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Abstract

Specialist predators with oscillating dynamics are often strongly affected by the pop-
ulation dynamics of their prey, yet they do not always participate in a predator-prey
cycle. Only those that exert strong population regulation of their prey do so. Infer-
ring the strength and direction of the predator-prey coupling from time series therefore
requires contrasting models with top-down versus bottom-up predator-prey dynamics.
We examine such population-level coupling using multivariate autoregressive models.
The models translate several hypotheses for the joint dynamics of population densities
of the Icelandic gyrfalcon Falco rusticolus, and its prey, the rock ptarmigan Lagopus
muta. The dynamics of both species are likely not only linked to each other but also
to stochastic weather variables acting as confounding factors on the joint dynamics.
The classical MAR(1) model, used most often in ecology, predicts that the times series
exhibit predator-prey feedback (i.e., Granger causality): the predator helps to explain
prey dynamics and the prey helps to explain predator dynamics. Weather, in the form
of spring temperature, influences gyrfalcon population growth but not ptarmigan pop-
ulation growth, despite individual-level evidence that ptarmigan chicks can be strongly
affected by weather. MAR(2) models, allowing for species to cycle independently from
each other, further suggests alternative scenarios where a cyclic prey influence its preda-
tor but not the other way around; such bottom-up models produce a better fit but
less realistic cross-correlation patterns. Simulations of MAR(1) and MAR(2) models
further demonstrate that the top-down MAR(1) models are most likely to be misidenti-
fied as bottom-up dynamics than vice-versa. We therefore conclude that predator-prey
feedback in the gyrfalcon-ptarmigan system is very likely, though bottom-up dynam-
ics cannot be excluded with certainty. We finally discuss what sort of information is
needed to advance the characterization of joint predator-prey dynamics in birds and
other vertebrates.
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Introduction1

Theoretical ecology predicts that among predators, specialists are the most likely to shape2

the dynamics of their prey (e.g. Andersson and Erlinge, 1977; Turchin and Hanski, 1997;3

Gilg et al., 2003). It has even been suggested that only specialist predators do exhibit4

multi-generation predator-prey population cycles (Murdoch et al., 2002), based on cycle5

periods in specialist versus generalist predators. Mechanistic modeling, however, disputes6

this particular point (Erbach et al., 2013). Testing more thoroughly this working theory with7

empirical data - the more specialized the predator, the higher the likelihood of a predator-prey8

cycle or more generally top-down prey regulation - would require to estimate the strength of9

predator-prey coupling in a number of real predator-prey systems, for which time series of10

both predator(s) and prey are available, preferably in the field. While the task may appear11

straightforward in theory, it is surprisingly difficult in practice. Cases of long-term monitoring12

including both specialized predators and their main prey, through extended periods of time,13

are indeed quite rare, especially in vertebrates. Two famous exceptions to the rule include14

the wolf-moose (Canis lupus - Alces Alces) system of Isle Royale (Vucetich et al., 2011),15

that has been followed for a century (although this study area is somewhat restricted for16

such wide-ranging species), and the celebrated cycle of the Canada snowshoe hare Lepus17

americanus, which interacts with the Canada lynx Lynx canadensis and other predators18

(Vik et al., 2008; Krebs et al., 2001). While there is a convincing array of evidence showing19

that lynx have a dynamical impact on hares (Vik et al., 2008), and wolf has an impact20

on moose (Vucetich et al., 2011), there is also evidence that weather and other drivers21

have often a strong forcing influence on prey dynamics (Vucetich and Peterson, 2004; Yan22

et al., 2013). Even in such strongly interacting systems that fascinate the imagination by23

demonstrating strong oscillations, it has been suggested that the presence of an ubiquitous24

external forcing hardly warrants to view such systems as a pair of autonomous coupled25

differential equations (Nisbet and Gurney, 1976; Barraquand et al., 2017), despite the pivotal26

role of autonomous and deterministic dynamical systems in ecological theory (McCann, 2011;27
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Arditi and Ginzburg, 2012). Rather, real predator-prey systems are constantly buffeted by28

outside forces, be those climatic or biotic variables unaccounted for (i.e, other players in the29

interaction web). The study of Vik et al. (2008) reports at best around 55% of prey variance30

in log-densities explained by both prey and predator densities; this therefore leaves ample31

room for other factors to influence hare dynamics (Barraquand et al., 2017; see also Vucetich32

et al. 2011 on ungulate-wolf systems). In birds, contrasted feedback structures (bottom-up33

or top-down) were found in goshawk (Accipiter gentilis) - grouse dynamics, depending on34

the grouse species considered (Tornberg et al., 2013), with marked effects of weather forces.35

To gain a better appraisal of the strength of top-down regulation in the field, compared36

to other drivers of herbivore dynamics (see Sinclair, 2003, for a discussion in mammals),37

the list of predator-prey systems to which stochastic models of interacting populations are38

fitted to time series needs to increase. Having a number of reference predator-prey systems,39

whose dynamical structure (e.g., top-down vs. bottom-up) have been vetted by time series40

analysis, will also help evaluating how future food web models should be structured to obtain41

reliable quantitative predictions: what is the percentage of top-down links that should be42

allowed? Should bottom-up interaction coefficients generally be higher or lower than top-43

down? Should intra-specific density-dependence dominate? Should there be strong weather44

effects, strong or weak noise?45

Our goal here is to contribute, using large-scale field data, to improving the understanding46

of predator-prey dynamics. We do this by fitting stochastic, statistically-driven predator-47

prey models to a presumably tightly coupled predator-prey pair, gyrfalcon Falco rusticolus48

and rock ptarmigan Lagopus muta in North-East (NE) Iceland. The gyrfalcon is a predator49

specialized on ptarmigan (rock ptarmigan and willow ptarmigan Lagopus lagopus) (Nielsen50

and Cade, 2017). In Iceland, the rock ptarmigan amounts to on average 72% by biomass of51

the gyrfalcon summer diet (range 52-86%) (Nielsen 1999). We combine detailed monitoring52

data from Iceland with multivariate autoregressive (MAR) modeling to infer the strength of53

trophic coupling in this system. Previous studies have computed autocorrelation functions54
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to infer periodicity (Nielsen, 1999) and fitted autoregressive models on each species (Bryn-55

jarsdóttir et al., 2003), but this is to our knowledge the first time a MAR model is fitted56

to this dataset. MAR modeling, now an established technique within ecology (Ives et al.,57

2003; Hampton et al., 2013), has been largely developed in econometrics (Granger, 1969;58

Lütkepohl, 2005), where it is primarily used to establish causal relationships in the sense of59

prediction (i.e., a variable has causal influence if it helps improving predictions about the60

future, Granger 1969), which is the statistical philosophy that we adopt here.61

Material and methods62

Study area and design63

The study area (5327 km2) in NE Iceland and survey methods used have been extensively64

detailed elsewhere (Nielsen, 1999, 2011) so we will remain brief. The gyrfalcon population65

is censused annually by visiting all known territories within the study area to determine66

predator occupancy (n = 83 territories). The number of territorial rock ptarmigan males is67

surveyed every spring (mostly in May) on 6 plots (total area 26.8 km2) within the general68

study area. The study started in 1981 and we use data for the period 1981-2014.69

Ecological variables70

We consider two main variables, the occupancy rate of gyrfalcon territories, that was con-71

sidered a good proxy for gyrfalcon population density, and mean density of territorial rock72

ptarmigan cocks on the 6 plots. Both variables are standardized in the statistical models.73

We also consider weather variables that are known to potentially affect the dynamics of74

the two populations. We have selected 3 stations for the temperature (Akureyri, Mánárbakki,75

Gŕımsstaðir), and 6 stations for log-precipitation (Lerkihĺıð, Mýri, Staðarhóll, Reykjahĺıð,76

Mánárbakki, Gŕımsstaðir), all within or at the border of the study area and that have77

recordings from 1975 to now. The weather data was retrieved from the web site of the78
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Icelandic Met Office (http://www.vedur.is/).79

Statistical models80

Multivariate AutoRegressive (MAR) models have been used to assess the strength of predator-81

prey coupling (Ives et al., 2003; Vik et al., 2008). Let us denote the ln-transformed predator82

density pt = ln(Pt) and nt = ln(Nt) the ln-tranformed density of the prey; the log transfor-83

mation is useful to transform log-normal into Gaussian noise. These ln-densities are then84

centered and stacked into a vector xt = (x1t, x2t)
′ = (nt, pt)

′. The dynamics of the MAR(1)85

model, with one timelag, are then written as a forced recurrence equation (eq. 1),86

xt+1 = Bxt + Cut + et, et ∼ N2(0,Σ) (1)

where B is an interaction matrix that characterizes the effects of net interactions on popu-87

lation growth of the 2 species, C describes the effect of environmental covariates ut on the88

population growth rates of predator and prey, and et is a Gaussian bivariate noise term.89

We considered both a model without interactions where B =

b11 0

0 b22

, hereafter90

referred to as the null MAR(1) model, and a model with full interaction matrix, B =91 b11 b12

b21 b22

. Both models were considered without (C = 0) and with environmental forc-92

ing (C 6= 0). The weather variables that we stacked within ut are delayed: the predator93

population is believed to be affected by weather 5 years before, because recruits enter the94

adult population at the age of 4 years (average time to maturity), while the prey population95

is affected by the weather of the year (between t and t + 1) or that of the preceding year96

(between t − 1 and t). We considered models with temperature effects, log(precipitation)97

effects, or both.98

Several model fitting techniques have been considered in preliminary explorations (MCMC99

using JAGS within R, least squares for vector autoregressive models in R package vars, simple100
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independent linear autoregressive models using lm() in R). Maximum likelihood estimation101

using the MARSS package (Holmes et al., 2012)and the EM algorithm was finally chosen102

because it allowed to easily perform model selection for contrasted interactions matrices (i.e.,103

setting some interactions to zero). All algorithms gave however similar model estimates (see104

Appendix S1).105

We then considered more complex MAR(2) models that are able to allow for both pop-106

ulations to cycle independently, because each univariate AR(2) component can model long107

cycles (≈ 7 to 10 years cycles, like those observed in the field). Selection of the optimal108

lag p in MAR(p) model using a variety of model information theoretic criteria (see code109

in https://github.com/fbarraquand/GyrfalconPtarmigan_MAR) in suggested an optimal110

lag order of 2 (BIC, HQ) or 3 (AIC, FPE). Because 2 lags are enough to model indepen-111

dently cycling populations of period up to 10 years and more (Royama, 1992), and MAR(2)112

models are already parameter-rich, we considered a maximum of 2 lags in MAR models. The113

MAR(2) model can be written as114

xt+1 = B(1)xt + B(2)xt−1 + Cut + et, et ∼ N2(0,Σ) (2)

The independent cycling model has diagonal matrices B(1) and B(2). The full model115

has interaction matrices B(1) =

b(1)11 b
(1)
12

b
(1)
21 b

(1)
22

 and B(2) =

b(2)11 b
(2)
12

b
(2)
21 b

(2)
22

. To model also an116

asymmetric and nonreciprocal effect from the cyclic prey to its predator, we used the following117

interaction matrices B(1) =

b(1)11 0

0 b
(1)
22

 and B(2) =

b(2)11 0

b
(2)
21 b

(2)
22

. The model was named118

‘bottom-up’, in order to designate a predator dynamics driven by that of its cyclic prey.119
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Time series of log-densities
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Figure 1: Time series of gyrfalcon (red) and rock ptarmigan (black) standardized log-densities
in NE Iceland, and their corresponding one-step ahead predictions under the best-fitted, full
interaction matrix MAR(1) model. 100 model simulations one step ahead are plotted, for
each year, as small points - red for predator and black for prey.

Results120

MAR(1) model results121

Models without environmental covariates122

The predator-prey time series and the MAR(1) model one-step ahead predictions are pre-123

sented in Fig. 1, while Table 1 shows the MAR(1) model fitted parameters. All B coefficients124

are found to be significantly different from zero, with commensurate strengths of predator125

→ prey (b12) and prey→ predator (b21) interaction. There is therefore consistently negative126

effect of predator on prey and a consistently positive effect of prey on predator. Note that a127

clear-cut sign was not obligatory, given those are net interaction coefficients, blending several128

ecological processes, e.g., direct and indirect predation effects, into one number.129
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Estimates of the MAR(1) full model without environmental covariates

Parameter value SE lower 95% CI upper 95% CI
b11 0.7710 0.1112 0.5528 0.9890
b21 0.2150 0.1096 0.0001 0.4298
b12 -0.2333 0.1114 -0.4516 -0.0149
b22 0.6601 0.1097 0.4449 0.8752
σ2
1 0.3961 0.0774 0.2280 0.6103
σ2
2 0.3844 0.0763 0.2212 0.5922

Table 1: The off-diagonal interaction coefficients are statistically significant at a 95% level.
Similar results are obtained for non-diagonal Σ (not shown); for parsimony we use a diagonal
error matrix.

Comparison of model selection criteria for MAR(1) models

Model type LogLik. AIC AICc BIC
MAR(1) null -70.01 148.0 148.7 154.1
MAR(1) full -66.14 144.3 145.7 153.4
MAR(1) full + May temperature year t+ 1 -63.98 144.0 146.4 156.2
MAR(1) null + May temperature year t+ 1 -67.03 146.1 147.4 155.2
MAR(1) full + May temp. of year t -63.94 143.9 146.3 156.1
MAR(1) full + May log(precipitation) of t -64.89 145.8 148.2 158.0
MAR(1) full + May temp + log(precipitation) -62.81 145.6 149.5 160.9
MAR(1) full + July temperature year t -61.95 143.9 147.8 159.2
MAR(1) full + June temperature year t -63.79 147.6 151.4 162.8

Table 2: MAR(1) ‘null’ indicates a diagonal B matrix while MAR(1) ‘full’ indicates a full
2x2 interaction matrix. Models including temperature effects on growth rates (third row and
below) take the form xt+1 = Bxt+Cut+et, et ∼ N2(0,Σ). Here the environmental vector is
ut = (Tt−lP+1, Rt−lP+1, Tt−lG+1, Rt−lG+1)

T , with T the temperature and R log-precipitation.
There is a time-lag lP for the ptarmigan (0 or 1 year) and lG = 5 (always) for the gyrfalcon:
weather is expected to have such delayed effects on the gyrfalcon counts because of age struc-
ture. April weather is considered for gyrfalcon as it is the critical period for reproduction,
and it is always included in models from row 3 and below. Models from rows 3 to 7 consid-
ered May temperature for ptarmigan, log(precipitation), or both. The models of rows 8 and
9 considered instead July and June temperatures as environmental variables for ptarmigan.

8
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Based on the comparison of AICc and BIC between the full 2 × 2 interaction matrix130

and the diagonal matrix model (null model), the full model was favored (Table 2). The131

model with environmental covariates did not lead to substantially better fit or very different132

biotic interaction parameters (Table 2) than the full model, and the weather effects were not133

consistent (Table 3), save for those of delayed April temperature on predator growth (see134

below).135

Additional Granger causality testing using the MAR(1) model revealed a two-way recip-136

rocal feedback, though the Wald test was weakly statistically significant (at the 0.1 level)137

due to the low sample size (i.e., not by ecological standards but compared to other fields138

using time series analysis such as econometrics). While accounting for the relative short-139

ness of ecological time series, the MAR(1) model therefore strongly suggests a reciprocal140

predator-prey coupling of the ptarmigan and gyrfalcon populations.141

Models with environmental covariates142

The addition of environmental covariates did not improve significantly model fit (Table 2).143

The coefficients were mostly non-significant, as illustrated by the model including both144

temperature and log(precipitation) (0 is included within CIs for environmental C matrix145

coefficients, Table 3). The model with both precipitation and temperature was deemed146

over-parameterized by the information criteria. It is likely that an effect of 5-year delayed147

temperature on predator growth is present as this effect was found positive, large and nearly148

statistically significant at 95% (Table 3). Although this weather effect on the predator does149

not seem to improve significantly the predictive ability of the model. The effect of tempera-150

ture in Mayt+1 (May of the year) on ptarmigan growth, by contrast, is both not statistically151

different from zero and of unexpected sign (negative here, while positive temperature usu-152

ally have positive effects on the ptarmigan chicks, Nielsen et al. 2004). The effect of rain in153

Mayt+1 on ptarmigan population growth was negative and relatively strong, but not statis-154

tically significant at 95% (point estimate -0.1596, 95%CI: [-0.3735; 0.0541]). It is therefore155

9
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Coefficients for biotic and abiotic effects on population growth

Parameter value SE lower 95% CI upper 95% CI
b11 0.7475 0.1071 0.5376 0.9575
b21 0.2031 0.1044 -0.0014 0.4077
b12 -0.1984 0.1135 -0.4210 0.0241
b22 0.7021 0.1043 0.4977 0.9065
temperature Mayt+1 -0.0853 0.1142 -0.3092 0.1385
precipitation Mayt+1 -0.1596 0.1091 -0.3735 0.0541
temperature Aprilt−4 0.2072 0.1061 -0.0008 0.4153
precipitation Aprilt−4 -0.0558 0.1068 -0.2652 0.1535
σ2
1 0.3653 0.0743 0.2104 0.5628
σ2
2 0.3418 0.0733 0.1943 0.5307

Table 3: Species 1 is ptarmigan and species 2 gyrfalcon. May variables only affect species 1
while April variables, delayed by 5 years (we model the effect of variables at t− 4 on growth
between t and t+ 1), affect only species 2’s population growth.

possible that such a negative effect is present, but it does not appear clearly with the current156

dataset.157

We also fitted models where winter weather affects ptarmigan growth (Appendix S2), to158

test the idea that the survival of first-year chick might be lower in harsher winters, but again159

we did not find consistent effects of weather on ptarmigan growth.160

MAR(2) model results161

The MAR(2) models showed uniformly better fit than the MAR(1) models (Table 4). Note162

that, in order to make this comparison, we re-fitted the MAR(1) model with one less year163

to compare MAR(1) and MAR(2) models with an equal number of points, as any difference164

in data can strongly affect AIC and BIC values. The MAR(2) model with independent165

populations (i.e., diagonal interaction matrices B(1) and B(2)) and the bottom-up predator-166

prey model (see Methods), assuming an independently cycling prey and a predator whose167

dynamics is forced by its prey, were the better-ranking models (Table 4).168

Because AIC and BIC assess only one aspect of statistical model quality, the trade-off169

between model parsimony and fit, we also present the results of simulations of the models170
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Comparison of model selection for MAR(1) and MAR(2)

Model type logLik. AIC AICc BIC
MAR(1) null -67.57 143.1 143.8 149.1
MAR(1) full -64.41 140.8 142.3 149.8
MAR(2) full -54.78 129.6 133.6 144.5
MAR(2) full -57.91 129.8 131.8 140.3
MAR(2) null -58.78 129.6 131.0 138.5
MAR(2) null + temperature -56.95 129.9 132.4 141.9

Table 4: Comparison of model selection criteria for MAR(1) and MAR(2) models with
different structures. See Methods for definitions. The MAR(2) null + temperature uses
April temperature with a 5 year delay, which affects the predator only - this model adds
temperature to the list of potential drivers for predator dynamics, as it was found marginally
significant in previous MAR(1) analyses.

(Fig. 2). The examination of time series plots is however difficult because the simulated time171

series are relatively short and noisy.172

We therefore simulated 100 datasets using the fitted models (Fig. 3) and examined their173

cross-correlations, these show that MAR(1) and MAR(2) models with reciprocal predator-174

prey feedback (full interaction matrices) outperform both the bottom-up model (medium175

reproduction of the the cross-correlation pattern) and the null model (no reproduction of the176

cross-correlation pattern).177

Discussion178

The percentage of explained variance in log-abundances by the MAR(1) predator-prey model179

was about 60%; hence similar to the lynx-hare example of Vik et al. (2008). The full 2x2180

interaction matrix in a MAR(1) framework provided a better model than a diagonal matrix,181

meaning there was causality (or feedback) between prey and predator dynamics in the sense182

of Granger (1969): the addition of the predator and prey variables reduced the residual183

variances of the time series models for the prey and predator, respectively.184

Weather (i.e., April temperature 5 years lagged) was found to influence predator dynam-185

ics, revealing an influence of weather on gyrfalcon reproduction, which takes several years to186
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Simulated time series
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Figure 2: Time series of predator (gyrfalcon) and prey (rock ptarmigan) log-densities, simu-
lated for 35 years from the same starting conditions as the data, for the full MAR(1) model
(top panel, predator in red) and the MAR(2) ‘bottom-up’ model (bottom panel, predator in
blue).
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Cross-correlation patterns for fitted models
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Figure 3: Cross-correlation functions (CCFs) for the fitted models (A to F). Each thin line
corresponds to one simulation of the fitted model, within each panel. A and B show MAR(1)
models, without and with interactions; while C to F show the CCFs of simulated MAR(2)
models, without interactions (C), with only bottom-up interactions (D), bottom-up without
predator regulation with a delay (E), and (D) full MAR(2) model. The cross-correlation for
the real data is highlighted as a thick black line in all panels.
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affect the growth of the adult segment of the population. However, prey population growth187

was not affected by any of the weather covariates considered, neither in spring nor in winter.188

This is a surprising find, which we discuss below.189

If we had stopped the analyses to the MAR(1) model, which is customary in ecology (e.g.190

Ives et al., 2003; Hampton et al., 2013), we would have concluded unequivocally to a strong191

coupling between predator and prey (Table 2). However, another reasonable hypothesis192

was that both species - the prey especially - could cycle independently (see e.g., Dobson and193

Hudson, 1992, for a host-parasite modeling study in a similar prey species). Contrasting such194

hypotheses required to formulate a MAR(p) model with p = 2 timelags (according to BIC,195

the optimal lag order was 2; 3 according to AIC). MAR(2) models were therefore found to196

realize a better trade-off between parsimony and fit than MAR(1) models (Table 4, for more197

information criteria see additional analyses1). While the model with independently cycling198

populations fitted the data well, it produced unrealistic dynamics (i.e., no cross-correlation,199

Fig. 3). The bottom-up predator-prey model, where the prey influences the predator but200

not the other way around, provided both a good fit and relatively realistic dynamics, though201

not as much as the models including reciprocal feedback (full-matrix MAR(1) and MAR(2)202

models). The bottom-up scenario could correspond, for example, to a case where the predator203

dynamics are driven by its prey, but prey dynamics are themselves driven by an interaction204

with a parasite (see Stenkewitz et al., 2016, for an appreciation of host-parasite dynamics in205

Iceland rock ptarmigan). The bottom-up scenario fitted the data better in terms of trade-off206

between parsimony and fit, but predicted the cross-correlation pattern worse. Hence with207

the currently available information, both scenarios must be considered plausible. Further208

simulation results do help, however, to interpret a little better which scenario is the most209

likely (see below).210

This absence of conclusion on mechanisms, given the length of the survey, may appear at211

first sight distressing. However, from the perspective of time series analyses, even 35 years is212

1https://github.com/fbarraquand/GyrfalconPtarmigan_MAR

The repository will be made publicly available upon acceptance.
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very short. In fact, in his authoritative book on multivariate time series modeling, Lütkepohl213

(2005) shows that it can be hard to recover the simulated lag order of such simple 2 × 2214

MAR(1) and MAR(2) models. Specifically, Lütkepohl (2005) simulated a bivariate MAR(2)215

model with a time series length n = 30, fitted MAR(p) models up to order p = 6, and216

found only 32% of correctly classified simulations as p = 2 using AIC, with 42% classified217

as p = 1 (p. 155 in Lütkepohl 2005). Using BIC, he found even 80% misclassified as218

MAR(1). Different model selection criteria give different answers, and the BIC tends to be219

most conservative, but the baseline is that for T = 30, selection according to information220

criteria only gives inconsistent answers, while in most cases (70% for AIC) the right model221

order was found for n = 100. Results were overall better with simulated bivariate MAR(1)222

models (p. 156 in Lütkepohl 2005), where all model selection criteria were able to pinpoint223

the correct lag order at 90%. The results, however, are likely to be model-structure and224

model-parameter specific; therefore we performed such analysis for the models that we fitted.225

Specifically, we performed 1000 simulations of the fitted MAR(1) full (F) model and MAR(2)226

bottom-up (BU) model. We fitted the MAR(1) F model to both MAR(1) F and MAR(2)227

BU simulations, and then fitted the MAR(2) BU to both MAR(1) F and MAR(2) BU228

simulations. This allowed to compute the percentage of correctly ascribed scenarios, on the229

basis of information criteria (AIC, AICc, BIC) for each simulated model (Appendix S3).230

We found that for n = 35, a simulated MAR(1) F was recovered respectively 52%, 56%,231

64% for AIC, AICc, and BIC, respectively. By contrast, a simulated MAR(2) BU model232

was recovered 98%, 98% and 97%. With the current length of our dataset, the important233

message from these simulations is that based on AIC or BIC, we are much more likely to234

mistake a fully interacting predator-prey system for a bottom-up system than the reverse.235

These percentages were all very close to 90% and 100% in the case of n = 100 (Appendix236

S3).237

From our simulation experiments, we can derive three lessons. First, from an ecological238

viewpoint, given that the full interaction MAR(1) model both predicts the cross-correlation239
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pattern better and is the most likely to be misidentified as MAR(2) BU, we should not give240

too much weight to the better (lower) AIC and BIC scores of the MAR(2) BU model. It is241

fairly likely that top-down prey regulation and therefore reciprocal predator-prey feedback242

is at work here. Second, from a more statistical viewpoint, it is informative to notice that243

whether MAR(1) or MAR(2) models are better identified is parameter-specific: sometimes244

a MAR(1) model will be more likely to be correctly classified (as in the simulation study245

of Lütkepohl, 2005), sometimes a MAR(2) will (our case study). Therefore, whether an246

ecological scenario is better identified than another one from time series is likely to be247

context-specific, and not simply dependent on the lag order. The corollary being that new248

simulations from MAR(p) or other time series models will be required for each new ecological249

case study, in order to see which scenarios are the most likely to be misidentified. Third,250

we found, in agreement with Lütkepohl (2005), that time series of around 100 points are251

needed to allow for fairly reliable inference of top-down vs bottom-up dynamics in systems252

of 2 cyclic species (less points might be required for species with simpler dynamics).253

Given that the data presented here is collected once a year for the most part, and that254

it is not feasible to census the population much more frequently with current means (other255

technologies would be necessary, such as camera traps or DNA-based evidence), it is un-256

likely that we will get the time series near 100 years within acceptable time frames for257

management of both populations (i.e., conservation of the gyrfalcon and sustainable hunting258

management of ptarmigan). Therefore, differentiating unequivocally between the bottom-up259

and predator-prey feedback scenarios will likely require other type of models and data. We260

still view the MAR(p) approach as useful, however, as a means to delineate likely scenarios261

to investigate further, and check for important abiotic drivers that need to be considered.262

Why the ptarmigan population growth is not affected - at the NE Iceland scale - by weather263

variables is also a puzzling question for further study.264

Mechanistic modeling might help further understand the effect of drivers on ptarmigan265

dynamics during certain phases of the cycle. For instance, are ptarmigan declines mainly266
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driven by its predator (i.e., the gyrfalcon is responsible in large part for the declines) or267

mainly by other causes such as parasites? Rough estimates of predation demonstrate why268

this question is intrinsically difficult. Around 100 adult predator pairs can be found near peak269

abundance on the NE Iceland ptarmigan management zone, and to these correspond about270

100 000 ptarmigan individuals at best (Sturludóttir, 2015). One might think, given these271

numbers, that the predators are unlikely to make their prey decline. Ptarmigan, however,272

have a slow, long-period cycle (Fig. 1). Therefore, they decrease at worst by ≈ 20 000 in a273

single year. A quick division indicates that about 200 would have to be eaten during the year274

by a predator pair for such a decrease to occur - assuming, as a first approximation, that275

increases in the ptarmigan population due to reproduction are offset by other causes of death276

than predation. This quantity, 200 kills a year, is an order of magnitude that represents a277

fairly high yet doable consumption by a predator pair. This might be tested further by fitting278

more mechanistic predator-prey models.279

Although we currently do not possess all the information necessary to parameterize mech-280

anistic predator-prey or host-parasite models, we suggest a few directions. First, we have a281

rather imperfect knowledge of the predator population, especially its non-territorial segment282

(Nielsen, 2011). Non-territorial floaters can indeed be rather numerous in both real raptor283

populations (Katzner et al., 2011) and parameterized bird population models (Barraquand284

et al., 2014). Floater numbers could therefore change our perception of predator impacts on285

prey dynamics (i.e., the predator population might increase by half or more). Demographic286

modeling of the predator population and its various life stages is therefore in order - we are287

currently examining CMR data and hoping for DNA-based information. Second, the cur-288

rent models have shown that the host-parasite hypothesis for the ptarmigan dynamics (see289

Stenkewitz et al., 2016) needs to be examined. We therefore need to know more about the290

parasite loads and their potential impact on ptarmigan population growth. Third, there are291

spatial aspects in the dynamics of gyrfalcon and ptarmigan that we have not tackled. It is292

plausible, for instance, that the weather does not affect ptarmigan growth at the scale of NE293
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Iceland, using averaged state variables and covariables, and yet that weather locally affects294

the survival of ptarmigan chicks, as additional data seem to suggest: Nielsen et al. (2004)295

found that mean windspeed and mean precipitation in June-July explained a considerable296

part of the variance in chick production.297

Conclusion298

Our results have implications for other studies on birds and more generally vertebrates299

with relatively slow life histories (compared to e.g., plankton sampled many times a year).300

Using long time series by ecological standards (34 years), we found some evidence of re-301

ciprocal predator-prey feedback in this cyclic predator-prey system, without being able to302

exclude nonetheless more bottom-up predator-prey dynamics. MAR(p) models with p = 1, 2303

described well this system as a forced oscillator, although the unexplained noise was gener-304

ally stronger than weather effects, which may point to other important biotic factors driving305

the dynamics, such as parasites. Simulations of the fitted models revealed than unequivocal306

inference of bottom-up versus reciprocal predator-prey coupling (i.e., including top-down307

predator influence on prey) would require about a century of time series data. We therefore308

think that additional demographic data (e.g., through capture-recapture, genetics,...) should309

always be considered in conjunction to counts taken once or twice a year, if one of the goals310

of a monitoring study is to infer interactions between the populations of different species.311
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time series for rock ptarmigan and gyrfalcon populations in north-east Iceland. Raun-337

v́ısindastofnun Háskólans.338
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population in Iceland 1999-2003. Technical report, Fjölrit Náttúrufrædistofnunar, 47:1-110371
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Supplementary Information400

Appendix S1 - Alternative model fitting401

Parameters Meaning Point estimate LB 95% HB 95%
b11 − 1 prey→ prey -0.24 -0.47 -0.03
b12 predator→ prey -0.24 -0.47 -0.04
b21 prey→ predator 0.23 0.04 0.46

b22 − 1 predator→ predator -0.34 -0.57 -0.12
σ1 noise species 1 0.67 0.53 0.87
σ2 noise species 2 0.66 0.52 0.85

Table S1: Estimates of the full MAR(1) model using JAGS, for comparison with the results
of the main text.
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Appendix S2 - Effects of winter weather402

We tested the effect of winter weather by introducing new winter weather variables into403

the MAR(1) models:404

• The mean winter temperature from December to March405

• The average of log(precipitation) over the same period406

We also considered minimum temperature but this did not alter the following results.407

The two above mentioned winter weather variables were inserted in place of spring408

weather variables for ptarmigan into a MAR(1) model. The estimated parameters are re-409

produced in Table S1 and the Information Criteria, with previous models for comparison, in410

Table S2. None of the models are able to significantly improve the fit, although it is possible411

that a weakly statistically significant effect of winter temperature exists.412

Parameter value SE low 95% CI up 95% CI
b11 0.6837 0.1169 0.4546 0.9129
b21 0.2035 0.1045 -0.0013 0.4084
b12 -0.1999 0.1077 -0.4111 0.0113
b22 0.7018 0.1044 0.4971 0.9065
Mean winter tempt+1 -0.1466 0.1210 -0.3838 0.0906
Winter precipitationt+1 -0.1720 0.1185 -0.4044 0.0602
temperatureAprilt−4 0.2071 0.1062 -0.0010 0.4153
rainAprilt−4 -0.0557 0.1068 -0.2652 0.1537
σ2
1 0.3635 0.0742 0.2092 0.5602
σ2
2 0.3422 0.0734 0.1945 0.5314

Table S1: Coefficients for biotic and abiotic effects on population growth. Species 1 is
ptarmigan and species 2 gyrfalcon. Winter variables only affect species 1 while April vari-
ables, delayed by 5 years (we model the effect of variables at t− 4 on growth between t and
t + 1), affect only species 2’s population growth. Effects of winter variables are depicted in
italics.
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Model type logLik. AIC AICc BIC
MAR(1) null -70.01 148.0 148.7 154.1
MAR(1) full -66.14 144.3 145.7 153.4
MAR(1) full + May temperature year t -63.98 144.0 146.4 156.2
MAR(1) null + May temperature year t -67.03 146.1 147.4 155.2
MAR(1) full + May temp. of year t− 1 -63.94 143.9 146.3 156.1
MAR(1) full + May log(prec.) of t− 1 -64.89 145.8 148.2 158.0
MAR(1) full + May temp + log(prec.) -62.81 145.6 149.5 160.9
MAR(1) full + Mean Winter temp + mean log(prec.) -62.72 145.4 149.3 160.7
MAR(1) full + Min Winter temp + mean log(precipitation) -62.72 145.4 149.3 160.7

Table S2: Comparison of model selection criteria for MAR(1) models. MAR(1) ‘null’
indicates a diagonal B matrix while MAR(1) ‘full’ indicates a full 2x2 interaction ma-
trix. Models including temperature (third row and below) effects on growth rates take
the form xt+1 = a + Bxt + Cut + et, et ∼ N2(0,Σ). Here the environmental vector
ut = (Tt−lP , Rt−lP , Tt−lG , Rt−lG)T , with T the temperature and R log-rainfall. There is a
timelag lP for the ptarmigan (0 or 1 year, depending on the month) and lG = 5 for the
gyrfalcon. IC scores for the two winter models are depicted on the last two rows . prec. =
precipitation (rain and snow).
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Appendix S3 - Simulation results413

Simulated model AIC AICc BIC
n = 35 0.52 0.56 0.64
n = 100 0.98 0.98 0.97

Table S1: Frequency of correct identification of MAR(1) full and MAR(2) bottom-up models
for two time series lengths.
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