 

with abstract task-set representations rather than with lower-level differences between tasks.  

Therefore, we used instead of task-set classifier confidence the degree of generalization (see 

also insert to Figure 1c) to predict RTs.  Indeed, as shown in the insert to Figure 2a, the 

generalizable aspect of the decoded task-set representation remains a robust predictor of 

performance.  

We can also look at the degree to which the decoding accuracy for the different aspects 

is related to individual differences in RTs.  In fact, we found that the temporal pattern of simple 

correlations between individuals’ average decoding accuracy for each task aspect and their 
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average RT is very similar to the within-individual predictive pattern.  As shown in Figure 2b, 

decoding accuracy for task sets is a major source of individual differences in RTs for nearly the 

entire post-stimulus period, whereas stimulus location correlates early and the feature/response 

aspect late in the post-stimulus phase (Figure 2b).  In addition, Figure 2c shows the scatterplots 

for the correlations at each task aspects’ peak decoding accuracy (see Figure 1c).  The current 

experiment was not designed to examine individual differences.  However, confidence in these 

results is strengthened by the fact that the relationships are strikingly robust and highly 

consistent with the within-individual relationships.   

Relationship Dynamics between Representations 

The general notion that cues activate task sets, which in turn bias stimulus and 

eventually response representations, leads to a straightforward prediction about the sequence 

in which different representations should be related to each other.  To test these predictions we 

can examine the degree to which the decoding accuracy for different representations is coupled 

as a function of time in the trial.  Figure 3 presents for each timepoint the relationships between 

the classifier confidence for task sets and each of the other aspects (to avoid clutter, we omit 

the distractor here, for which the relationship was close to zero throughout).  As expected, early 

in the prestimulus phase, the strength of task representation is coupled with the strength of cue 

representation, likely indicating the retrieval of the task set based on the cue (5).  Following 

stimulus onset, a correlation with the target location emerges and subsequently, a correlation 

with the response information.  This pattern is again consistent with the parallel-activation 

account, where task sets coordinate lower-level representations in a concurrent manner (see 

Figure 1b).   

 

Effects of Task Switching 

In the results presented so far, we had ignored potential effects of trial-to-trial changes in 

tasks.  In fact, our version of the task-switching paradigm was optimized towards EEG decoding 
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analyses, not towards producing large switch effects (i.e., both the use of long inter-trial 

intervals and of spatially separate, task-related features can be expected to reduce between-

task competition).  Indeed, behavioral switch costs were small (for details see Supplemental 

Material).  Nevertheless, we examined the degree to which the switch/repeat contrast plays out 

in the decoding results.  We constrained our analyses a-priori to the 150 ms intervals centered 

around the peak of the activation trajectories for each feature (see Figure 1c).  In addition, given 

the strong relationship between RTs and decoding accuracy for task, stimulus locations, and 

response, we also conducted a median split into fast and slow RT trials.  The median-split was 

conducted within each subject, task, and switch condition; values were than averaged across 

tasks and subjects, but presented separately for no-switch and switch trials.  The dominant 

aspect in Figure 4 is again the strong relationship between RTs on the one hand and task, 

target location, and response representations on the other.  In addition, switching tasks leads to 

weakened task-set representations, both in general (switch main effect: F[1,19]=6.69, p=.018), 

but in particular on slow-RT trials (fast/slow x switch interaction: F[1,19]=6.62, p=.019).  Also, 

distractor representations were increased on switch trials, F(1,19)=5.23, p=.034).  Thus, at the 

time of peak task-set activation, the task-related information is less robust on switch than on no-

switch trials, whereas information related to the competing task is more strongly expressed.  

Discussion 

When people need to respond to a given stimulus in a flexible, context-dependent 

manner, the flow of information processing cannot rely on sensory or response representations 

alone.  Rather, stimulus and response selection needs to be constrained by representations of 

the environmental context (i.e., cues) and potentially of the current stimulus-response rules (i.e., 

task sets).  There is a substantial behavioral (1) and fMRI neuroimaging (21, 22) literature on 

how we select and change such higher-level representations in humans.  However, these 

methods have not provided a precise account of the place and the relevance of cue or task-set 

representations within the overall information processing cascade.   
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We made progress on these questions by decoding information about key goal-relevant 

representations from EEG signals.  Our results reveal a plausible sequence of active 

representations of target and distractor locations, as well as of features or response choices.  

For example, the timing of the target/distractor location representations is highly consistent with 

recent work using eye-tracking to assess the dynamics of attentional allocation to task-relevant 

and irrelevant features (12, 23).  More importantly, our results also reveal the time course for 

both cue and task representations.  Task cues were highly decodable as soon as the cue was 

presented during the prestimulus phase, but were less strongly expressed once the stimulus 

appeared.  In contrast, task representations exhibited the reverse pattern, with limited activity 

during the post-cue/pre-stimulus phase, but a very strong presence during the entire stimulus-

to-response.  This result is consistent with findings from single-unit or multi-unit recoding work 

from primates, which has suggested that representations of the larger behavioral context bridge 

across the entire, lower-level processing cascade (24, 25). 

The pattern of average, cue and task activation trajectories provides initial, theoretically 

important information.  Specifically, contrary to one prominent model (4), the fact that task-set 

decoding accuracy is much higher than cue decoding accuracy (at least after stimulus 

presentation) suggests that task-set activity is more important than superficial cue information in 

controlling lower-level representations.  Yet, average decoding accuracy allows no conclusions 

about the functional relevance of the different representations.  In this regard, decoding scores 

on the single-trial level, yield important, additional information.  Specifically, we used these 

scores to predict trial-to-trial variability in RTs, and thereby determined in a time-resolved 

manner, which representations drive performance (Figure 2).  Interestingly, the pattern of 

predictive relationships indicates that cue representations do not explain variability in 

performance.  In contrast, task representations emerge as a very strong predictor of RTs and 

explain substantial variability both within and across individuals.  The explanatory power of task 

representations is again largely limited to the post-stimulus phase and is most robust when also 
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stimulus and response effects are particularly strong.  Interestingly, task-set information (but not 

cue information) also emerged as a very strong predictor of inter-individual differences in 

performance.  Moreover, an analysis of interrelationships between task-set and lower-level 

representations (see Figure 3) indicate that task sets were coupled in the post-stimulus phase 

initially with the target-location representations, and thereafter also with feature/response 

representations.  Combined, these results strongly suggest that lower-level representations are 

configured through relatively abstract task or attentional settings, not through superficial cue 

representations.  Further, the trajectory of average representational strength and the predictive 

pattern is most consistent with the parallel activation model (Figure 1b) where task sets can 

shape lower-level processes in a concurrent manner (3).   

Our results cannot be taken to rule out the possibility of functionally relevant, preparatory 

activity before stimulus/response processing sets in.  In fact, the use of cue information to 

retrieve the current task set is a necessary process that clearly happens within the cue-to-

stimulus interval (5).  The early inter-relationship between strength of cue and task 

representations likely is an expression of this retrieval activity (Figure 3).  It is reasonable to 

assume that the 300 ms interval between cue and stimulus interval was sufficient to absorb 

major, within-individual or between-individual variability in the duration or quality of this process, 

thus preventing any predictive effects of cue or task-set representations from revealing 

themselves.  Also, it is very well possible that with longer preparatory intervals, greater proactive 

task-set activity may be observed.  Both behaviorally and in fMRI neuroimaging studies, 

preparation effects are well documented (26-29).  However, the fact that task-set 

representations were strongest, and also most predictive of performance in the presence of 

stimulus and response representations suggests that a key function of task sets is to regulate 

these lower-level representations in a concurrent manner.  This conclusion is also consistent 

with a large body of behavioral work suggesting that task-selection costs cannot be easily 

eliminated through opportunity for preparation (1). 
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Several results indicate that the task decoding accuracy we observed does in fact 

represent the strength of relatively abstract, task or attentional settings.  For example, in the 

predictive analyses, task-set classifier confidence explained substantial, within-individual 

variability in RTs over and above the predictive relationships between RTs and lower-level 

aspects.  We also demonstrated that task representations generalized across target positions 

and features/responses.  Furthermore, these generalization scores proved nearly as predictive 

of within-individual and between-individual variability in performance as the regular decoding 

accuracy.  In the Supplemental Material we report an additional analysis, where we controlled in 

the predictive analyses (Figure 2) for the degree to which lower-level representations 

generalized across tasks.  Again, we found no change to the overall predictive pattern, 

confirming that the decoded task-set representations were relatively abstract.  

In a recent study by Siegel and colleagues (25), monkeys performed a task-switching 

paradigm while multi-unit activity was recorded in critical anatomical areas along the entire 

sensory-motor processing stream (see also, (30-32)).  In several key aspects, the pattern of 

results was remarkably similar to the current findings.  In particular, cue information was highly 

prominent during the prestimulus phase, but then tampered off in the post-stimulus phase.  Task 

information emerged concurrently with cue information, but then increased dramatically as 

stimulus and response choice information was processed during the stimulus phase.  The 

convergence of results across species and methods suggests that some of the same 

information that is conveyed through neural-level recordings can also be extracted through 

scalp EEG signals.  The fact that we were able to extract information about task-relevant 

features through relatively sparse recordings from the scalp is generally consistent with the fact 

that in Siegel et al. both higher-level and lower-level aspects where represented throughout all 

cortical regions, albeit with varying strengths across regions(33, 34).  

To summarize, ever since W. Wundt (35) and F.C. Donders (36), researchers have tried 

to characterize the cascade of goal-directed information processing and pinpoint the source of 
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variability in processing efficiency in the human cognitive system.  We show here that EEG-

based, trial-by-trial decoding analyses can clarify the relative role and the temporal dynamics of 

both lower-level stimulus/response, as well as abstract task-set representations.  In particular, 

the ability to pinpoint within the processing cascade the exact source of performance 

differences, is a unique feature of this approach.  These and related methods help bridge the 

gap towards primate work that captures the information-processing flow in the activity of 

individual neurons. 

Methods 

Experimental Procedure 

Twenty participants participated in this experiment. They were compensated at a rate of 

$10 per hour, with additional incentives based on performance on the task (see Supplemental 

Material for further details).  All experimental procedures were approved through the University 

of Oregon’s Human Subject Review Board. 

We used a cued task switching paradigm (27) that was closely modelled after a 

paradigm that we had previously used in the context of eye-tracking experiments ((12, 23); see 

Figure S1).  On each trial, an auditory cue indicated which of the tasks, the Color task or the 

Orientation task, participants had to complete.  Each task was paired with two auditory cues: 

“color” or “hue” for the Color task, and “tilt” or “lean” for the Orientation task. Following Monsell 

and Mizon (27), the two sets of cues (Set A=”color” and “tilt”, Set B=”hue” and “lean”) were 

alternated across consecutive trials.  This ensured that task-switch costs are not contaminated 

by superficial cue-priming effects (4, 5) and that we could independently decode cue and task 

information(25). 

The stimulus array consisted of 8 circular gratings (diameter of each ~ 2.4 degrees) in a 

larger circular arrangement (diameter ~ 12.5 degrees). The stimulus array always contained six, 

neutral stimuli consisting of vertical, black and white gratings. In addition, there was (a) one 

color singleton stimulus with a vertical grating shaded in one of two colors, either “yellowish” or 
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“reddish” and one (b) orientation singleton with a black grating oriented either 30 degrees to the 

left or the right.  For the Color task, participants had to attend to the color singleton and press 

the left (z) key for a “yellowish” target and the right (/) key for the “reddish” target.  For the 

Orientation task, participants had to attend to the orientation singleton and press the left (z) key 

for a left-tilted target and the right (/) key for the right-tilted target.     

Each trial began with a 700 ms prestimulus interval with a fixation cross in the center of 

the screen. The auditory cue was presented in the last 300 ms of this interval, so that the 

stimulus array appeared as soon as the auditory cue completed.  Participants were instructed to 

respond as quickly and accurately as possible. The stimuli remained on the screen until a 

response was made. In case of a mistake, an error tone was emitted for 100 ms.  During the 

following inter-trial interval (ITI), which was jittered between 750 and 937 ms, participants were 

instructed to blink before the next trial began.  

The experiment began with two single-task practice blocks (one for each task, order 

counter-balanced), and a task-switching practice block (20 trials), followed by 22 test blocks of 

64 trials each.  All task aspects were determined randomly on a trial-by-trial basis.  This 

includes the selection of tasks, yielding an average switch rate of p=.5.   

Participants were seated approximately 70 cm from the screen, and instructed to keep 

their eyes at fixation and not blink throughout the trial; trials containing eye movements were 

detected via electrooculogram (EOG) and excluded from the analysis.  

EEG Decoding Analyses 

After initial preprocessing and identification of artifacts (see SM), the single-trial EEG 

data were decomposed into a time-frequency representation via wavelet decomposition (for 

details see SM).  For simplicity we focused on frequency bands that are most often presented in 

the literature: delta (2-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-31 Hz).  For each 

frequency band, we averaged the power signal across the range of interest.  For each trial, we 

extracted a window centered around stimulus onset, starting 500 ms before and extending 500 
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ms after the onset. The end of this interval corresponds to the 70th percentile of the RT 

distribution, ensuring that at least 70% of trials are still in progress at that point. As we were 

interested in the dynamics of the information in time, we performed the analyses separately for 

each 4 ms epoch (referred to as timepoint).  Thus, for each timepoint and eachj of the 20 

electrodes, the power in each of the four frequency bands, served as input for the decoding 

analyses (i.e., 80 features).   

In the decoding analyses, we examined the extent to which the spatial pattern of the 

EEG power across the scalp and four frequency bands was predictive of each task aspect: cue 

(“color”/”hue” or “tilt”/”lean”, classified within tasks), task (Color or Orientation), target position 

(partitioned into 4 bins, coded 1-4), distractor position (bins 1-4), and the response (left vs. 

right).  For the target/distractor location, we decoded positions based on the bin that each item 

appeared in (e.g., bin 1=top and top-right position, bin 2=right and bottom-right position, etc.). 

This ensured that the target and distractor occupied each combination of bins with equal 

frequency (including sharing identical bins), thus ensuring that successful distractor decoding is 

not simply due to the classifier decoding “not target position”.  Note that in the current paradigm 

we cannot distinguish between the manual response and the specific target stimulus (e.g., left-

tilted grating, or reddish grating) as they were confounded.  As we wanted to isolate the 

discriminability of each aspect regardless of any task differences, we performed the decoding 

separately within each task (except, of course in decoding the task set itself). The results from 

these analyses were then averaged.  Previous work has established that different types of 

information are encoded in brain oscillations at particular frequency bands, which motivated 

decomposing the raw EEG signal into the separate bands. However, in the present investigation 

we were agnostic to which bands encode which type of information, and thus concatenated all 4 

bands together in the decoding analysis.  

Prior to decoding, the EEG data were z-scored so that the mean of each trial’s data was 

0 without baseline activity subtraction. We performed all analyses separately for each subject 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2017. ; https://doi.org/10.1101/219741doi: bioRxiv preprint 

https://doi.org/10.1101/219741
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

and then averaged results across subjects. The L2-regularized logistic regression was used, as 

implemented in the scikit-learn package in Python ((37)), with a tolerance of 1 x 10-4 and the 

inverse of the regularization strength (C) set to 1.0.  Multi-class classification (which was the 

case for target and distractor positions), was implemented as a series of binary classifications. 

For all aspects, we used a 4-fold cross-validation procedure where 75% of trials were used in 

the training set, and the remaining 25% of trials were used as the test set, and this was 

repeated until each trial had an opportunity to be part of the test set.  

For the main decoding analysis (Figure 1c), we reported the decoding accuracy, 

averaged within subject, time point, and factors of interest (e.g., task), and then across subjects.  

We used decoding accuracy here as it is most consistent with how such results are presented in 

the literature.  In contrast, Figures 2-4 are based on classifier confidence, which provide a 

continuous prediction score on the trial-by-trial level.  
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Figure 1. a) Stimulus timeline with each relevant task aspect. b) Competing models specifying 
either a (I) “preconfiguration” or a (II) parallel-activation relationship between task set and 
stimulus/response representations.  c) Decoding accuracy of each aspect across time, relative 
to chance (p=.5, except for target and distractor, where it was p=.25).  In all figures, shaded 
regions specify 95% within-subject confidence intervals. The insert shows how task-set 
decoding accuracy generalizes both within (filled line) and across target locations/responses 
(dotted line).  Note, that in the current work we are particularly interested in within-individual 
variability in decoding accuracy and therefore the values presented here are based on 
averaged, trial-by-trial results.  When performing decoding analyses based on averaged data, 
much higher decoding accuracy (>80% for some aspects) can be achieved. 

a)

b)

c)

.

.
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Figure 2.  Within and between-individual relationships between decodability of all task aspects 
and RTs. a) Coefficients from multilevel, linear models with logit-transformed classifier evidence 
from all task aspects for a given timepoint simultaneously predicting RTs. The insert shows the 
coefficient when the task-set predictor is based on the generalization scores presented in the 
insert to Figure 1c. b) T-values representing simple correlations between individuals’ average, 
logit-transformed classifier evidence for each task aspect and their average RT.  c) Scatterplots 
of relationships between subject-averaged classifier evidence and RTs during peak, average 
decoding accuracy periods for each task aspect (see Supplemental Material for details). For 
task-set generalization scores (see insert to Figure 1c), the correlation remained very robust at 
.63 (p<.01). 
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Figure 3.  Coefficients representing the independent relationships between classifier confidence 
for task set on the one hand, and for cue, target, and responses on the other.  For clarity of 
presentation, the relationship with distractor classifier confidence was omitted here, which 
hovered around 0 throughout. 
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Figure 4. Average classifier confidence, separately for switch vs. no-switch trials and fast vs. 
slow RTs (determined via median split within individuals and switch vs. no-switch trials).  
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